
-Priyam Jain
PERSONAL PROJECT

INTRODUCTION
I have developed this personal project called the “Self Service Parking Management System" to gain
practical experience and enhance my programming skills.

 This Project Aim is to enhance the process of parking entry and exit with more security and efficient data
management for highly important and secured areas such as government buildings or military areas or
religiously or culturally reserved areas and many more . The aim is not to exchange the jobs but to
enhance the security of these places moreover it can only work with coordination of security personals
and managing personals. With this system, parking attendants can easily register entries, verify exits,
manage the records, and generate accurate bills for the parked vehicles. It eliminates the need for manual
paperwork and reduces the chances of errors, resulting in smoother operations and improved customer
service.

 Through this project, I have honed my programming abilities, particularly in areas such as data handling,
file management, user input validation, and time/date calculations. By using essential programming
concepts and libraries like datetime, pickle, csv, and os, I have implemented various functionalities that
contribute to the overall efficiency of the system.

 Moreover, this project has provided me with a practical understanding of how to design and develop a
software application from scratch. It has allowed me to apply my knowledge of programming principles
and problem-solving techniques in a meaningful way.

 In summary, the Parking Bill Management System showcases my commitment to expanding my
programming skills and acquiring practical knowledge. It serves as evidence of my ability to develop
functional applications that automate complex processes and contribute to increased efficiency.

 I would like to express my heartfelt appreciation to Mr. Ritesh Sahu for his invaluable guidance in teaching me the
Python programming language. His comprehensive instruction and insightful explanations have equipped me with the
necessary skills to independently develop this project.

Data Management and Processing in the Self Service Parking Management

System:
 Data Collection:
 The system collects data through user input during the entry and exit processes. Users provide their name, phone

number, and other relevant details. The system validates the phone number to ensure its accuracy.

 Data Storage:
 The collected data is stored in different files for efficient management. The entry records are stored in a binary file

named "parking.dat," while the exit records are stored in another binary file named "exiting.dat." Additionally, a CSV
file named "sheet.csv" is used to store records for further analysis or reporting. The data is organized using a sequential
structure within these files.

 Data Utilization:
 The stored data is utilized in various ways within the system. For example, when generating parking bills, the system

retrieves the necessary details such as the user's name, verified phone number, date, entry time, and exit time from
the corresponding entry and exit records. This data is then used to generate a formatted receipt.

 Data Structures and Algorithms:
 The Parking Bill Management System primarily utilizes file-based data storage and retrieval. It employs the pickle

module in Python to serialize and deserialize data objects when reading from or writing to binary files. This allows for
efficient storage and retrieval of complex data structures, such as lists containing multiple attributes for each entry or
exit record.

 Additionally, the system utilizes the CSV module in Python to handle data stored in the "sheet.csv" file. This module
provides functions to read and write data in CSV format, allowing for easy integration with spreadsheet applications
and analysis tools.

 Overall, the data management and processing in the Parking Bill Management System leverage file-based storage,
serialization, and the CSV format to effectively collect, store, and utilize parking-related data. The chosen data
structures and algorithms ensure efficient handling and retrieval of records for various operations within the system .

The Program follows a structured flow, beginning with the main menu screen. The main menu
presents different options based on the user's needs.

 ENTRY SCREEN: Choosing the "Entry" option leads to the entry screen, where users input their
name and phone number. The system verifies the phone number, records the entry time, and assigns
a unique serial number for each entry. Once the entry is validated, a permit is granted to the user.

 EXIT SCREEN: On the other hand, selecting the "Exit" option displays the exit screen. Users can
verify their serial number, record the exit time, and generate a parking bill receipt. The receipt
includes crucial details like the serial number, name, verified phone number, date, entry time, and
exit time.

 MANGER: Additionally, the system offers a "Manager" option for parking attendants or
administrators to oversee various aspects of the parking system. The manager screen provides
functionalities such as viewing all previous parking records (both entry and exit), manually adding an
entry record, updating existing records (prior to exit), deleting records (prior to exit), viewing present
entries, backing up data, and removing empty lists from the entry records.

 In summary, the Parking Bill Management System provides a clear flow where users
can enter and exit the parking lot, while managers have access to comprehensive
management features. This streamlined approach ensures efficient parking
management and facilitates the smooth operation of the system.

FUNCTIONS
The provided code is an implementation of a self-service parking management system. It allows users to enter

and exit a parking lot and generates bills for their parking duration. Here's an explanation of the code:
 The code begins with importing necessary modules such as time, pickle, csv, datetime, and os. These modules

provide functionality for time manipulation, data serialization, CSV file handling, and operating system-
related operations.

 The code defines several functions:
1. date(): Retrieves the current date and returns it as a string.
2. ptime(): Retrieves the current time and returns it as a string.
3. main(): Displays the main menu and handles user input for different operations

(entry, exit, managing, quit).
4. write_heading(): Writes the header for three files (entry records, exit records, bill

records).
5. entry(): Handles the entry process, collects user information (name, phone

number), and stores the entry record.
6. exitn(): Handles the exit process, verifies the user's entry record, collects the exit

time, and generates a bill.
7. deco(): Prints a decorative line separator.
8. manager(): Displays the management menu and handles different management

operations (view records, add entry manually, update record, delete record, view
present entries, backup data, remove empty lists, return to main menu).

9. sno(): Generates a unique serial number for the entry record.
10. checks(s): Checks if the given serial number exists in the entry records and verifies

that the user has not already exited

11. read(): Reads and displays all previous parking records (entry and exit).

12. write(): Manually adds an entry record by collecting user information and
storing it.

13. backup(): Creates a backup of the entry records.

14. delete(sno): Deletes a specific record by serial number from the entry
records.

15. delete_empty_list(): Deletes any empty lists from the entry records.

16. update(): Updates a specific record in the entry records with new
information.

17. readp(): Reads and displays all present entry records.

Representation of self service parking

management system

PARKING ENTRY USER REGISTERING FOR ENTRY

PARKING AREA
USER EXITING THE PARKING AND COLLECTING RECEIPT

MAIN MENU

main(): Displays the main menu and handles user input for different operations
(entry, exit, managing, quit).

WITH GRAPHICAL USER INTERFACE CONSOLE VIEW

ENTRY SCREEN

PARKING ENTRY

Name:

Phone No:
Please enter you name and phone

number to get the entry.

PARKING ENTRY

Name: xyz

Phone No: abc
Your serial number is 01

Serial Num Is Required During Exit

if the phone num doesn’t exist or banned for entry

ENTRY SCREEN: Choosing the "Entry" option leads to the entry screen, where users
input their name and phone number. The system verifies the phone number, records the
entry time, and assigns a unique serial number for each entry. Once the entry is validated, a
permit is granted to the user.

EXIT SCREEN

PARKING EXIT

ENTER YOUR SNO:

Please provide your sno which is given

during the parking entry.

PARKING EXIT

Name: Priyam
Phone No: verified
Date:2023-07-17

Entry time: 13:23:12
Exit time:13:32:50

PLEASE TAKE YOU RECEIPT

EXIT SCREEN: On the other hand, selecting the "Exit" option displays the exit screen. Users

can verify their serial number, record the exit time, and generate a parking bill receipt.
The receipt includes crucial details like the serial number, name, verified phone number,

date, entry time, and exit time.

With the help of f.write() function ,The bill
will get saved as a text file and then

printed in the form of receipt .

SECURITY

same serial number cannot be used
twice to exit , for trial the serial

numbers are given simple.

RECEIPT PRINTING

Managing screen

MANAGING SCREEN

PRESS 1 FOR READING RECORDS

PRESS 2 FOR WRITING MANUALLY

PRESS 3 FOR UPDATING

PRESS 4 FOR DELETING

PRESS 5 TO OPEN ENTRY SCREEN

PRESS 6 TO OPEN EXIT SCREEN
PLEASE ENTER YOUR CHOOISE:

MANGER: Additionally, the system offers a "Manager" option for parking
attendants or administrators to oversee various aspects of the parking system. The
manager screen provides functionalities such as viewing all previous parking records
(both entry and exit), manually adding an entry record, updating existing records
(prior to exit), deleting records (prior to exit), viewing present entries, backing up
data, and removing empty lists from the entry records.

Reading Records

Reads and displays all previous parking records (entry and exit).

Writing Records Manually

Manually adds an entry record by collecting user information and storing it.

Updating the records

Updates a specific record in the entry records with new
information.

For deleting the record

Deletes a specific record by serial number from the entry records.

Other options on managing screen

• backup(): Creates a backup of the entry records.

• delete_empty_list(): Deletes any empty lists from the entry records

• entry(): Handles the entry process, collects user information (name, phone
number), and stores the entry record, from manager screen.

• exitn(): Handles the exit process, verifies the user's entry record, collects the exit
time, and generates a bill,from manager screen.

To run the code

• To run the code get the code from here, you can copy it into a
Python IDE or text editor and run it from there. Make sure you have
the necessary dependencies installed, such as pickle, csv, and
datetime.

• However, please note that running the code as-is may result in
errors if the required file paths (fw, fb, fbe, fc, ft) are not valid or if
the directories and files mentioned in the code do not exist in your
local system.

• It's recommended to review the code, ensure the file paths are
correctly set according to your system's directory structure, and
make any necessary modifications or adjustments before running it.

• If you encounter any specific errors or have further questions about
the code, please let me know, and I'll do my best to assist you.

https://github.com/Priyamjain1105/Self-Service-Parking-Management-System.git

Limitations and Considerations

 Although I have provided a graphical view of the front end in my project, I want to clarify that, as a beginner, the current implementation will
primarily generate outputs displayed in the console or terminal. This is because I have focused on developing the backend functionality and
core features of the project.

 I understand the importance of a visually appealing user interface and plan to incorporate it as my skills progress. However, I assure you
that despite the console or terminal-based outputs, I am dedicated to delivering a functional and efficient project.

 If you have any suggestions or feedback on how to enhance the user experience within these limitations, I would greatly appreciate your
input.

 Although the program's features, such as phone number verification, are mentioned in the project description, it's important to note that as
a beginner, the implementation of advanced functionalities like phone number verification may not be fully developed in the code. However,
the project showcases your understanding of the concept and your intent to incorporate such features in a real-world scenario.

 As a beginner, it is natural to focus on learning and applying fundamental programming concepts rather than implementing complex
functionalities. The project serves as a stepping stone in your programming journey, allowing you to gain practical experience and develop a
strong foundation in software development.

 It takes a lot of time and efforts to explain the project efficiently ,to reduce it , I took the help from Chat Gpt it guided me and helped to
explain this project more efficiently

 Thank you for your understanding and support.

