وزارة التربية والتعليم المديرية العامة للتربية والتعليم بمحافظة شمال الباطنة دائرة تنمية الموارد البشرية - قسم العلوم التطبيقية - وحدة الرياضيات

كراسة تدريبية

الصف: الحادي عشر

المادة: الرياضيات التطبيقية

الوحدة: المتتاليات والمتسلسلات

فريق العمل:

بدرية بنت سالم الحراصي مشرفة رياضيات معلمات الرياضيات بمدرسة مريم ابنت عمران معلمات الرياضيات بمدرسة أسماء بنت عمرو الأنصارية

العام الدراسي ١٥ / ٢٠١٦م

الفهرس

الموضوع	الصفحة
المقدمة	۲
الدرس الأول: المتتاليات والمتسلسلات	7_٣
الدرس الثاني: المتتالية الحسابية	10_Y
الدرس الثالث: المتتالية الهندسية	77-17

المقدمة:

الحمد لله الذي علم بالقلم، علم الإنسان مالم يعلم والصلاة والسلام على النبي الأكرم الذي لم يكتب بقلم وقاد الأمة لأعلى المراتب والقمم.

يعتبر التدريب من الطرق الفاعلة في تحسين ورفع التحصيل الدراسي للطلبة، فهو الوسيلة الرئيسة لتعلم المهارة واكتسابها وتطويرها، كما أن التدريب الموزع على فترات والمتواصل يساعد على بقاء جزء كبير من المعلومات السابقة ويساعد الطالب على فهم الأفكار والمفاهيم فهما واعيا مما يحقق الدقة ويزيد الكفاءة ويجنب الأخطاء، فمثلا يمكن أن يتعلم الطالب كيفية إجراء القسمة المطولة عن طريق تقليد أستاذة ولكن من خلال التدريب والممارسة يمكنه أن يحسن من قدرته على إجراء القسمة المطولة ويصبح قادرا على إيجاد الحل الصحيح بسرعة ودقة وإتقان لذا فإن التدريب يعزز من ثقة الطالب بنفسه ويزيد الدافعية لديه ويطور اتجاهاته الإيجابية نحو التعلم.

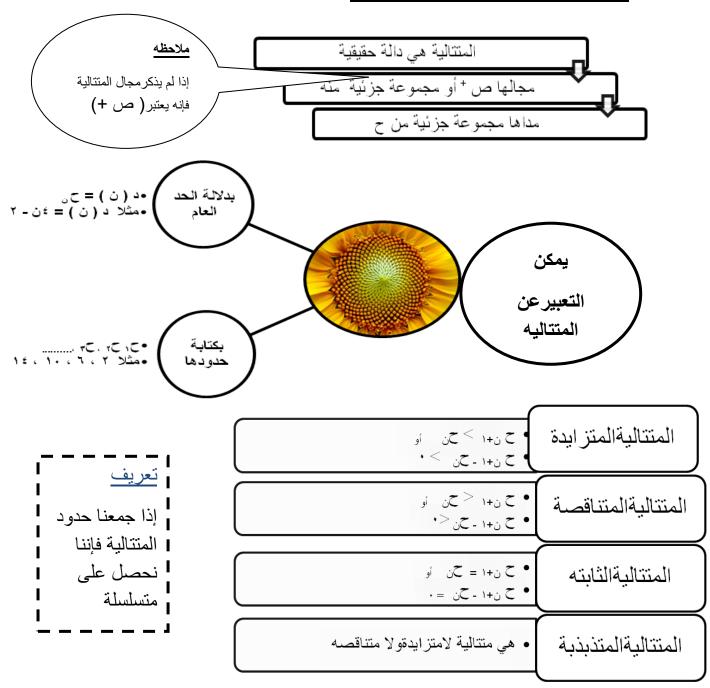
وتأكيدا على ما سبق تم اعداد كراسة الطالب التدريبية بحيث تشتمل على ما يلى:

١-ملخص لكل موضوع من مواضيع الوحدة

٢-جميع أسئلة الاختبارات الموضوعية والمقالية المتوفرة في البوابة التعليمية (زاويتي).

٣-دليل لإجابة الأسئلة الموضوعية والمقالية

سائلين الله تعالى أن ينفعنا بما علمنا وأن يعلمنا ما ينفعنا، والله من وراء القصد و هو يهدي السبيل.


مشرفة المادة: الأستاذة بدرية الحراصي

الدرس الأول: المتتاليات والمتسلسلات

أولا: لقد تعلمت في هذا الموضوع ما يلي:

- تعريف المتتالية
- إيجاد الحد العام للمتتالية
 - تعريف المتسلسلة
- إيجاد مجاميع جزئية لمتتالية بما في ذلك استخدام ترميز سيجما

وفيما يلى ملخص لما ورد في الموضوع:

كراسة للطالب

الصفحة ٣

ثانيا الأسئلة الموضوعية

	م
الحد العام للمتتالية ٢ ، ٥ ، ١٠ ، ١٧ ، هو:	١
۱) ۲ ن ۲ ب ن ۲ ب ۲ ب ن ۲ ب ۲ ب ۲ ب ۲ ب ۲ ب	
الحد العام للمتتالية ، ، ٧ ، ٢٦ ، ٢٦ ، هو:	۲
۲- ^۲ ن (ع ۲- ^۲ ن (غ ۲- ۲) ن ۲- ۲ (غ ۲- ۲) ن ۲- ۲ (غ	
ئے۔ (۱ – ۳ ن) تسا <i>وي</i> :	٣
ا) - ۲۲ (ج) - ۱۰ (ج) - ۲۲ (ا	
الحد العام في المتثالية ٤، ٩، ١٦، ٢٥، ٢٠، هو:	£
١) ٢ن ب) ٢ن ج) ن د) (ن ١٠) ٢	
ت ۲ د+۱ نساوي : نساوي :	٥
۱) ۲ (او ۱) ۸ (ب ۲ (ا	
Merc Marin Marindadh $(\cdot + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$	٦

	و :	عداد الفردية الموجبة حن ه) الحد العام لمتتالية الأ	٧
٢ن +٢	ج) ۲ن +۱ د)	ب)۲ن	ا) ۲ن-۱	
$c)\sum_{\nu=1}^{3}\omega^{3}$	۲ بالتعبیر:	لة ۱ +۱۲ +۱۸ + ۲۰ ب) ∑ً ر√	ر المتسلس المسلس المتسلس الم	٨
		لية :۲ ، -۲ ، ۲	الحد العام للمتثا	٩
ر) ۲-۱/۱- (ع	ح) ۲(-۱)	ب) - ۲ن	ا) ۲ن	
	ر:	٢ + ٤ + ٦ + ٨ بالتعبير	يعبر عن المتسلسلة	١.
£)∑(7~+1)	5) $\sum_{\nu=\ell}^{3} (7\nu - \ell)$	ب) <u>ت</u> ہے ''	1) = 70	
1=4	Jusy	Jan	jun4,	

ثالثًا: الأسئلة المقالية

السوال	٩
$\lim_{i \to 1} \sum_{j=1}^{\infty} (7ij - 7).$	١
$\int_{0}^{7} \left(\begin{array}{c} \gamma_{i} - \gamma_{i} \end{array} \right)^{0}.$	*

رابعا: دليل الإجابات على الأسئلة الموضوعية والمقالية

أولا: الأسئلة الموضوعية

١.	٩	٨	٧	٦	٥	£	٣	۲	١	رقم السؤال
Í	د	د	Í	E	د	د	Í	3	Ļ	البديل
										الصحيح

ثانيا: الأسئلة المقالية

١
۲

الدرس الثاني: المتتالية الحسابية

أولا: لقد تعلمت في هذا الموضوع ما يلي:

- تعريف المتتالية الحسابية
- ايجاد الحد النوني للمتتالية الحسابية
- تكوين متتالية حسابية بمعرفة حدودها
- ايجاد الأوساط الحسابية بين حدود معلومة لمتتالية الحسابية
- ايجاد مجموع (ن) حدا الأولى للمتسلسلة الحسابية (بما في ذلك استخدام الرمز Σ)

وفيما يلى ملخص لما ورد في الموضوع:

المتتالية الحسابية : هي التي يكون الفرق بين كل حد والذي يسبقه مباشرة مقدار ثابت يسمى الاساس ويرمز له بالرمز (د)

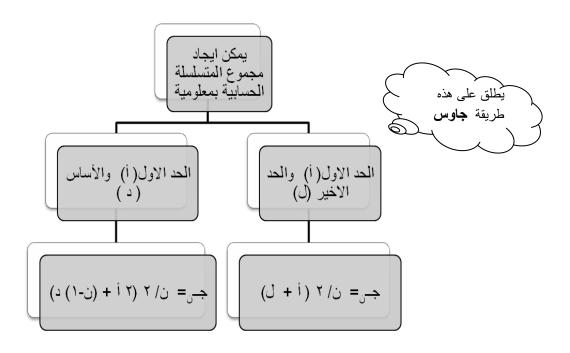
ملاحظة:

المتتالية الحسابية د(ن) دائما تكون دالة من الدرجة الاولى ويكون معامل ن اساس المتتالية

مثلا: د(ن) = ٣ن+١

تمثل متتالية حسابيه أساسها د =٣

ويرمز <u>للحد الاخير</u> فتكون الصورة العامة للمتتالية الحسابية كالتالي:


أ، أ+د ، أ+٢ د ، أ + ٣ د ، ل

وبشكل عام:

$$_{50} = 1 + (5 - 1)$$

مثلا: ح، = أ + ه د

ح., = أ + ٩ د و هكذا

ثانيا الأسئلة الموضوعية

	سىؤال	11	
7 - 400		بية فيما يلي هي :	المتتالية الحسا
17	ب) ۲،۸،۰،۳ (ب	17	.9.2.1 (1
	1,18,17(2		3) 3 , 4 , 5 (5
F	٢) يساوي:	٠ ، ، ، ، ۲ ، ٤ - ، ۱ -)	مجموع المتتالية
٤٤ (٤	۳۰ (ق	ب) ۱۰	۱) ۸
	ا (ص) فإن حدها الثالث يساوي	تي حدها الأول (س)، وأساسه	المتثالية الحسابية ال
د) س – ۳ص	ج) س + ٣ص	ب) س – ۲ص	أ) س + ٢ص
	ابية فإن قيمة ص تساوي:	، ص، ع، ١٩ متتالية حس	اذا کانت ۳ ، س
10 (3	ع) ۱۲	ب) ۱۱	٧ (١
ساس تمداوي:	ر = ۲۰ + ، فإن قيمة الأه	بية على ، إذا علمت أن ع	في المتتالية الحسا
° (2	ع) ٦	۳۰ (ب	۲۷ (۱
	(- ٣) ، وأساسها ٢ يساوي:	لية الحسابية التي حدها الأول	الحد الثامن للمتتا
11 - (7	ج) - ۱۳	ب) ۱۱	۱۹ (۱
ذه الأوساط يساوي	ین ۲، ۱۰ فان مجموع ۵	ة أوساط حسابية بين العدد	إذا أدخل ثلاث
۹ (۵	3) 11	ب) ۲۷	10 (1

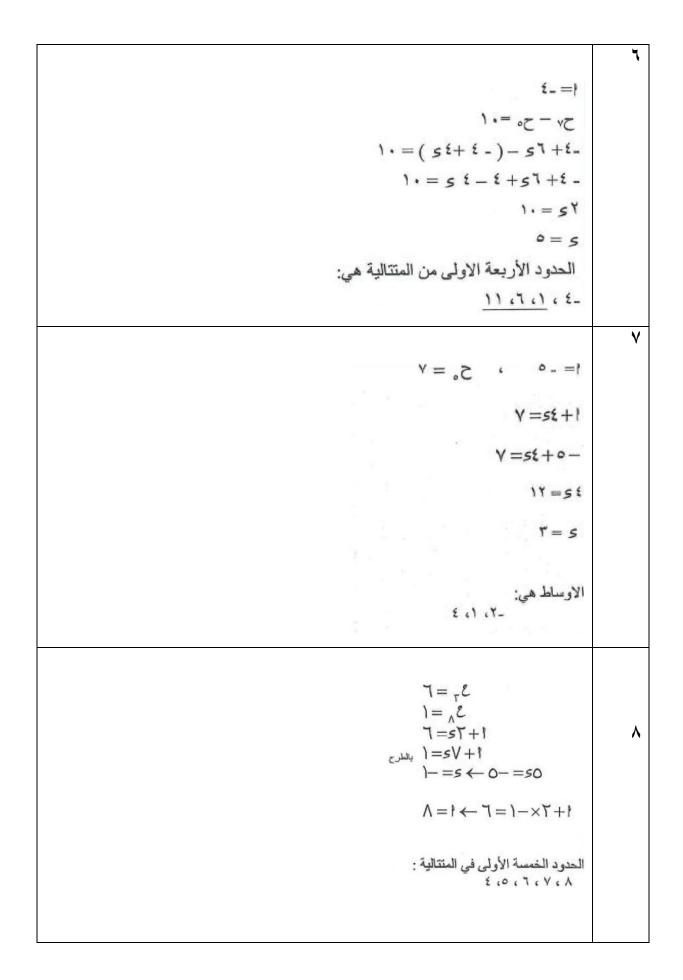
يمكن أن يكون:			
۱) ۲	۳ (ب	ح) ۲	1,0 (2
1 . 3.1155	ابية حدها الثالث ٣٤ و.	ابع ۳۱، فان	ما الأول يمياوي:
CARD - 111.114	3	O, C. C.	. بري ر
متالية حسم			

ثالثًا: الأسئلة المقالية

السوال	٩
متتالية حسابية حدها الأول ٥ ، ومجموع حديها السادس والسابع ٨٧ ، أوجد الحدود الأربعة الأولى منها.	1
أوجد مجموع العشرين حداً الأولى لمتتالية حسابية حدها الأول = ٣ ، وأساسها = ٢	۲
منتالية حسابية مجموع الثلاثة حدود الأولى فيها = ١٨ ، أوجد حدها الثاني	٣
أدخل أربعة أوساط حسابية بين العددين ٧ ، ٢٧ .	ŧ
متتالية حسابية حدها الأول ٢، ومجموع حدوها الثمانية الأولى يساوي ١٠٠، أوجد أساس المتتالية.	٥
منتالية حسابية متزايدة حدها الأول -٤، والفرق بين حديها السابع والخامس يساوي ١٠ ا	٦
أدخل ثلاثة أوساط حسابية بين العددين ٥٠ ، ٧	٧
متتالية حسابية حدها الثالث ٦ وحدها الثامن يساوي ١ . أوجد الحدود الخمسة الأولى منها.	٨

	٩
أوجد مجموع العشرة حدود الأولى في المتتالية: ٢، ٦، ١٠،	
ادخل أربعة أوساط حسابية بين العددين : ٦ ، ٣١	١.
إذا كانت الحدود الثلاثة الأولى في متتالية حسابية هي: ٢س + ١، ٥س + ٣، ٧س + ١١	11
فأوجد قيمة س .	

رابعا: دليل الإجابات على الأسئلة الموضوعية والمقالية


أولا: الأسئلة الموضوعية

٩	٨	٧	٦	٥	٤	٣	۲	١	رقم
									السوال
١	Ļ	Ļ	Ļ	د	ب	Í	3	د	البديل
									الصحيح

ثانيا: الأسئلة المقالية

الإجابة	م
	١
$\circ = 1$	
$\Delta V = V = V + V = V$	
$\dot{l} + oc + \dot{l} + Fc = VA$	
$\lambda \lambda = 711 + 11$	
YA = 711 + 1 •	
V = 2	
الحدود الأربعة الأولى منها هي : ٥، ١٢، ١٩، ٢٦	
	۲
$l=7$ ، $c=7$ ، $\dot{c}=7$	
$\left[\left(\begin{array}{c} 1 \times 1 & 1 \end{array}\right) + \left(\begin{array}{c} 1 \times 1 & 1 \end{array}\right)\right]\left(\begin{array}{c} 1 \times 1 & 1 \end{array}\right) = \begin{array}{c} 1 \times 1 & 1 \end{array}$	
$(\Upsilon \wedge + 7) $	
zz. = zz × 1. =	

 $1 \vee = (7 \vee +) + (7 +) +$ 11 = 2 7 + 7 7 1 \ = (2 + \) \ \(\) ۱ + د = ۲ وهو الحد الثاني **∨** = **∤** ح, = ۲۲ YY = 50+ P YY = 50 + Y Y . = 5 0 $\xi = \varsigma$ الأوساط هي: ١١، ١٥، ١٩، ٢٣، حل اخر: $1 \cdot \cdot = \lambda \Rightarrow Y = 1$ $(3+1)\frac{\dot{0}}{Y} = \lambda \Rightarrow (3+1)\frac{\dot{0}}{Y} = \lambda \Rightarrow$ J+ Y = Y0 $s_{\lambda} = \frac{\lambda}{\gamma} (\gamma \times \gamma + (\gamma) z)$ L=77= J (5 Y + 1) 1 = 1 ... 5V+1= 12 5 Y + 8 = YO 5V + Y = YT Y1=5Y Y1 = 5 Y r = 5 r = 5

7 = 1	٩
$\Sigma = T - T = S$	
$\left[s(1-\nu)+iT\right]\frac{\nu}{T}=\nu$	
$\mathbf{z}_{\cdot,t} = \frac{1}{7} [7 \times 7 + P \times 3]$	
$= 0 \times [3 + \Gamma \gamma]$	
Υ • • = ε • × o = 1.≈	
	١.
$\mathcal{Z}_{\ell} = \Gamma_{3} \mathcal{Z}_{\Gamma} = \Gamma^{2}$	
50+1= 12	
50+7=71	
o =s ← To =so	
الأوساط هي: ١١، ١١، ٢١، ٢٢	
	11
$3_7 - 3_7 = 3_7 - 3_7$	
$(7+\omega^{0}) - (11+\omega^{1}) = (1+\omega^{1}) - (7+\omega^{0})$	
$\lambda+$ س $Y=Y+$ س $Y=Y+$ س	
س =۲	

الدرس الثالث: المتتالية الهندسية

أولا: ملخص الدرس

أهداف الدرس

- ١- تعريف المتتالية الهندسية
- ٢- ايجاد الحد النوني للمتتالية الهندسية
- ٣- ايجاد الأوساط الهندسية بين حدين معلومين لمنتالية الهندسية
- 3- ايجاد مجموع (ن) حدا الأولى للمتسلسلة الهندسية (بما في ذلك استخدام الرمز \sum)
 - ٥- ايجاد مجموع متسلسلات هندسية لا نهائية

المتتالية الهندسيه : هي التي تكون النسبة بين كل حد والذي يسبقه مباشرة مقدار ثابت يسمى الاساس ويرمز له بالرمز (ر)

ملاحظـــة:

المتتالية الهندسية د(ن) دائما تكون دالة أسية اساس المتتالية هو أساس الدالة

مثلا: * د(ن) = 7°

تمثل متتالية هندسية أساسها د=٣

* د(ن) = ۲ ×۳^ن

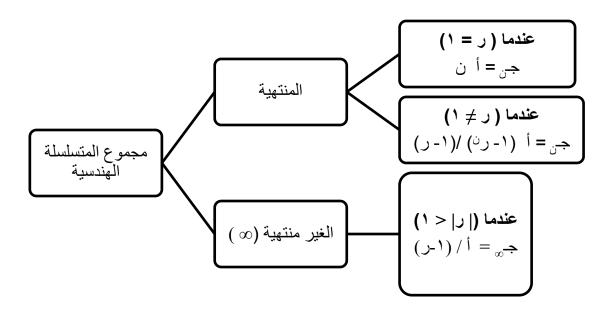
تمثل متتالية هندسية أساسها د = ٣

يرمز <u>للحد الاول ح</u>1 في المتتالية الهندسية بالرمز أ

والاساس (ر) فتكون الصورة العامة للمتتالية الهندسية كالتالي :

أ، أر، أر^٢، أر^٣،، أر^{ن-١}

وبشكل عام:


 $\int_{\mathcal{C}} \int_{\mathcal{C}} \int$

 $\frac{1}{2}$ مثلا: ح $_{r}$ = أ ر° وهكذا

الأوساط الهندسية: هي جميع الحدود المحصورة بين الحد الاول و الاخير

في المتتالية الهندسية ح، ٠ح٠ ، ح٠ ، ح٠ ، ص٠ فإن ح٠ ، ح٠ ، ص٠ تسمى أوساطا هندسية

اذا شكلت الاعداد أ ، ب ، ج متتالية هندسية فإن

ثانيا الأسئلة الموضوعية

	ال	السؤ		7
ىاسها = ٢ يسا <i>وي:</i>	, حدها الأول = ١ ، وأس	لأولى للمتتالية الهندسية التي	مجموع الخمسة حدود ا	1
٥٠ (٥	۳۱ (ج	ب) ۲۰	i) 71	
س تساوي:	$\frac{3}{7}$ ، فإن قيمة الأساء	ں ، إذا علمت أن ع =	في المتتالية الهندسية ع	۲
o (7	خ (ح	ب) ٣	۲ (۱	
	:	، ۲۲، ۲۲، شو	ألحد السابع للمتتالية ١٢٨	٣
17 (2	ج (ح	٤ (ب	Y (1	
	المنتالية يساوي:	= ٢، جې = ٩، فابن أساس	متثالية هندسية فيها ع	ŧ
۲ (ع	۲ (ق	ب ۲	₹ (i	
		لي هي :	المتتالية الهندسية فيما يا	0
	ب) ۲ ، ځ ، ۲ ، ۰ د) ۲ ، ځ ، ۲ ، ۰		i) (,	
مة الأمناس تمناوي:	۲ = ح ۵ ، فإن قيه	ن ، إذا علمت أن ٨ ح	في المتتالية الهندسية ح	**
۲ (۵	۳ (ج	ب) ٤	o (i	
لة من تُساوي:	ىدىن ۲،۱۲۸ فإن قىم	لهندسیان س ، ۸ بین العد	إذا ادخل الوسطان ا	٧
٤ (ع	ع) ۱۱	ب) ۲۲		

في المتتالية الهندسية ٢٠١، ١٠٢٤، ٢٥٦، الحد الذي قيمته تساوي ١ هو الحد :	\
الثامن. ب) العاشر. ج) الحادي عشر. د) الثاني عشر.	(1
سط الهندسي الموجب بين العددين ٣ ، ١٢ هو:	٩
7 (ب ع) ۱۰ (ح ب ع) ۱۶	(1
الوسط الهندسي الموجب للعددين ٤ ، ٩ هو:	1.
٥ (ب ۲) د ع) ۱٫۰ د د ۲) ۲۱	1
د العاشر في المتتالية: ﴿٢، ٢، ٢ ﴿٢ ، ٢ ، ٢ ، ٤ ، هو:	الحد
17(2 F) 17 (E 77(4)	7(1
كانت ٤ ، ص، ١٠٠ ،منتالية هندسية فإن مجموعة قيم ص هي:	171
{Y · Y-} (> {Y · · Y · -} (€ {O · O-} (→ {Y · · Y · -}	(1
د المعابع من المتتالية ٨ ، ٤ ، ٢ ، يساوي:	الح
$\frac{1}{7}$ (2) $\frac{1}{8}$ (5) $\frac{1}{8}$ (4) $\frac{1}{7}$	(1

ثالثًا: الأسئلة المقالية

السؤال	4
إذا أدخل أربعة أوساط هندسية بين العددين ٢ ، ٦٤ فأوجد ٢٠ ع + ٤ ،	1
تنقص قيمة سيارة ١٢ ٪ كل سنة ، أوجد قيمتها في نهاية السنة الرابعة، إذا كان ثمنها الأصلي ٢٥٠٠ ريال عماني .	*

مجموع الحدود الثلاثة الاولى في متثالية هندسية جميع حدودها موجبة يساوي ١٤، فإذا كان حدها الأول يساوي ٢، فأوجد : ١) المتثالية.	
٢) الحد الرابع عشر.	
يز داد عدد سكان مدينة بمعدل ٣٪ سنويا ، كم سيكون عدد سكان هذه المدينة بعد ٤ سنوات إذا كان عددهم الحالى ٢٥٠٠٠ نسمة .	
أوجد مجموع الحدود السنة الأولى للمنتالية الهندسية ٤ ، ٨ ، ١٦ ،	
أوجد مجموع العشرة حدود الأولى للمتتالية الهندسية التي فيها ٦ = ٢ ، ٦ = ٤٥	
إذا كانت ٢ ، ٢ ، ٨ ، متتالية هندسية. فأوجد حدها الخامس	
اتفق أب مع ابنه على أن يوفر له مبلغاً من المال، وذلك بأن يضع في صندوق يخصصه لهذا الغرض مبلغ ٥٠ بيسة في اليوم الأول، وفي اليوم الثاني ١٠٠ بيسة، ويستمر على ذلك بحيث يضع كل يوم ضعف ما وضعه في اليوم السابق ما المبلغ الذي سيتمكن من توفيره في نهاية اليوم الخامس عشر؟	
أوجد مجموع العشرة حدود الأولى للمتتالية الهندسية : ١، ٣، ٩،	

رابعا: دليل الإجابات على الأسئلة الموضوعية والمقالية

أولا: الأسئلة الموضوعية

رقم السؤال	1	۲	٣	٤	٥	٦	٧	٨	٩	١.	11	١٢	۱۳
البديل	C	Ļ	١	٦	٦	1	Ļ	٦	Í	Ļ	ŗ	١	3
الصحيح													

ثانيا: الأسئلة المقالية

الإجابة	م
۲۶ ، ، ۲۲	١
$l = \gamma, \gamma = 37$	
$_{5}$ $_{7}$ $_{7}$ $_{7}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{7}$ $_{7}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{7}$	
٤٢ = ٢× ر°	
ر ْ = ۲۳	
ر = ۲	
المتتالية: ۲، ۲، ۸، ۱٦، ۳۲، ۲۲	
ح _۲ + ح _۶ = ۶ ۲	
	۲
$c = (1 - 71, \cdot) = \lambda\lambda$	
قيمة السيارة في نهاية السنة الأولى $= \cdot \cdot \circ \circ \times (\cdot \cdot \circ \circ)$	
نيمة السيارة في نهاية السنة الرابعة $= \cdot \cdot \circ \circ \times (\cdot \cdot \circ \circ)^3$	
س ۳۸۹۸ ریال	
	ĺ

مجموع الحدود الثلاثة الاولى = ١٤	٣
1+ 10 + 107 = 31	
١ (١ + ر + ر ') = ١٤ ولكن (= ٢	
١ + ر + ر' = ٧ ومنها ر' + ر - ٦ = ٠	
$(c+7)(c-7) = \cdot$	
ومنها ر = ۲ لمتتالية الهندسية هي: ۲ ، ۲ ، ۸ ، ۲ ،	
ر = ۱٫۰۳	٤
عدد السكان بعد السنة الأولى = ٢٥٠٠٠ × (١,٠٣)	
عدد السكان بعد اربع سنوات $\mathbf{v} = \mathbf{v} = \mathbf{v} \times \mathbf{v}$	
∼ ۱۳۱۰۸ نسمة	
٤ = ١	٥
$c = \frac{\lambda}{2} = \gamma$	
ž	
$\frac{(^{7}Y-1)^{\xi}}{(-1)^{\xi}} = -\frac{1}{2}$	
Y — 1 1 1 1	
$\frac{7\% - \times \xi}{} =$	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
101 =	
ح ن=اد ا	
ئے – ۲ ×ر ^{ء –} ۲	
$3 \circ = 7 \times C^{7}$ $C^{7} = YY$	٦
ر = ۳	
$=\frac{1(1-c^2)}{1-c}$	
$\frac{\kappa - i}{(i, \kappa - i)^{k}} = i \approx$	
$=\frac{\Upsilon(1-p \cdot 2 \cdot p \cdot q)}{\gamma-}$	
$\sim 4.5 \times 10^{-1} = \frac{1.5 \times 10^{-1}}{1.5 \times 10^{-1}} = \frac{1.5 \times 10^{-1}}{1.5 \times 10^{-1}} = 1.5 \times 10^{-1}$	

	$\epsilon = \gamma$ $c = 3$
	ى = ار ^(ن-۱) : ح = ار ^(*-۱) = ار [؛]
$\times \frac{1}{7} =$	$= \frac{1}{\gamma} \times (2)^2$
1	$= \frac{1}{\gamma} \times F \circ Y = \lambda Y I$
۸ ا= ۰۰ ، ر = ۲	= ۰۰ ، ر = ۲
-1) ¹ -1)	$\frac{1(1-c^{\circ})}{(1-c)}$
	$\frac{(1-1)^{\circ}}{1-1} = \frac{(1-1)^{\circ}}{(1-1)} = \frac{1}{1-1}$ - درون محیح بالقانون نصف درجة "
	= ۱۱۳۸۳۰۰ بیسة = ۱۱۳۸٬۳۵۰ ریال
۹ ا=۱ ،ر=۳	=۱ ، ر=۳
$\epsilon_{ij} = \frac{l(i)}{l(i)}$	$\frac{l(1-c^{\circ})}{(1-c)}$
ج. ، = " لكل تعويض	$\frac{('''' - 1)}{Y - 1} = \frac{('''' - 1)}{('''' - 1)} = \frac{1 \times - 99.89}{(''' - 1)}$ لكل تعويض صحيح بالقانون نصف درجة "
	Y90Y€ = 1. ÷