

Carnegie Mellon University

IMG workshop – COMSOL

Joule heating actuator (V 5.4)

Camilo Velez April 23th, 2020

IMG workshop – COMSOL Joule heating actuator

A beginner – intermediate level workshop covering the model of a Joule heating unimorph actuator using COMSOL Multiphysics. It will combine solid mechanics, heat transfer in solids, and electric currents

Presenter: Camilo Velez **Time:** Today (April 23th 2020) 4:00 - 5:00 pm **Zoom link:** <u>https://ufl.zoom.us/j/92195840607</u>

Goals

To model a Joule heating unimorph actuator using COMSOL Multiphysics

Content:

- Geometry and materials definition •
- Physics
 Electric currents
 Heat transfer in solids
 Solid Mechanics
 Multiphysics

 - Mesh definition
- Studies Stationary study
 Parametric sweep study
 Time dependent study

Carnegie Mellon

University

Unimorph actuator

A cantilever that consists of one active layer (metal, piezoelectric, shape memory alloy, etc.) and one passive layer (polymer, oxide)

Thanks to Dr. Mahnoush Babaei for the model

Carnegie Mellon University

C. Velez et al., 2020 IEEE 33rd MEMS Conference. 2020, pp. 893-896,

Unimorph actuator

A cantilever that consists of one active layer (metal, piezoelectric, shape memory alloy, etc.) and one passive layer (polymer, oxide)

Geometry and materials definition

Geometry and materials definition

Air

Materials

Passive: Polymer / IP-S

Property	Variable	Value	Unit
Thermal conductivity	k_iso ; kii = k_iso, kij = 0	0.3	W/(m⋅K)
Density	rho	1111	kg/m³
Heat capacity at constant pressure	Ср	1500	J/(kg·K)
Coefficient of thermal expansion	alpha_iso ; alphaii = alpha_iso, alphaij = 0	52e-6	1/K
Young's modulus	E	4.0e9	Pa
Poisson's ratio	nu	0.3	1

Materials

Active: Metal / Ni

Variable	Value	Unit
E	106.01e9[Pa]	Pa
nu	0.33	1
rho	6500[kg/m^3]	kg/m³
k_iso ; kii = k_iso, kij = 0	8.6	W/(m⋅K)
Ср	3700	J/(kg⋅K)
sigma_iso ; sigmaii = sigma_iso, sigmaij	1.32e6[S/m]	S/m
epsilonr_iso ; epsilonrii = epsilonr_iso, ep	1	1
alpha_iso ; alphaii = alpha_iso, alphaij = 0	7.6e-6[1/K]	1/K
	Variable E nu rho k_iso ; kii = k_iso, kij = 0 Cp sigma_iso ; sigmaii = sigma_iso, sigmaij epsilonr_iso ; epsilonrii = epsilonr_iso, ep alpha_iso ; alphaii = alpha_iso, alphaij = 0	VariableValueE106.01e9[Pa]nu0.33rho6500[kg/m^3]k_iso ; kii = k_iso, kij = 08.6Cp3700sigma_iso ; sigmaii = sigma_iso, sigmaij1.32e6[S/m]epsilonr_iso ; epsilonrii = epsilonr_iso, ep1alpha_iso ; alphaii = alpha_iso, alphaij = 07.6e-6[1/K]

Carnegie Mellon University

9

Materials

Air

Property	Variable	Value	Unit
Coefficient of thermal expansion	alpha_iso ; alphaii = alpha_iso, al	alpha_p(pA,T)	1/K
Mean molar mass	Mn	0.02897	kg/mol
Bulk viscosity	muB	muB(T)	Pa·s
Dynamic viscosity	mu	eta(T)	Pais
Ratio of specific heats	gamma	1.4	1
Electrical conductivity	sigma_iso ; sigmaii = sigma_iso,	0[S/m]	S/m
Heat capacity at constant pressure	Ср	Cp(T)	J/(kg·K)
Density	rho	rho(pA,T)	kg/m³
Thermal conductivity	k_iso ; kii = k_iso, kij = 0	k(T)	W/(m⋅K)
Speed of sound	c	cs(T)	m/s
Parameter of nonlinearity	BA	(def.gamma+1)/2	1

Carnegie Mellon University

Electric currents – AC/DC

It is used to compute electric field, current, and potential distributions in conducting media. It solves a current conservation equation based on Ohm's law using the scalar electric potential as the dependent variable.

$$\nabla \cdot \mathbf{J} = Q_{j,v}$$
$$\mathbf{J} = \sigma \mathbf{E} + \mathbf{J}_{e}$$
$$\mathbf{F} = -\nabla V$$

- J current density
- E electric field
- V electric potential

Unimorph top view (Only conductor)

Boundary Conditions:

- Ground
- Terminal (Current)

11

Carnegie Mellon

University

Heat transfer in solids

The temperature equation defined in solid domains corresponds to the differential form of the Fourier's law

$$\rho C_{p} \mathbf{u} \cdot \nabla T + \nabla \cdot \mathbf{q} = Q + Q_{\text{ted}}$$
$$\mathbf{q} = -k \nabla T$$

- q local heat flux density
- ∇T temperature gradient
- k material's conductivity

Boundary Conditions:

- Room temperature
- Convection in Fluids

12

Carnegie Mellon

University

Solid Mechanics – Structural Mechanics

It is intended for general structural analysis of 3D, 2D, or axisymmetric bodies. It is based on solving the equations of motion together with a constitutive model for a solid material. Results such as displacements, stresses, and strains are computed.

Let's move to COMSOL

Model available at: <u>https://camilovelez.site123.me/comsol-simulations/joule-heating-actuator</u>

cvelezcu@andrew.cmu.edu

