

For More Study Material & Test Papers Visit : www.mathsiit.com

AREA UNDER CURVE

MANOJ CHAUHAN SIR(IIT-DELHI) EX. SR. FACULTY (BANSAL CLASSES)

KEY CONCEPTS (AREA UNDER THE CURVE) THINGS TO REMEMBER :

1. The area bounded by the curve y = f(x), the x-axis and the ordinates at x = a & x = b is given by,

$$A = \int_{a}^{b} f(x) dx = \int_{a}^{b} y dx.$$

2. If the area is below the x-axis then A is negative. The convention is to consider the magnitude only i.e.

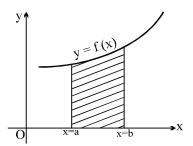
$$\mathbf{A} = \left| \int_{a}^{b} \mathbf{y} \, d\mathbf{x} \right| \text{ in this case.}$$

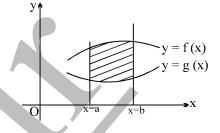
3. Area between the curves y = f(x) & y = g(x) between the ordinates at x = a & x = b is given by,

$$A = \int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx = \int_{a}^{b} [f(x) - g(x)] dx.$$

4. Average value of a function y = f(x) w.r.t. x over an interval $a \le x \le b$ is defined as :

$$y(av) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$





5. The area function A_a^x satisfies the differential equation $\frac{dA_a^x}{dx} = f(x)$ with initial condition $A_a^a = 0$.

Note: If F(x) is any integral of f(x) then,

$$A_a^x = \int f(x) dx = F(x) + c \qquad A_a^a = 0 = F(a) + c \implies c = -F(a)$$

hence $A_a^x = F(x) - F(a)$. Finally by taking $x = b$ we get, $A_a^b = F(b) - F(a)$.

6. CURVE TRACING:

The following outline procedure is to be applied in Sketching the graph of a function y = f(x) which in turn will be extremely useful to quickly and correctly evaluate the area under the curves.

- (a) Symmetry : The symmetry of the curve is judged as follows :
 - (i) If all the powers of y in the equation are even then the curve is symmetrical about the axis of x.
 - (ii) If all the powers of x are even, the curve is symmetrical about the axis of y.
 - (iii) If powers of x & y both are even, the curve is symmetrical about the axis of x as well as y.
 - (iv) If the equation of the curve remains unchanged on interchanging x and y, then the curve is symmetrical about y = x.
 - (v) If on interchanging the signs of x & y both the equation of the curve is unaltered then there is symmetry in opposite quadrants.
- (b) Find dy/dx & equate it to zero to find the points on the curve where you have horizontal tangents.
- (c) Find the points where the curve crosses the x-axis & also the y-axis.
- (d) Examine if possible the intervals when f(x) is increasing or decreasing Examine what happens to 'y' when $x \to \infty$ or $-\infty$.

7. USEFUL RESULTS :

- (i) Whole area of the ellipse, $x^2/a^2 + y^2/b^2 = 1$ is πab .
- (ii) Area enclosed between the parabolas $y^2 = 4 \text{ ax } \& x^2 = 4 \text{ by is } 16 \text{ ab}/3$.
- (iii) Area included between the parabola $y^2 = 4 \text{ ax } \&$ the line y = mx is $8 a^2/3 m^3$.

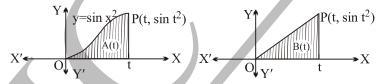
<u>EXERCISE–I</u>

- Q.1 Find the area bounded on the right by the line x + y = 2, on the left by the parabola $y = x^2$ and below by the x-axis.
- Q.2 Find the area of the region $\{(x, y): 0 \le y \le x^2 + 1, 0 \le y \le x + 1, 0 \le x \le 2\}$.
- Q.3 Find the value of c for which the area of the figure bounded by the curves $y = \sin 2x$, the straight lines $x = \pi/6$, x = c & the abscissa axis is equal to 1/2.
- Q.4 Compute the area of the region bounded by the curves y = e. x. ln x & y = ln x/(e. x) where ln = 1.
- Q.5 A figure is bounded by the curves $y = \left| \sqrt{2} \sin \frac{\pi x}{4} \right|$, y = 0, x = 2 & x = 4. At what angles to the positive x-axis straight lines must be drawn through (4,0) so that these lines partition the figure into three parts of the same size.
- Q.6 Find the area bounded by the curves $y = \sqrt{1-x^2}$ and $y = x^3 x$. Also find the ratio in which the y-axis divided this area.
- Q.7 If the area enclosed by the parabolas $y = a x^2$ and $y = x^2$ is $18\sqrt{2}$ sq. units. Find the value of 'a'.
- Q.8 The line 3x + 2y = 13 divides the area enclosed by the curve, $9x^2 + 4y^2 - 18x - 16y - 11 = 0$ into two parts. Find the ratio of the larger area to the smaller area.
- Q.9 Find the values of m (m > 0) for which the area bounded by the line y = mx + 2 and $x = 2y y^2$ is, (i) 9/2 square units & (ii) minimum. Also find the minimum area.
- Q.10 Consider two curves $C_1: y = \frac{1}{x}$ and $C_2: y = ln x$ on the xy plane. Let D_1 denotes the region surrounded by C_1, C_2 and the line x = 1 and D_2 denotes the region surrounded by C_1, C_2 and the line x = a. If $D_1 = D_2$. Find the value of 'a'.
- Q.11 Find the area enclosed between the curves : $y = \log_e(x+e)$, $x = \log_e(1/y)$ & the x-axis.
- Q.12 Find the value (s) of the parameter 'a' (a > 0) for each of which the area of the figure bounded by the straight line, $y = \frac{a^2 ax}{1 + a^4}$ & the parabola $y = \frac{x^2 + 2ax + 3a^2}{1 + a^4}$ is the greatest.
- Q.13 For what value of 'a' is the area bounded by the curve $y = a^2x^2 + ax + 1$ and the straight line y = 0, x = 0 & x = 1 the least ?
- Q.14 Find the positive value of 'a' for which the parabola $y = x^2 + 1$ bisects the area of the rectangle with vertices (0, 0), (a, 0), $(0, a^2 + 1)$ and $(a, a^2 + 1)$.
- Q.15 Compute the area of the curvilinear triangle bounded by the y-axis & the curve, $y = \tan x \& y = (2/3)\cos x$.
- Q.16 Let $f(x) = Maximum \{x^2, (1-x)^2, 2x(1-x)\}$, where $0 \le x \le 1$. Determine the area of the region bounded by the curves y = f(x), x axis, x = 0 & x = 1.
- Q.17 Find the area bounded by the curve $y = x e^{-x}$; xy = 0 and x = c where c is the x-coordinate of the curve's inflection point.
- Q.18 Find the value of 'c' for which the area of the figure bounded by the curve, $y = 8x^2 x^5$, the straight lines x = 1 & x = c & the abscissa axis is equal to 16/3.

- Q.19 Find the area bounded by the curve $y = x e^{-x^2}$, the x-axis, and the line x = c where y(c) is maximum.
- Q.20 Find the area bounded by the polynomial $y = x^2 |x^2 1| + 2||x| 1| + 2||x| 7$ and the x-axis.
- Q.21 Consider a circle $x^2 + (y-1)^2 = 1$ and the parabola $y = -\frac{x^2}{4}$. The common tangents to the two curves constitute a triangle ABC, the point A and B being on the x-axis and C on the y-axis. CA produced touches the parabola at P and CB produced touches the parabola at Q.
- (a) Find the equation of the common tangent BC.
- (b) Find the area of the portion between the upper arc of the circle and the common tangents QC and PC.
- (c) Find the area enclosed by the parabola $y = -\frac{x^2}{4}$, the x-axis and the lines AP and BQ.
- Q.22 Consider one side AB of a square ABCD, (read in order) on the line y = 2x 17, and the other two vertices C, D on the parabola $y = x^2$.
- (a) Find the minimum intercept of the line CD on y-axis.
- (b) Find the maximum possible area of the square ABCD.
- (c) Find the area enclosed by the line CD with minimum y-intercept and the parabola $y = x^2$.

<u>EXERCISE-II</u>

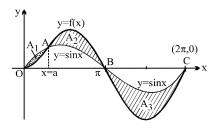
- Q.1 A polynomial function f(x) satisfies the condition f(x+1)=f(x)+2x+1. Find f(x) if f(0)=1. Find also the equations of the pair of tangents from the origin on the curve y=f(x) and compute the area enclosed by the curve and the pair of tangents.
- Q.2 The figure shows two regions in the first quadrant.



A(t) is the area under the curve $y = \sin x^2$ from 0 to t and B(t) is the area of the triangle with vertices O, A(t)

P and M(t, 0). Find $\lim_{t\to 0} \frac{A(t)}{B(t)}$.

- Q.3 Consider the curve $y = x^n$ where n > 1 in the 1st quadrant. If the area bounded by the curve, the x-axis and the tangent line to the graph of $y = x^n$ at the point (1, 1) is maximum then find the value of n.
- Q.4 In the adjacent figure, graphs of two functions y = f(x) and $y = \sin x$ are given. $y = \sin x$ intersects, y = f(x) at A (a, f(a)); B(π , 0) and C(2π , 0). A_i (i = 1, 2, 3,) is the area bounded by the curves y = f(x) and $y = \sin x$ between x=0 and x=a; i = 1, between x = a and $x = \pi$; i = 2, between $x = \pi$ and $x = 2\pi$; i = 3. If A₁ = 1 - sina + (a - 1)cosa, determine the function f(x). Hence determine 'a' and A₁. Also calculate A₂ and A₃.



- Q.5 Consider the two curves $y = 1/x^2 \& y = 1/[4(x-1)]$.
- (i) At what value of 'a' (a > 2) is the reciprocal of the area of the fig. bounded by the curves, the lines x = 2& x = a equal to 'a' itself?
- (ii) At what value of 'b' (1 < b < 2) the area of the figure bounded by these curves, the lines x = b & x = 2 equal to 1 1/b.

- Q.6 Show that the area bounded by the curve $y = \frac{\ln x c}{x}$, the x-axis and the vertical line through the maximum point of the curve is independent of the constant c.
- Q.7 For what value of 'a' is the area of the figure bounded by the lines, 1 1 4

$$y = \frac{1}{x}$$
, $y = \frac{1}{2x-1}$, $x = 2$ & $x = a$ equal to $ln \frac{4}{\sqrt{5}}$?

Q.8 Compute the area of the loop of the curve $y^2 = x^2 [(1+x)/(1-x)]$.

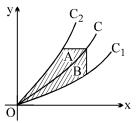
Q.9 For the curve
$$f(x) = \frac{1}{1+x^2}$$
, let two points on it are $A(\alpha, f(\alpha))$, $B\left(-\frac{1}{\alpha}, f\left(-\frac{1}{\alpha}\right)\right)$ ($\alpha > 0$). Find the

minimum area bounded by the line segments OA, OB and f(x), where 'O' is the origin.

- Q.10 Let 'c' be the constant number such that c > 1. If the least area of the figure given by the line passing through the point (1, c) with gradient 'm' and the parabola $y = x^2$ is 36 sq. units find the value of $(c^2 + m^2)$.
- Q.11 Let A_n be the area bounded by the curve $y = (\tan x)^n$ & the lines x = 0, y = 0 & $x = \pi/4$. Prove that for n > 2, $A_n + A_{n-2} = 1/(n-1)$ & deduce that $1/(2n+2) < A_n < 1/(2n-2)$.
- Q.12 If f(x) is monotonic in (a, b) then prove that the area bounded by the ordinates at x = a; x = b; y = f(x)and y = f(c), $c \in (a, b)$ is minimum when $c = \frac{a+b}{2}$.

Hence if the area bounded by the graph of $f(x) = \frac{x^3}{3} - x^2 + a$, the straight lines x = 0, x = 2 and the x-axis is minimum then find the value of 'a'.

- Q.13 Consider the two curves $C_1: y = 1 + \cos x \& C_2: y = 1 + \cos (x \alpha)$ for $\alpha \in (0, \pi/2)$; $x \in [0, \pi]$. Find the value of α , for which the area of the figure bounded by the curves $C_1, C_2 \& x = 0$ is same as that of the figure bounded by $C_2, y = 1 \& x = \pi$. For this value of α , find the ratio in which the line y = 1 divides the area of the figure by the curves $C_1, C_2 \& x = \pi$.
- Q.14 For what values of $a \in [0, 1]$ does the area of the figure bounded by the graph of the function y = f(x)and the straight lines x = 0, x = 1 & y = f(a) is at a minimum & for what values it is at a maximum if $f(x) = \sqrt{1-x^2}$. Find also the maximum & the minimum areas.
- Q.15 Let $C_1 \& C_2$ be two curves passing through the origin as shown in the figure. A curve C is said to "bisect the area" the region between $C_1 \& C_2$, if for each point P of C, the two shaded regions A & B shown in the figure have equal areas. Determine the upper curve C_2 , given that the bisecting curve C has the equation $y = x^2 \&$ that the lower curve C_1 has the equation $y = x^2/2$.



Q.16(a) Given
$$f(x) = \int_{0}^{x} e^{t} (ln \sec t - \sec^{2} t) dt$$
; $g(x) = -2e^{x} \tan x$. Find the area bounded by the curves $y = f(x)$ and $y = g(x)$ between the ordinates $x = 0$ and $x = \frac{\pi}{3}$.

(b) Let $f: [0, \infty) \to R$ be a continuous and strictly increasing function such that $f^3(x) = \int_0^x t f^2(t) dt$, $\forall x > 0$.

Find the area enclosed by y = f(x), the x-axis and the ordinate at x = 3.

<u>EXERCISE–III</u>

- Q.1 For which of the following values of m, is the area of the region bounded by the curve $y = x x^2$ and the line y = mx equals 9/2?
 - (A) -4 (B) -2 (C) 2 (D) 4 [JEE '99, 3 (out of 200)]
- Q.2 Find the area of the region lying inside $x^2 + (y-1)^2 = 1$ and outside $c^2x^2 + y^2 = c^2$ where $c = \sqrt{2} 1$. [REE '99, 6]
- Q.3 Find the area enclosed by the parabola $(y-2)^2 = x 1$, the tangent to the parabola at (2, 3) and the x-axis. [REE 2000,3]
- Q.4 The area bounded by the curves y = |x| 1 and y = -|x| + 1 is (A) 1 (B) 2 (C) $2\sqrt{2}$
- Q.5 Find the area of the region bounded by the curves $y = x^2$, $y = |2-x^2|$ and y = 2, which lies to the right of the line x = 1. [JEE '2002, (Mains)]
- Q.6 If the area bounded by $y = ax^2$ and $x = ay^2$, a > 0, is 1, then a =
 - (A) 1 (B) $\frac{1}{\sqrt{3}}$ (C) $\frac{1}{3}$ (D) $-\frac{1}{\sqrt{3}}$ [JEE '2004, (Scr)]

(D)4

[JEE'2002, (Scr)]

Column-II

- Q.7(a) The area bounded by the parabolas $y = (x + 1)^2$ and $y = (x 1)^2$ and the line y = 1/4 is (A) 4 sq. units (B) 1/6 sq. units (C) 4/3 sq. units (D) 1/3 sq. units [JEE '2005 (Screening)]
 - (b) Find the area bounded by the curves $x^2 = y$, $x^2 = -y$ and $y^2 = 4x 3$.
 - (c) Let f(x) be a quadratic polynomial and a, b, c be distinct real numbers such that

$4a^2$	4a	1	$\left[f(-1) \right]$		$3a^2$	+3a]
$4b^2$	4b	1	f (1)	=	$3b^2$	+ 3b
$4c^2$	4c	1	$\begin{bmatrix} f(-1) \\ f(1) \\ f(2) \end{bmatrix}$		$3c^2$	+3c

Let V be the point of maximum of the curve y = f(x). If A and B are the points on this curve such that the curve meets the positive x-axis at A and the chord AB subtends a right angle at V, then find the area enclosed by the curve and the chord AB. [JEE '2005 (Mains), 4+6]

Q.8 Match the following

Column-I

- (A) The cosine of the angle between the curves $y = 3^{x-1} \ln x$ and $y = x^x 1$ (P) 0 at their point of intersection on the line y = 0, is
- (B) The area bounded by the curves $x = -4y^2$ and $(x-1) = -5y^2$ is (Q) 1
- (C) The value of the integral $\pi/2$

$$\int_{0}^{\infty} (\sin x)^{\cos x} (\cos x \cot x - \ln(\sin x)^{\sin x}) dx, \text{ is} \qquad (R) \qquad \frac{4}{3}$$

(D) A continuous function
$$f: [1, 6] \rightarrow [0, \infty)$$
 is such that $f'(x) = \frac{2}{x + f(x)}$ (S) $2 \ln 6$
and $f(1) = 0$, then the maximum value of f cannot exceed [JEE 2006, 6]

Q.9(a) The area of the region between the curves $y = \sqrt{\frac{1 + \sin x}{\cos x}}$ and $y = \sqrt{\frac{1 - \sin x}{\cos x}}$ bounded by the lines

$$x = 0 \text{ and } x = \frac{\pi}{4} \text{ is}$$
(A)
$$\int_{0}^{\sqrt{2}-1} \frac{t}{(1+t^{2})\sqrt{1-t^{2}}} dt$$
(B)
$$\int_{0}^{\sqrt{2}-1} \frac{4t}{(1+t^{2})\sqrt{1-t^{2}}} dt$$
(C)
$$\int_{0}^{\sqrt{2}+1} \frac{4t}{(1+t^{2})\sqrt{1-t^{2}}} dt$$
(D)
$$\int_{0}^{\sqrt{2}+1} \frac{t}{(1+t^{2})\sqrt{1-t^{2}}} dt$$

(b) Comprehension (3 questions together): Consider the functions defined implicitly by the equation y³−3y+x=0 on various intervals in the real line. If x ∈ (-∞, -2)∪(2, ∞), the equation implicitly defines a unique real valued differentiable function y=f(x). If x ∈ (-2, 2), the equation implicitly defines a unique real valued differentiable function y=g(x) satisfying g(0)=0. (i) If f(-10, √2) = 2, √2, then f''(-10, √2) =

(i) If
$$f(-10\sqrt{2}) = 2\sqrt{2}$$
, then f" $(-10\sqrt{2}) =$
(A) $\frac{4\sqrt{2}}{7^3 3^2}$ (B) $-\frac{4\sqrt{2}}{7^3 3^2}$ (C) $\frac{4\sqrt{2}}{7^3 3}$ (D) $-\frac{4\sqrt{2}}{7^3 3}$

(ii) The area of the region bounded by the curve y = f(x), the x-axis, and the lines x = a and x = b, where $-\infty < a < b < -2$, is

(A)
$$\int_{a}^{b} \frac{x}{3(f(x))^{2}-1} dx + bf(b) - af(a)$$
 (B) $-\int_{a}^{b} \frac{x}{3(f(x))^{2}-1} dx + bf(b) - af(a)$
(C) $\int_{a}^{b} \frac{x}{3(f(x))^{2}-1} dx - bf(b) + af(a)$ (D) $-\int_{a}^{b} \frac{x}{3(f(x))^{2}-1} dx - bf(b) + af(a)$

(iii)
$$\int_{-1}^{1} g'(x) dx =$$

(A) 2g(-1) (B) 0 (C) - 2 g(1) (D) 2 g(1)
[JEE 2008, 3 + 4 + 4 + 4]

Q.10 Area of the region bounded by the curve $y = e^x$ and lines x = 0 and y = e is

(A)
$$e - 1$$
 (B) $\int_{1}^{e} ln(e+1-y)dy$ (C) $e - \int_{0}^{1} e^{x}dx$ (D) $\int_{1}^{e} ln y dy$
[JEE 2009, 4]

AREA UNDER THE CURVE <u>EXERCISE-I</u>

Q.1 5/6 sq. units **Q.2** 23/6 sq. units **Q.3** c = $-\pi/6$ or $\pi/3$ **Q.4** (e²-5)/4 e sq. units **Q.5** $\pi - \tan^{-1} \frac{2\sqrt{2}}{3\pi}$; $\pi - \tan^{-1} \frac{4\sqrt{2}}{2\pi}$ **Q.6** $\frac{\pi}{2}$; $\frac{\pi-1}{\pi+1}$ **Q.7** a = 9 **Q.8** $\frac{3\pi+2}{\pi-2}$ **Q.9 (i)** m = 1, (ii) $m = \infty$; $A_{min} = 4/3$ **Q.10** e **Q.11** 2 sq. units **Q.12** $a = 3^{1/4}$ Q.13 a=-3/4 Q.14 $\sqrt{3}$ Q.15 $\frac{1}{3} + \ell n \left(\frac{\sqrt{3}}{2}\right)$ sq. units Q.16 17/27 Q.17 1-3e⁻² **Q.18** C = -1 or $\left(8 - \sqrt{17}\right)^{1/3}$ **Q.19** $\frac{1}{2}(1 - e^{-1/2})$ **Q.20** $\frac{44}{3}$ **Q.21** (a) $\sqrt{3} x - y + 3 = 0$; (b) $\left(\sqrt{3} - \frac{\pi}{3}\right)$; (c) $\sqrt{3}$ **Q.22** (a) 3; (b) 1280; **EXERCISE-II** Q.1 $f(x) = x^2 + 1$; $y = \pm 2x$; $A = \frac{2}{3}$ sq. units Q.2 2/3 **Q.3** $\sqrt{2}$ +1 **Q.4** $f(x) = x \sin x$, a = 1; $A_1 = 1 - \sin 1$; $A_2 = \pi - 1 - \sin 1$; $A_3 = (3\pi - 2)$ sq. units **Q.5** $a = 1 + e^2$, $b = 1 + e^{-2}$ **Q.6** 1/2 **Q.7** $a = 8 \text{ or } \frac{2}{5} \left(6 - \sqrt{21} \right)$ **Q.8** $2 - (\pi/2)$ sq. units Q.9 $\frac{(\pi - 1)}{2}$ Q.10 104 Q.12 $a = \frac{2}{3}$ Q.13 $\alpha = \pi/3$, ratio = 2 : $\sqrt{3}$ Q.14 a = 1/2 gives minima, $A\left(\frac{1}{2}\right) = \frac{3\sqrt{3} - \pi}{12}$; a = 0 gives local maxima $A(0) = 1 - \frac{\pi}{4}$; a = 1 gives maximum value, $A(1) = \pi/4$ Q.15 (16/9) x² Q.16 (a) $e^{\pi/3} \log 2$ sq. units, (b) 3/2 EXERCISE-III B, D Q.2 $\left(\pi - \frac{\pi - 2}{2\sqrt{2}}\right)$ sq. units Q.3 9 sq. units Q.1 B Q.5 $\left(\frac{20}{3} - 4\sqrt{2}\right)$ sq. units Q.6 B Q.7 (a) D; (b) $\frac{1}{3}$ sq. units; (c) $\frac{125}{3}$ sq. units 0.4

Q.8 (A) Q, (B) R, (C) Q, (D) S **Q.9** (a) B, (b) (i) B, (ii) A, (iii) D **Q.10** B, C, D