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KEY CONCEPTS

1. DEFINITION :
Complex numbers are definited as expressions of the form a +ib wherea,b e R& i= ,/-1. Itis
denoted by z i.e. z=a+ib. ‘a’ is called as real part of z (Re z) and ‘b’ is called as imaginary part of
z(Imz).
EveEry CompLEX NUMBER CAN BE REGARDED As
I
I I I
Purely real Purely imaginary Imaginary
ifb=0 ifa=0 ifb=0
Note :
(a) The set R of real numbers is a proper subset of the Complex Numbers. Hence the Complete Number
system is Nc Wc Il < Q c R < C.
(b) Zero is both purely real as well as purely imaginary but not imaginary.
()  i= -1 iscalled the imaginary unit. Also i*=—1; i*=—i ; i*=1 ete.
d Ja b= \/E only if atleast one of either a or bis nen-negative.
2. CONJUGATE COMPLEX:
If z=a+1ib then its conjugate complex is obtained by changing the sign of its imaginary part &
isdenoted by z. i.e. z =a—1b.
Note that :
@) z+ 7z = 2Re(2) (i) z= 7z = 2ilm(z) @iii) zz =a?>+b? which is real
(iv)  If z lies in the 1% quadrant then Z lies in the 4" quadrantand <7 lies in the 2" quadrant.
3. ALGEBRAIC OPERATIONS :
The algebraic operations on complex numbers are similiar to those on real numbers treating i as a
polynomial. Inequalities in complex numbers are not defined. There is no validity if we say that complex
number is positive or negative.
e.g. z>0,4+21<2+41 are meaningless .
However in real numbers if a> + b? =0 then a=0 = b but in complex numbers,
z,>+ 2, =0 does not imply z, =z, =0.
4. EQUALITY INCOMPLEX NUMBER :
Two complex numbers z, =a +ib, & z,=a,+ib, are equal if and only if their real & imaginary
parts coineide.
5. REPRESENTATION OF A COMPLEX NUMBER IN VARIOUS FORMS:
(a) Cartesian Form (Geometric Representation) :

Every complex number z=x+1y can be represented by a point on Imaginary
the cartesian plane known as complex plane (Argand diagram) by the axis

P s
ordered pair (x, y). . y)

length OP is called modulus of the complex number denoted by 1z] &
0 is called the argument or amplitude .

eg. IZI =Jx+y & O Real axis

0=tan™! % (angle made by OP with positive x—axis)
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NOTE :

@
(i)

G
)
)

(vi)

(b)

©

(@)

(b)

©

™)

. . ) z if z>0 .
‘ z | is always non negative . Unlike real numbers | z ‘ = [ " 0 1S not correct
—7Z 1 7z <

Argument of a complex number is a many valued function . If 0 is the argument of a complex number
then 2nm+0 ; n € I will also be the argument of that complex number. Any two arguments of a
complex number differ by 2nr.

The unique value of 6 such that —n <0 < ris called the principal value of the argument.
Unless otherwise stated, amp z implies principal value of the argument.

By specifying the modulus & argument a complex number is defined completely. For the complex number
0+ 01 the argument is not defined and this is the only complex number which is given by its modulus.

There exists a one-one correspondence between the points of the plane and the members of the set of
complex numbers.

Trignometric / Polar Representation :
z=r(cosO+1isin0) where|z|=1; argz =0 ; Z = r(cosO—1sin0)
Note: cos0+1isin0 isalso written as CiS 6.

eix + e—ix eix _e—ix
Alsocosx= T & sinx= T are known as Euler's identities.

Exponential Representation :

z=r1e® ;|z|=r ; argz =0 ; Z=re ™

IMPORTANT PROPERTIES OF CONJUGATE /MODULI/AMPLITUDE :
If z, z,, z, e C then ;

z+z=2Re(z) ; z-z=2ilm(2) ; (2) =z 4 z+tz, =2,+72, ;
_ 4 Y - - Z Z,
2,-2, = Z} —Zy ; 212y =7 .2, P Bl z,#0
2 Z,

_ _ 2
|z|>0 ; |z|>Re(z); Jz|=2Im(z); |z|=|Z|=|-2z|; zz=Iz[";
|2, A=z 2, 2Bl s0, (2=t

Z, Zy| = 2| | z ; —| = z "=z
172 1 2 ’ 22 |ZZ|’ 2 ’ ’

_ 2 2
|z, +2, P +]z,—2,2=2 [|7 ] +|z, [']

|z, = Iz, || <lz,+zl < |2,| + |2, [ TRIANGLE INEQUALITY |
@) amp (z, . z,) = amp z, +amp z, + 2 kr. kel

Z

(iii) amp[z—j=ampzl—ampzz+2kn ; kel

(iii) amp(z")=namp(z) + 2kn.
where proper value of k must be chosen so that RHS lies in (—n,m].

VECTORIAL REPRESENTATION OFA COMPLEX :
Every complex number can be considered as if itis the position vector of that point. If'the point P

- -
represents the complex number z then, OP =z & |OP | = |z].
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NOTE :

@

(ii)

(iif)

(iif)

@iv)
)

10.

11.

@

(i)

- ) - ) ) - - Q(zy)
If OP =z=re!? then OQ =z, =1e!@*® =z ¢ If OP and OQ are . B
Z
of unequal magnitude then ()AQ = C;\P it 6T
If A,B,C & D are four points representing the complex numbers 0 0

z,2,,2y & 7, then

. Z4 - Z3 .
AB || cD if is purely real ;
2,772
z,—2,
AB L CD if 7 — is purely imaginary ]
274
If z,, z,, z, are the vertices of an equilateral triangle where z, is its circumcentre then

2 2 2 _ _ _ - 2 2 =352
@ zy tz;+tz5-2,2,-2,2,—2,2,=0 (b) z{ +z5 425 =327

DEMOIVRE’S THEOREM :

Statement : cosnO +isinn® is the value or one of the values of (cos 6 +isin0)"¥n € Q. The
theorem is very useful in determining the roots of any complex quantity

Note : Continued product of the roots of a complex quantity should be determined

using theory of equations.

CUBE ROOT OF UNITY:

~1+iv3  <1=i/3
2 72
If w is one of the imaginary cube roots of unity then 1+ w + w? = 0. In general
1+w'+w?=0 ; where r € Lbut is not the multiple of 3.
In polar form the cube roots of unity are :

2 [ . 2nm 4n . 4n
cos0+isin0; cos 3 +1sin 3 cos 3 +1sin 3
The three cube roots of unity when plotted on the argand plane constitute the verties of an equilateral triangle.
The following factorisation should be remembered :

(a,b,c € R & o is the cube root of unity)
ad—-b>=(a-b)(a—wb)(a—a’b) ; XX+x+1=x-0)x-0?);
ad+b*=(a+b)(a+wb)(at+wb) ;
a3+ b3+cd—3abc=(a+b+e)(@+ ob+ wk)(a+ wb+wc)

n" ROOTS OF UNITY :
If71, o5 0, Oy .. are the n, n™ root of unity then:
@) They are in G.P. with ¢ommon ratio (2@ &

The cube roots of unity are 1,

i 1P+al+ab+.. +alb

n-1

= 0 if p is not an integral multiple of n
= n if p is an integral multiple of n

i) (1-o)(d-0)... (I-a, ;) =n &
(I+a)(l+a,) ... (I+a,_)=0 if n is even and 1 if nis odd.
iv)y 1.0,.0,.0;..... a, _, = lor —1 according as n is odd or even.

THE SUM OF THE FOLLOWING SERIES SHOULD BE REMEMBERED :

sin(n6)/2) (n+1j N

cosO+cos20+cos30+..... +cosn9=mcos

sin(n6/2) [n+lj N

sin0+sin20+sin30+.....+sinnO= Wsm

Note : If 6 =(2n/n) then the sum of the above series vanishes.
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12.
A)
Note:

@

(ii)

(B)
©
(D)

(E)

G)

M

)

STRAIGHT LINES & CIRCLES IN TERMS OF COMPLEX NUMBERS :

IlZ1 +mz

If z, & z, are two complex numbers then the complex number z= 2 divides the joins of z,

& z, in the ratiom : n.

Ifa,b,c are three real numbers such that az +bz,+cz,=0 ;
where a+b+c¢=0 and a,b,c are not all simultaneously zero, then the complex numbers z,,z, & z,
are collinear.

If the vertices A, B, C ofa A represent the complex nos. z,,z,, z; respectively, then

. z,+2,+2,
(@) Centroid ofthe AABC = .

(b) Orthocentre ofthe AABC =
(asec A)Zl +(bsec B)z2 +(csec C)Z3 z, tan A+z; tanB+z,; tanC

asecA+bsecB+csecC tan A + tan B+tan C
(©) Incentre ofthe AABC = (az, +bz,+cz;)+(a+b+c).

d Circumcentre ofthe AABC=:
(Z,sin2A +Z,sin 2B +Z,sin 2C) # (sin 2A + sin 2B +sin 2C) .

amp(z) =0 is aray emanating from the origininclined at an angle 0 to the x—axis.
z—al =|z-b| is the perpendicular bisector of the line joining.a to b.
The equation of a line joining z, & z, is given by ;
z=z,+1t(z,—z,) where t is a perameter.
z=z, (1 +it) where t is a real parameter is a line through the point z, & perpendicular to 0z,.
The equation of a line passing through z, & z, can be expressed in the determinant form as

z z 1
z, z, 1| =0.Thisis also the condition for three complex numbers to be collinear.
z, Z, |1

[\S)

Complex equation of a straight line through two given points z, & z, can be written as
z (Zl -z, )— z (z1 < )+ (2122 -2,Z, )= 0, which on manipulating takes the formas aoz+az+r=0
where ris real and o s a non zero complex constant.

The equation. of circle having centre z, & radius p is:

_ = _ _ , C
‘z—zo‘ =p Or zz -2,z — Zoz+ Zy2p— P =0 which is of the form
zz+oz+oz+r =0, risreal centre — o & radius /oo—r .

Circle willbereal if ot =r> 0.
The equation of the circle described on the line segment joining z, & z, as diameter is :

7Z—7

z—z? =i§ or (z-z)(z-2z2,)+t(2z-2)(z~-2,)=0

(i) arg

Condition for four given points z,,z,,z, & z, to be concyclic is, the number

Z3—Z1 Z4 —Z2

is real. Hence the equation of a circle through 3 non collinear points z, z, & z, can be

Z3 —22 Z4—Z1

(Z_Zz)(z3_z1) (Z_Zz)(z3_zl) (2—22)(23—21)

taken as (Z_Zl)(ZS_ZZ) is real = (Z—Zl)(Z3_Zz): (2—21)(23_22)
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13.(a)

(b)

14.

15.

(i)

Q.1

Q.2

Q.3
Q.4

Q.5

Q.6

Q.7

Q.8

Q.9
Q.10

Reflection points for a straight line :

Two given points P & Q are the reflection points for a given straight line if the given line is the right
bisector of the segment PQ. Note that the two points denoted by the complex numbers z, & z, will be
the reflection points for the straightline oz + oz +r = 0 ifandonlyif; z,+0Z, +1=0, whereris
real and o is non zero complex constant.

Inverse points w.r.t. a circle :

Two points P & Q are said to be inverse w.r.t. a circle with centre 'O' and radius p, if :

(i) the point O, P, Q are collinear and on the same side of O. (i) OP . OQ = p2.

Note that the two points z, & z, will be the inverse points w.r.t. the circle

zz+az+az+r=0 ifandonlyif z,z,+az +az,+r=0.

PTOLEMY’S THEOREM :

It states that the product of the lengths of the diagonals of a convex quadrilateral inscribed in
a circle is equal to the sum of the lengths of the two pairs of its-opposite sides.

Le. |zl—z3‘ ‘ZZ—Z4| = |ZI—ZZ‘ |z3—z4‘ + |Zl—Z4‘ |ZZ—Z3 | .

LOGARITHM OF A COMPLEX QUANTITY:

1
Log (a+if)= 5 Log, (o + %) + i(2nn +tan! aj where n € L.

T
—(2nn+fj
i' represents a set of positive real numbers given-by e 2 nel

VERY ELEMENTARY EXERCISE
Simplify and express the result in the form of a+bi

2+1 2-51 2+5i 2-1 2+1
(f) AsquareP,P,P,P, is drawn in the complex plane with P, at (1, 0) and P, at (3, 0). Let P, denotes
the point (x,, y, ) n =1, 2, 3, 4. Find the numerical value of the product of complex numbers
(x; Ty, £iy,)(x;+i y3)(x4 +iy,).
Given that x,y e R,solve: (a) (x+2y)+i(2x -3y)=5-4 (b) x+iy)+(7-51)=9+4
() x2-y*—i1(2x+y)=2i (d) 2+31)x>*—(3-2i))y=2x—-3y+5i
Find the square root of : (@)9+401 (b)-11-601 (c)501

(@) If fx)=x*+9x3+35x> - x+4, find f(—5+4i)
b HFegX)=x*-x>+x>+3x-35, find g2+ 3i)

N2 3 0\2 p } 2 2
@ (1+2j b0+ 2 (C)(42113+_11] @ 342 372 i) (2-0)

Among the complex numbers z satisfying the condition |z +3-43 i| = /3, find the number having the

least positive argument.

Solve the following equations over C and express the result in the forma+ib, a,b € R.

(a) ix?-3x-2i=0 b)2(1+1)x?-4(2-1)x-5-31=0

Locate the points representing the complex number z on the Argand plane:

@ lz+1-211 =7 ) =1 fer i =4 @2 =3: (@ [2-3] = [z—6]
z+

If a & b are real numbers between 0 & 1 such that the points z, =a+1,z,=1+bi &z, =0 form an
equilateral triangle, then find the values of 'a'and 'b'.

Let z,=1+1 and z,=-1-1.Find z; € Csuch that triangle z,, z,, z, is equilaterial.

3
For what real values of x & y are the numbers —3 +ix?y & x>+ y -+ 4i conjugate complex?

ETOOS Academy Pvt. Ltd. : F-106, Road No. 2, Indraprastha Industrial Area, End of Evergreen Motors

(Mahindra Showroom), BSNL Office Lane, Jhalawar Road, Kota, Rajasthan (324005)



Q.11

Q.12

Q.13
Q.14

Q.15
Q.16

Q.17

Q.18
Q.19

Consider a complex number w =

Find the modulus, argument and the principal argument of the complex numbers.

. o s s o oy o | s s o 241
(1) 6 (cos310°—1sin310°) (11) =2 (cos 30° + 1 sin 30°) (111) P
If (x +iy)/3 =a+bi; prove that 4 (a2 — b?) = g + % .
1+z+7°
Let z be a complex number such that z € ¢\R and 1—2 € R, then prove that |z |=1.
—-z+z
Prove the identity, |[1-2,Z, ?—| z,-z, ’= (1— |z, \2) (1— |z, |2)
Prove the identity, |[1+2,z, > +| z,-z, ’= (1+ |z, \2)(1+ |z, |2)

2 2 2 2 .
For any two complex numbers, prove that [z, + 2| +|z,— 2| =2 [|ZI| +2, ] Also give the
geometrical interpretation of this identity.

(a) Find all non—zero complex numbers Z satisfying 7 =172
(b) If the complex numbers z,, z z,lie on the unit circle|z|=1 then show that
|z, 2y s tz | =z, 2y +z 1| .

Find the Cartesian equation of the locus of 'z'in the complex plane satisfying, {z— 4 |+|z +4|=16.

n
Letz=(0, 1) € C. Express Z Z¥ interms of the positive integer n.
k=0

Paragraph for question nos. 20 to 22
zZ—1
2z+1

where z=x + 1y, where x, y € R.

Q.20 Ifthe complex number w is purely imaginary then locus of z is

(A) astraight line

I 1 5
(B) acircle with centre (— - —j and radius % .

4’2

I 1
(C) acircle with centre (— > —j and passing through origin..

4’2

(D) neitheracircle nor a straight line.

Q.21 Ifthe complex number w is purely real then locus of z is

(A) a straight line passing through origin
(B) a straight line with gradient 3 and y intercept (—1)
(C) astraight line with gradient 2 and y intercept 1.

(D) none

Q.22 If|w|=1 then the locus of P is
(A)apoint circle (B) an imaginary circle
(C)areal circle (D) notacircle.
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EXERCISE-1

Q.1  Simplify and express the result in the form of a+bi :

2
: . : 4i° —i 3+42i 3-2i
a)-1(9+61)(2-1)"! b c +
@-1( )@= (){2i+1] ()2—5i 2451
2+if  (2-if
@ &k o) @ i+
2—-1 2+1
Q.2 Find the modulus, argument and the principal argument of the complex numbers.
107
(i)z=1+cos (10771) +1sin [7) (i) (tan1—1)?
: : i—1
(i) 2= V5120 +4/5-12i i) = =
V5+12i —+/5-12i i(l—c0s5)+sin5
Q.3  Given that x,y € R, solve:
(a) (x+2y)+1(2x - 3y) =5 — 4i 4 Y _5+6
Y RTa sy ' T+2i  3+2i 8i-1
(c) xX*—y*—i1(2x+y)=2i (d) 2+3)x*-(3-21)y=2x—-3y+5i

(e) 4x*+3xy + (2xy — 3x?)i =4y> — (x*/2) + Bxy—2y2)i
4(a) Let Z1s complex satistying the equation, z-—(3+1)z+m+21=0, wherem R.
4(a) LetZi plex satisfying the equation, z>—(3+1i 21=0, whi R
Suppose the equation has a real root, then find the value of m.

(b) a, b, c are real numbers in the polynomial, P(Z)=2Z*+aZ>+bZ>+cZ+3
If two roots of the equation P(Z) = 0 are 2 and i, then find the value of 'a'.

Q.5(a) Find the real values of x & y for which z, = 9y>—4-10ix and
z,= 8y?—201 are conjugate complex of each other.

b) Find the value of x*—x3+x?>+3x -5 if x=243i
(

Q.6 Solve the following for z:
22— (3-21)z=(5i-5)

Q.7(a) If iZ3+ 7%~ Z+1=0, then show that | Z | = 1.

z, =2z
(b) Let z, and z, be two complex numbers such that L 21=1 and | z,| # 1,find |z, |.
~42
. y . Z2-7Z . g
(c) Letz,=10+6i & z,=4+ 61.1f z is any complex number such that the argument of, is —, then
z—z
2

prove that lz-7-9i|=3/2.
Q.8  Show that the product,

. N2 . 22 N 2n
AT PNES A e 1] 1
+ > + E3 +H > + 5 is equal to (1_27) (1+1i) where n>2.

Q.9  Letz,,z,be complex numbers with |z, [=|z, |= 1, prove that |z, + 1|+ |z, +1[+|z;z, +1|>2.
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Q.10 Interpret the following locii inz € C.

. z+21 <4 .
@ 1<|z-2i|<3 ®) Re| 5 |% (z#2i)
(c) Arg(z+i)—Arg(z—1)=m/2 (d) Arg(z—a)=mn/3 where a=3+4i.

Q.11 Let A= {a € R|the equation (1 +2i)x>—2(3 +)x>+ (5 —4i)x +2a>=0}

has at least one real root. Find the value of z a’.
aeA

Q.12 Pisapoint on the Aragand diagram. On the circle with OP as diameter two points Q & R are taken such
that ~ POQ= 2 QOR=0. If ‘O’is the origin & P, Q & R are represented by the complex numbers
Z,,Z,& Z, respectively, show that: Z,>. cos 20=Z,.Z, cos?.

Q.13 Letz, z,, z, are three pair wise distinct complex numbers and t,, t,, t; are non-negative real numbers
such thatt, +t, +t,= 1. Prove that the complex number z=t,z, + t,7, + t,z, lies inside a triangle with
vertices z,, Z,, Z, or on its boundry.

Q.14 LetA=z,;B=z,; C=z, are three complex numbers denoting the vertices of an acute angled triangle.
Ifthe origin ‘O’ is the orthocentre of the triangle; then prove that

lez+ Z, 2=Zzz3+ Z, 3=Z3Z1 | Zszl

z,=0

hence show that the AABC is arightangled triangle &z, 7, + 2, z,=2,z, + 7,2,= 2,7, + 7,7,

Q.15 Let a+iP; a, B € R, be aroot of the equation x>+ qx +r=0; q, r € R. Find areal cubic equation,
independent of o & 3, whose one root is 2a.

Q.16 Find the sum of the series 1(2— )2 — ®?) +2(3 — ®) (3 — 0 )s...... (n—1)(n — )(n— ®?) where o is
one of the imaginary cube root of unity.

Q.17 IfA, B and C are the angles of a triangle

e—21A elC e1B
ic —2iB iA )
D=| ¢ € e where i = /]
iB iA -2iC
e e e
then find the value of D.

Q.18 If w.is-an imaginary cube root of unity then prove that :
@ (A=w+wd) (- w+wH(l -w*+wd) ....to 2n factors =2?".
(b) If'w is a complex cube oot of unity, find the value of
(I+w)(1+w?)(1+w* (1+w?) ... to n factors .

nmn
5 nGj +1sin (7 - nej . Hence deduce that

. . n nw
Q.19 Prove that (1+sm9+1cosej ZCOS(

1+sin®=icosO

T I > 3
(1+sin—+icos—j +if1esinT—icos®| =0
5 5 5 5

Q.20 If cos(a—B)+cos(P —7)+ cos(y— o) =— 3/2 then prove that:
(a) Zcos2a=0=Zsin2a (b) Zsin(a+B)=0=Xcos (o +p)
(c) T sin?a=X cos>a=3/2 (d) Tsin3a=3sin(a+p+7)
() Zcos3a=3cos(a+p+y)
(f) cos®(0+a)+cos? (0+B)+cos® (0+y)=3cos(0+a).cos(0+P).cos(0+7) where 0 € R.
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Q.21 Resolve Z3+ 1 into linear & quadratic factors with real coefficients. Deduce that : 4-sin ™ -cos % =1.

Q22 Ifx=1+i3 ; y=1-i3 & z=2,then prove that xP+yP=2zP for every prime p> 3.
Q.23 Dividing f(z) by z—1, we get the remainder i and dividing it by z+1, we get the remainder
1 +1i. Find the remainder upon the division of f(z) by z>+ 1.

Q.24(a) Let z=x + iy be acomplex number, where x and y are real numbers. Let A and B be the sets defined by
A={z||z|<2} and B={z|(1 —i)z+ (1 +i)Z >4}. Find the area of the region A N B.

1
(b) For all real numbers x, let the mapping f (x) = ——, where i = ,/_1 . If there exist real number
X —i

a, b, c and d for which f(a), f(b), f(c) and f (d) form a square on the complex plane. Find the area of
the square.
Q.25 Column-I Column-II
(A) Letwbeanon real cube root of unity then the number of distinctelements (P) 4

in the set {(1+W+W2+ ....... +Wn)m|m,neN} is

(B) Let 1, w, w?be the cube root of unity. The least possible Q) 5
degree of a polynomial with real coefficients having roots
2w, (2+3w), (2+3w?), (2-w<w?), is
(C) a=6+4i and B =(2+4i) are two complex numbers on the complexplane. (R) 6

z—-o) T
A complex number z satisfying amp (ﬁj ~ g Mmoveson the major (S) 8

segment of a circle whose radius is

EXERCISE-I1

p qr
Q.1 If|q r p/=0; where p,q,r are the moduli of non—zero complex numbers u, v, w respectively,
rpq X
W _
prove that, arg — =arg (W u) .
v v—u

Q.2 LetZ=18+26i where Z,=x,+1iy, (X, ¥, €R) is the cube root of Z having least positive argument.
Find the value of Xy, (x,+ )

Q.3 Showthat the locus formed by z in the'equation z3 + iz = 1 never crosses the co-ordinate axes in the

—Im(z)
2Re(z)Im(z) + 1

Argand’s plane. Further show that |z|= \/

Q.4 Ifwis the fifthrootof 2 and x = o + o?, prove that x°>=10x>+ 10x + 6.

Q.5  Prove that, with tegard to the quadratic equation z>+ (p+ip’)z+q+iq'=0
wherep,p’,q,q" are all real.
(i) if the equation has one real root thenq>—pp’'q’'+qp'2=0.
(i)  if the equation has two equal roots then p>—p>=4q & pp’' =2q".
State whether these equal roots are real or complex.
Q.6  Iftheequation(z+1)"+z’=0hasroots z , z,, .... z,, find the value of

(a) 27: Re(Z)) and (b) i Im(Z)
r=1 r=1
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Q.7

Q.8

Q.9

Q.10

Find the roots of the equation Z" = (Z + 1)" and show that the points which represent them are collinear
on the complex plane. Hence show that these roots are also the roots of the equation

2 2
[25inﬂj 7>+ [ZSinﬂj Z+1=0.
n n

If the expression z> — 32 can be factorised into linear and quadratic factors over real coefficients as
(z°—32)=(z—2)(z*>— pz+ 4)(z*> — gz + 4) then find the value of (p* + 2p).

Let z, & z, be any two arbitrary complex numbers then prove that :

1 z z
2,421 2 Z(1z1+]2, )| =-+—2|.
b 2 |z, |z, |
IfZ,r=1,2,3, ... 2m, m ¢ N are the roots of the equation
2m 1
Zom 4 z2m-l 4 zam2 +Z+1=0then provethat 2 >—7 =-m

.11(i) Let Cr's denotes the combinatorial coefficients in the expansion of (1 +x)™, n-€ N. Ifthe integers
p g

(i)
Q.12

Q.13

Q.14

Q.15

Q.16

a =C,+C,+C+Cy+ ...
b,=C, +C,+C,+Cjj+........
and ¢ =C,+C,+Cy+Cj + ... , then

prove that (a) afl erf1 Jrcf1 —-3abe =2" () (a,—b)+(b —c)+(c,—a)=2.
Prove the identity: (C,—CytC,—Ce+ ... ) +(C, -G+ C - Cy+ ... =20
Let z,,2,,2,,2, be the vertices’ A, B, C, D respectively of a square on the Argand diagram

taken in anticlockwise direction then prove that :
(i) 2z,=(1+1) z, + (1-1)z, & (i) 2z,=(I=1)z, + (1 +1i) z,

a € R are real and distinct.

Show that all the roots of the equation (1 i ix) Yy i

1-ix) A-ia

Prove that:

2
. (n+2]
. SIn X
2

2
(c) cos( 2m )Jrcos( v j+cos( 6m ]Jr ..... +cos( Mj=—l When n € N.
2n +1 2n + 1 2n +1 2n+1 2

Show that all roots of the equation a,z"+ a;z" '+....+a ,z+a =n,

+2
(@) cos x +"C, cos 2x +1C,cos 3x +....+ "C, cos (n+1)x=2“.cos“% . COS (n jx

(b) sinx +°C, sin2x +"C, sin 3x4..... +"C_sin(n+1)x=2". cos"

N | <

n—1
where|a,|<1,1=0, 1,2, ..., nlie outside the circle with centre at the origin and radius -

The points A, B, C depict the complex numbers z,, z, , z, respectively on a complex plane & the angle

3

B & C of the triangle ABC are each equal to %(71: —a) . Show that

(z,~2)*=4(2,-2)) (2, 2,) sin? %.
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32 10 P
Q.17 Evaluate: > (3p + 2)(2 (sinzlq—;c —ico 2q—nj] ,

S
p=1 q=1 11

a b c
Q.18 Leta,b, cbedistinct complex numbers such that —b =1 . =1l k. Find the value of k.

Q.19 Let a, B be fixed complex numbers and z is a variable complex number such that,
|Z—OL|2 + |Z—B|2 =k.
Find out the limits for 'k' such that the locus of z is a circle. Find also the centre and radius of the circle.
Q.20 C s the complex number. f: C — R is defined by f(z) = | z> — z + 2|. Find the maximum value of f(z)
if |[z|=1.

Q21 Letf(x)=log_ (cos2ix)if x=0andf(0)=K (where i= /=1 )iscontinuousatx =0 then find
the value of K.

2mi 20

Q.22 If a=e¢ 7 and f{x)=A,+ X, A, x thenfind thevalue of, f(x)+f(ax)+...... + f{a’) independent
of a. -

Q.23 Find the set of points on the argand plane for which the real part of the complex number (1 + i)z?
is positive wherez=x +1y,x,y € Randiz\/—_l.

Q.24 Ifaandb are positive integer such that N = (a + ib)*> — 1074 is a positive integer. Find N.

Q.25 Ifthe biquadratic x*+ax3+bx?>+cx+d=0 (a, b, c,d € R) has 4 non real roots, two with sum
3 +4i and the other two with product 13 +1i. Find the value of 'b'.

EXERCISE-LII

1 1 1
Q.1(a) If z,, z,, z, are complex numbers such that |z1 | = ‘zz‘ = |z3‘ = |—+—+—| =1, then
2y 2y %4
‘Z1+22+Z3| is:
(A) equal to 1 (B) lessthan 1= (C) greater than 3 (D) equalto 3
(b) If arg (z) < 0, then arg(—z)—arg(z) =
T T
(A) = (B) = ©) -3 D) 7
[ JEE 2000 (Screening) 1 + 1 out of 35 |
27 2n
Q.2 Given, z=cos nil +1 sin nal’ 'n' a positive integer, find the equation whose roots are,
oa=z+2+... +z20-1 & B=z22+74+ . +2z2n

Q.3  Find all those roots of the equation z!? — 56z° — 512 = 0 whose imaginary part is positive.
[ REE 2000, 3 out of 100 ]
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Z,—Zy 1-i/3

Q.4(a) The complex numbers z,, z, and z, satisfying are the vertices of a triangle which is

Z, —Z, 2
(A) of area zero (B) right-angled isosceles
(C) equilateral (D) obtuse —angled isosceles
(b) Letz, and z, be nth roots of unity which subtend a right angle at the origin. Then n must be of the form
(A)4k+1 (B) 4k +2 (C)4k +3 (D) 4k
[ JEE 2001 (Scr) 1 + 1 out of 35 ]
1 3 1 1 1
Q.5(a) Let ® = —— 41— Then the value of the determinant I —1— o’ o’lis
2 2 1 2 4
® ®
(A)3o B)3o(w-1) (C) 3 (D)3o(1 —w)
(b) For all complex numbers z,, z, satisfying |z,| = 12 and |z, — 3 —4i| = 5, the minimum value of
|z, —z,|1s
(A)O (B)2 (ON (D) 17 [JEE 2002 (Scr) 3+3]

(c) Letacomplex numbera,a # 1, be aroot of the equation
ZP*4—7zP—79+1=0 where p, qare distinct primes.
Show thateither 1 +o+a?+ ...+ aP'=0 or 1 +o+0o?+...... +a%!=04but not both together.
[JEE 2002, (5)]

l1-z,z,

Q.6(a) If z, and z, are two complex numbers such that [z, | <1 <]z, | then prove that <1.

21—7Z

n
(b) Prove that there exists no complex number z such that |z | < 3 and Z a,z' =1where|a |<2.
r=1
[JEE-03, 2 + 2 out of 60]
Q.7(a) ® is an imaginary cube root of unity. If (1 + @)= (1 +®*™, then least positive integral value of m is

(A)6 (B)S ()4 (D)3
[JEE 2004 (Scr)]
(b) Find centre and radius of the circle determined by all complex numbers z=x +1y satisfying ((Z;(;)) =k,
7
where o= o, +ia,, B =B, +1B, are fixed complex and k # 1. [JEE 2004, 2 out of 60 ]
p(\2-1,y2)

Q.8(a) The locus of z which lies inshaded region is best represented by
(A)z:|z +1[>2, |arg(z + )| <n/4

B)z:|z - 1|>2, |arg(z —1)| < n/4 (-1,0) (1,0)
O)z:|z +1|<2,jarg(z+ 1) <m/2 _
D)z: |z -1|<2, arg(z - 1)| < /2 Q2-1.42)

(b) Ifa, b, c are integers not all equal and w is a cube root of unity (w # 1), then the minimum value of
la+bw + cw?| is

NG

3 1
(A)O (B)1 ©) By (D) 5
[JEE 2005 (Scr), 3 + 3]

(c) Ifone of the vertices of the square circumscribing the circle [z—1|= /7 is 2 + 3 1. Find the other
vertices of square. [JEE 2005 (Mains), 4]
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Q.9 Ifw=oa +if} where 3 #0and z # 1, satisfies the condition that

W —WZ

is purely real, then the set of

values ofz 1s
(A){z:|z|=1} B){z:z=72) OC){z:z=1} D){z:|z|=1,z#1}
[JEE 2006, 3]

Q.10(a) A man walks a distance of 3 units from the origin towards the North-East (N 45° E) direction. From

there, he walks a distance of 4 units towards the North-West (N 45° W) direction to reach a point P.
Then the position of P in the Argand plane is

(A) 34 +4i (B) 3-4e™  (C) @+3)e™ (D) G+dije™
(b) If |z|=1and z#= 1, then all the values of 1,2 lie on
-z
(A) aline not passing through the origin B)|z| = .2
(C) the x-axis (D) the y-axis [JEE 2007, 3+3]

Q.11(a) Aparticle P starts from the point z, = 1 +2i, where i = /1 . It moves firsthorizontally away from origin

(b)

@)

(i)

(iif)

by 5 units and then vertically away from origin by 3 units to reach a point z,. From z  the particle moves

A A . T, . .
/2 units in the direction of the vector i + j‘and then it moves throughan angle — in anticlockwise

2
direction on a circle with centre at origin, to reach:a point z,. The point z, i given by
(A)6+7i (B)—7+6i (C)7+6i (D)—6+7i
Comprehension (3 questions together)

Let A, B, C be three sets of complex numbers as defined below
A= {Z :Imz > 1}
B={z:z-2-i]=3}
C= {z:Re((1-1)2) =2
The number of elements in the set AN B N C'is
(A)0 (B) 1 ()2 (D)oo
Let z be any pointin AN B N C. Then, |z+1—i?+|z—5—i| lies between
(A) 25 and 29 (B) 30 and 34 (C)35and 39 (D) 40 and 44

Letz be any point in AN B N C anddet w be any point satisfying | w -2 —i | <3.
Then, | z|— | w |+ 3 lies between
(A)—6and 3 (B)-3and 6 (C)—6and 6 (D)-3and 9
[JEE 2008, 3 +4 + 4 + 4]

15
Q.12(a) Let z=cos 6 +1sin 6. Then the value of z Im(z*™) at0=2°1s
m=l
1 1 1 1
(&) sin 2° (B) 3sin2° © 2sin2° (D) 4sin 2°

(b)

Let z=x+ 1y be a complex number where x and y are integers. Then the area of the rectangle whose

vertices are the roots of the equation 77> +7z> =350 is
(A)48 (B)32 (C) 40 (D) 80
[JEE 2009, 3 + 3]
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ANSWER KEY
VERY ELEMENTARY EXERCISE

7 24 . 12
1 —+—1 ———1; (¢) 3+4i; (d ——+0 e) — 15
Q ()25 Y () 5 b (© i; (d) n () 1(1)
2
Q2 @x=1,y=2; ) (12,9); (¢)(-2 2)or( j (d)(1,1) (0 —)
Q3 (@) £(5+4i); (b) £(5-61) (c) £5(1+1) Q4 (a)—-160 ;(b) —(77+108 1)
- 5i 1+
Qs -2 33, Q6 (a) —i.—2i (b)°> lor—$
2 2 2
Q.7 (a)onacircle of radius 7 with centre (-1,2) 5 (b) on aunit circle with centre at origin
(¢) on acircle with centre (—15/4, 0) & radius 9/4 ; (d) a straight line
Q8 a=b=2-43; Q9 z,=V3(~i)and 2, =3(-1-0)
Q10 x=1, y=—4or x=-1, y=-4
Q.11 (i) Modulus=6, Arg=2kmn +5—7T (K € 1), Principal Arg= Sl—g(K el)
(ii) Modulus=2, Arg= 2k7t+— , Principal Arg= —S?TE
(iii) Modulus = % Arg=2kn—tan"'2(K €I), Principal Arg=+tan"'2
V3oi A3 x* y?
17 ———, == A8 —+-—=
Q (@) 2 27 2 ! Q 64 48
(1,0) for n=4k
(1,I) forn=4k+1
Q.19 (0.1) forn=4k+2 Q20B Q21 C Q22¢C
(0,0) forn=4k+3
EXERCISE-I
12 . . . .
QL@ S -5 i () 3441 (© = +0i (&) Zi @ £42+0i or 042i

|zl =

Q.2 (i) Principal Arg z=— o
(i) Modulus = sec®l , Arg=2nn+(2—- =« )

4 4
2cos§ ;Argz=2k7t—?7T kel

Principal Arg=(2— n)

2

(iii) Principal valueof Agrz=—— & |z| = ; Principal value of Argz = 72[ & |z| = 3
1 bI° 1w . llw
iv) Modulus = ——=cosec— , Argz= 2nn + — , Principal Arg= —
) V2 s e 20 PEAIET 0

Q.3(a) x=1,y=2; (b)x=1&y=2;(c) (-2,2)or (‘%"%);(d)(l 1) (o,gj;(e)FK,y:%KeR

Q4 (a2,(b)-112 Q5 @ [(-2,2); (-2,-2)] (b) —(77+1081)
Q6 z=2+1) or (1-31)
Q7 ()2
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Q.10 (a) The region between the co encentric circles with centre at (0, 2) & radii 1 & 3 units

1
(b) region outside or on the circle with centre 5 + 21 and radius 5

(c) semi circle (inthe 1st & 4th quadrant) x>+ y?>=1 (d) aray emanating from the point
(3 +4i) directed away from the origin & having equation 3x —y + 4 - 34/3 = 0

n(m+1) T
Q1118 QI5x*+qx-r=0 Q.16 P -n
Q.17 -4 Q.18 (b) oneifniseven; —w? ifnisodd
Q21 (Z+1)(Z*-2Zcos36°+ 1) (Z*>*—2Z cos 108° + 1) Q.23 % + % +i

Q.24 (a)t—2; (b) 172 Q.25 (A)R; (B)Q;(C)P

EXERCISE-1I
Q2 12 Q.6 (a)— %, (b) zero Q.24 4 Q.17 48(1-1)

1
Q.18 —  or — »’ Q19 k> o = B’
Q.20 |f(2)|is maximum when z = ®, where ® is the cube root unity and | f (z) | = /13

4
Q.21 K=- 9 Q22 7A,+7A, X"+ TA  x1
Q.23 required set is constituted by the angles without their boundaries, whose sides are the straight lines

y= (\/E —1) xandy+ (\/E +1) x=0 containing the x — axis
Q.24 198 Q.25 51

EXERCISE-III

-2
sin“n 0 2
= (0, where 0 = T

2 Y
Q1@ A (b)) AQ.2 z-+z+ Sin’ © a1

(i\/§ + i)
T

Q3 +1+i4/3, ,\2i Q4@C,(b)D Q5 (a)B; (b) B

2 j—
Q.7 (a) D; (b) Centre= kkE . Radivs = (kzl ; Na-k2pP k2B ~ o k> -1)
Q8 (@) A, (b) B, () 2=~ 3i; z,= (1-3)+i; z,= (14+3)-i Q9 D
Q10 (a) D; (b D
Q11 (a D; M (@) B; (i) C; (i) D Q.12 (a) D; (b) A
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