

For More Study Material & Test Papers Visit : www.mathsiit.com

COMPLEX NUMBERS

MANOJ CHAUHAN SIR(IIT-DELHI) EX. SR. FACULTY (BANSAL CLASSES)

<u>KEY CONCEPTS</u>

1. DEFINITION :

Complex numbers are definited as expressions of the form a + ib where $a, b \in R$ & $i = \sqrt{-1}$. It is denoted by z i.e. z = a + ib. 'a' is called as real part of z (Re z) and 'b' is called as imaginary part of z (Im z).

EVERY COMPLEX NUMBER CAN BE REGARDED AS

Purely real	Purely imaginary	Imaginary
if b = 0	if a = 0	if $b \neq 0$

Note :

- (a) The set R of real numbers is a proper subset of the Complex Numbers. Hence the Complete Number system is $N \subset W \subset I \subset Q \subset R \subset C$.
- (b) Zero is both purely real as well as purely imaginary but not imaginary.
- (c) $i = \sqrt{-1}$ is called the imaginary unit. Also $i^2 = -1$; $i^3 = -i$; $i^4 = 1$ etc.
- (d) $\sqrt{a} \sqrt{b} = \sqrt{ab}$ only if at least one of either a or b is non-negative.

2. CONJUGATE COMPLEX :

If z = a + ib then its conjugate complex is obtained by changing the sign of its imaginary part & is denoted by \overline{z} . i.e. $\overline{z} = a - ib$.

Note that :

- (i) $z + \overline{z} = 2 \operatorname{Re}(z)$ (ii) $z \overline{z} = 2i \operatorname{Im}(z)$ (iii) $z \overline{z} = a^2 + b^2$ which is real
- (iv) If z lies in the 1st quadrant then \overline{z} lies in the 4th quadrant and $-\overline{z}$ lies in the 2nd quadrant.

3. ALGEBRAIC OPERATIONS :

The algebraic operations on complex numbers are similiar to those on real numbers treating *i* as a polynomial. Inequalities in complex numbers are not defined. There is no validity if we say that complex number is positive or negative.

e.g. z > 0, 4 + 2i < 2 + 4i are meaningless.

However in real numbers if $a^2 + b^2 = 0$ then a = 0 = b but in complex numbers, $z_1^2 + z_2^2 = 0$ does not imply $z_1 = z_2 = 0$.

4. EQUALITY IN COMPLEX NUMBER :

Two complex numbers $z_1 = a_1 + ib_1 \& z_2 = a_2 + ib_2$ are equal if and only if their real & imaginary parts coincide.

5. REPRESENTATION OF A COMPLEX NUMBER IN VARIOUS FORMS :

(a) Cartesian Form (Geometric Representation) :

Every complex number z = x + i y can be represented by a point on the cartesian plane known as complex plane (Argand diagram) by the ordered pair (x, y).

length OP is called modulus of the complex number denoted by $|z| \& \theta$ is called the argument or amplitude .

eg.
$$|z| = \sqrt{x^2 + y^2}$$
 &

 $\theta = \tan^{-1} \frac{y}{x}$ (angle made by OP with positive x-axis)

NOTE :

- (i) |z| is always non negative. Unlike real numbers $|z| = \begin{bmatrix} z & \text{if } z > 0 \\ -z & \text{if } z < 0 \end{bmatrix}$ is not correct
- (ii) Argument of a complex number is a many valued function. If θ is the argument of a complex number then $2 n\pi + \theta$; $n \in I$ will also be the argument of that complex number. Any two arguments of a complex number differ by $2n\pi$.
- (iii) The unique value of θ such that $-\pi < \theta \le \pi$ is called the principal value of the argument.
- (iv) Unless otherwise stated, amp z implies principal value of the argument.
- (v) By specifying the modulus & argument a complex number is defined completely. For the complex number 0+0i the argument is not defined and this is the only complex number which is given by its modulus.
- (vi) There exists a one-one correspondence between the points of the plane and the members of the set of complex numbers.

(b) Trignometric / Polar Representation :

 $z = r(\cos \theta + i \sin \theta)$ where |z| = r; arg $z = \theta$; $\overline{z} = r(\cos \theta - i \sin \theta)$ **Note:** $\cos \theta + i \sin \theta$ is also written as CiS θ .

Also $\cos x = \frac{e^{ix} + e^{-ix}}{2}$ & $\sin x = \frac{e^{ix} - e^{-ix}}{2}$ are known as Euler's identities.

- (c) Exponential Representation : $z = re^{i\theta}$; |z| = r; $arg z = \theta$; $\overline{z} = re^{-i\theta}$
- 6. IMPORTANT PROPERTIES OF CONJUGATE / MODULI / AMPLITUDE : If z, $z_1, z_2 \in C$ then ;

(a)
$$z + \overline{z} = 2 \operatorname{Re}(z)$$
; $z - \overline{z} = 2 \operatorname{i} \operatorname{Im}(z)$; $\overline{(\overline{z})} = z$; $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$;

$$\overline{z_1 - z_2} = \overline{z}_1 - \overline{z}_2 \quad ; \quad \overline{z_1 z_2} = \overline{z}_1 \cdot \overline{z}_2 \qquad \left(\frac{z_1}{z_2}\right) = \frac{\overline{z}_1}{\overline{z}_2} \quad ; \quad z_2 \neq 0$$

(b)
$$|z| \ge 0$$
; $|z| \ge \operatorname{Re}(z)$; $|z| \ge \operatorname{Im}(z)$; $|z| = |\overline{z}| = |-z|$; $z\overline{z} = |z|^2$;

$$|z_1 z_2| = |z_1| \cdot |z_2|$$
; $\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$, $z_2 \neq 0$, $|z^n| = |z|^n$;

$$|z_{1} + z_{2}|^{2} + |z_{1} - z_{2}|^{2} = 2 [|z_{1}|^{2} + |z_{2}|^{2}]$$

$$||z_{1}| - |z_{2}|| \le |z_{1} + z_{2}| \le |z_{1}| + |z_{2}|$$
(c)
(i) amp (z_{1} . z_{2}) = amp z_{1} + amp z_{2} + 2 k\pi.
[TRIANGLE INEQUALITY]
 $k \in I$

- (ii) $\operatorname{amp}\left(\frac{z_1}{z_2}\right) = \operatorname{amp} z_1 \operatorname{amp} z_2 + 2 \, k\pi \; ; \; k \in I$
- (iii) $amp(z^n) = n amp(z) + 2k\pi$. where proper value of k must be chosen so that RHS lies in $(-\pi, \pi]$.

(7) VECTORIAL REPRESENTATION OF A COMPLEX :

Every complex number can be considered as if it is the position vector of that point. If the point P

represents the complex number z then,
$$\overrightarrow{OP} = z \& |\overrightarrow{OP}| = |z|$$
.

NOTE :

(i) If
$$\overrightarrow{OP} = z = r e^{i\theta}$$
 then $\overrightarrow{OQ} = z_1 = r e^{i(\theta + \phi)} = z \cdot e^{i\phi}$. If \overrightarrow{OP} and \overrightarrow{OQ} are of unequal magnitude then $\overrightarrow{OQ} = \overrightarrow{OP} e^{i\phi}$

If A, B, C & D are four points representing the complex numbers (ii) $z_1, z_2, z_3 \& z_4$ then AB | | CD if $\frac{z_4 - z_3}{z_2 - z_4}$ is purely real;

AB
$$\perp$$
 CD if $\frac{z_4 - z_3}{z_2 - z_1}$ is purely imaginary]

If z_1, z_2, z_3 are the vertices of an equilateral triangle where z_0 is its circumcentre then (iii)

(a)
$$z_1^2 + z_2^2 + z_3^2 - z_1 z_2 - z_2 z_3 - z_3 z_1 = 0$$
 (b) $z_1^2 + z_2^2 + z_3^2 = 3 z_0^2$

8. **DEMOIVRE'S THEOREM:**

Statement: $\cos n\theta + i \sin n\theta$ is the value or one of the values of $(\cos \theta + i \sin \theta)^n \\mathbf{i} = 0$. The theorem is very useful in determining the roots of any complex quantity.

Note : Continued product of the roots of a complex quantity should be determined using theory of equations.

9. **CUBE ROOT OF UNITY:**

(i) The cube roots of unity are 1,
$$\frac{-1+i\sqrt{3}}{2}$$
, $\frac{-1-i\sqrt{3}}{2}$

If w is one of the imaginary cube roots of unity then $1 + w + w^2 = 0$. In general **(ii)** $1 + w^r + w^{2r} = 0$; where $r \in I$ but is not the multiple of 3.

In polar form the cube roots of unity are : (iii)

$$\cos 0 + i \sin 0$$
; $\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$, $\cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3}$

The three cube roots of unity when plotted on the argand plane constitute the verties of an equilateral triangle. (iv)

The following factorisation should be remembered: **(v)** $(a, b, c \in R \& \omega \text{ is the cube root of unity})$; $x^2 + x + 1 = (x - \omega) (x - \omega^2)$; $a^{3}-b^{3}=(a-b)(a-\omega b)(a-\omega^{2}b)$ $a^{3} + b^{3} = (a + b) (a + \omega b) (a + \omega^{2} b)$ $a^{3} + b^{3} + c^{3} - 3abc = (a + b + c)(a + \omega b + \omega^{2}c)(a + \omega^{2}b + \omega c)$

nth ROOTS OF UNITY: 10.

If 1, α_1 , α_2 , α_3 , ..., α_{n-1} are the n, nth root of unity then: (i) They are in G.P. with common ratio $e^{i(2\pi/n)}$ &

- $1^p + \alpha_1^p + \alpha_2^p + \dots + \alpha_{n-1}^p = 0$ if p is not an integral multiple of n (ii) = n if p is an integral multiple of n
- $(1 \alpha_1) (1 \alpha_2) \dots (1 \alpha_{n-1}) = n$ & $(1 + \alpha_1) (1 + \alpha_2) \dots (1 + \alpha_{n-1}) = 0$ if n is even and 1 if n is odd. (iii)
- 1. $\alpha_1 \cdot \alpha_2 \cdot \alpha_3 \dots \alpha_{n-1} = 1$ or -1 according as n is odd or even. (iv)

11. THE SUM OF THE FOLLOWING SERIES SHOULD BE REMEMBERED :

(i)
$$\cos \theta + \cos 2 \theta + \cos 3 \theta + \dots + \cos n \theta = \frac{\sin(n\theta/2)}{\sin(\theta/2)} \cos\left(\frac{n+1}{2}\right)\theta.$$

(ii)
$$\sin \theta + \sin 2\theta + \sin 3\theta + \dots + \sin n\theta = \frac{\sin(n\theta/2)}{\sin(\theta/2)}\sin(\frac{n+1}{2})\theta$$
.
Note : If $\theta = (2\pi/n)$ then the sum of the above series vanishes.

12. STRAIGHT LINES & CIRCLES IN TERMS OF COMPLEX NUMBERS :

(A) If $z_1 \& z_2$ are two complex numbers then the complex number $z = \frac{nz_1 + mz_2}{m+n}$ divides the joins of z_1

& z_2 in the ratio m : n.

Note:

- (i) If a, b, c are three real numbers such that $az_1 + bz_2 + cz_3 = 0$; where a + b + c = 0 and a,b,c are not all simultaneously zero, then the complex numbers $z_1, z_2 \& z_3$ are collinear.
- (ii) If the vertices A, B, C of a Δ represent the complex nos. z_1, z_2, z_3 respectively, then :

(a) Centroid of the
$$\triangle ABC = \frac{z_1 + z_2 + z_3}{3}$$

- (b) Orthocentre of the $\triangle ABC =$ $\frac{(a \sec A)z_1 + (b \sec B)z_2 + (c \sec C)z_3}{a \sec A + b \sec B + c \sec C} \quad OR \quad \frac{z_1 \tan A + z_2 \tan B + z_3 \tan C}{\tan A + \tan B + \tan C}$
- (c) Incentre of the $\triangle ABC = (az_1 + bz_2 + cz_3) \div (a + b + c)$.
- (d) Circumcentre of the $\triangle ABC = :$ $(Z_1 \sin 2A + Z_2 \sin 2B + Z_3 \sin 2C) \div (\sin 2A + \sin 2B + \sin 2C).$
- (B) $amp(z) = \theta$ is a ray emanating from the origin inclined at an angle θ to the x-axis.
- (C) |z-a| = |z-b| is the perpendicular bisector of the line joining a to b.
- **(D)** The equation of a line joining $z_1 \& z_2$ is given by;

$$z = z_1 + t (z_1 - z_2)$$
 where t is a perameter.

- (E) $z = z_1 (1 + it)$ where t is a real parameter is a line through the point z_1 & perpendicular to oz_1 .
- (F) The equation of a line passing through $z_1 \& z_2$ can be expressed in the determinant form as
 - $\begin{vmatrix} z & \overline{z} & 1 \\ z_1 & \overline{z}_1 & 1 \\ z_2 & \overline{z}_2 & 1 \end{vmatrix} = 0.$ This is also the condition for three complex numbers to be collinear.
- (G) Complex equation of a straight line through two given points $z_1 \& z_2$ can be written as $z(\overline{z}_1 \overline{z}_2) \overline{z}(z_1 z_2) + (z_1\overline{z}_2 \overline{z}_1z_2) = 0$, which on manipulating takes the form as $\overline{\alpha} z + \alpha \overline{z} + r = 0$ where r is real and α is a non zero complex constant.
- (H) The equation of circle having centre z_0 & radius ρ is: $|z-z_0| = \rho$ or $z\overline{z} - z_0\overline{z} - \overline{z}_0z + \overline{z}_0z_0 - \rho^2 = 0$ which is of the form

 $z\overline{z}+\overline{\alpha}z+\alpha\overline{z}+r=0$, r is real centre $-\alpha$ & radius $\sqrt{\alpha\overline{\alpha}-r}$.

Circle will be real if $\alpha \overline{\alpha} - r \ge 0$.

(I) The equation of the circle described on the line segment joining $z_1 \& z_2$ as diameter is :

(i)
$$\arg \frac{z-z_2}{z-z_1} = \pm \frac{\pi}{2}$$
 or $(z-z_1)(\overline{z}-\overline{z}_2)+(z-z_2)(\overline{z}-\overline{z}_1)=0$

- (J) Condition for four given points $z_1, z_2, z_3 \& z_4$ to be concyclic is, the number
 - $\frac{z_3 z_1}{z_3 z_2} \cdot \frac{z_4 z_2}{z_4 z_1}$ is real. Hence the equation of a circle through 3 non collinear points $z_1, z_2 \& z_3$ can be

taken as
$$\frac{(z-z_2)(z_3-z_1)}{(z-z_1)(z_3-z_2)}$$
 is real $\Rightarrow \frac{(z-z_2)(z_3-z_1)}{(z-z_1)(z_3-z_2)} = \frac{(\overline{z}-\overline{z}_2)(\overline{z}_3-\overline{z}_1)}{(\overline{z}-\overline{z}_1)(\overline{z}_3-\overline{z}_2)}$

13.(a) Reflection points for a straight line :

Two given points P & Q are the reflection points for a given straight line if the given line is the right bisector of the segment PQ. Note that the two points denoted by the complex numbers $z_1 \& z_2$ will be the reflection points for the straight line $\overline{\alpha} z + \alpha \overline{z} + r = 0$ if and only if; $\overline{\alpha} z_1 + \alpha \overline{z}_2 + r = 0$, where r is real and α is non zero complex constant.

(b) Inverse points w.r.t. a circle :

Two points P & Q are said to be inverse w.r.t. a circle with centre 'O' and radius ρ , if : (i) the point O, P, Q are collinear and on the same side of O. (ii) OP . OQ = ρ^2 . Note that the two points $z_1 \& z_2$ will be the inverse points w.r.t. the circle $z\overline{z}+\overline{\alpha}z+\alpha\overline{z}+r=0$ if and only if $z_1\overline{z}_2+\overline{\alpha}z_1+\alpha\overline{z}_2+r=0$.

14. **PTOLEMY'S THEOREM:**

It states that the product of the lengths of the diagonals of a convex quadrilateral inscribed in a circle is equal to the sum of the lengths of the two pairs of its opposite sides. $|z_1 - z_3| |z_2 - z_4| = |z_1 - z_2| |z_3 - z_4| + |z_1 - z_4| |z_2 - z_3|.$ i.e.

LOGARITHM OF A COMPLEX QUANTITY: 15.

(i)
$$\log_{e}(\alpha + i\beta) = \frac{1}{2} \log_{e}(\alpha^{2} + \beta^{2}) + i\left(2n\pi + \tan^{-1}\frac{\beta}{\alpha}\right)$$
 where $n \in I$.
(ii) i^{i} represents a set of positive real numbers given by $e^{-\left(2n\pi + \frac{\pi}{2}\right)}$, $n \in I$.
VERY ELEMENTARY EXERCISE

iⁱ represents a set of positive real numbers given by e (ii)

VERY ELEMENTARY EXERCISE

Simplify and express the result in the form of a + biQ.1

(a)
$$\left(\frac{1+2i}{2+i}\right)^2$$
 (b) $-i(9+6i)(2-i)^{-1}$ (c) $\left(\frac{4i^3-i}{2i+1}\right)^2$ (d) $\frac{3+2i}{2-5i} + \frac{3-2i}{2+5i}$ (e) $\frac{(2+i)^2}{2-i} - \frac{(2-i)^2}{2+i}$

- (f) A square $P_1P_2P_3P_4$ is drawn in the complex plane with P_1 at (1, 0) and P_3 at (3, 0). Let P_n denotes the point (x_n, y_n) n = 1, 2, 3, 4. Find the numerical value of the product of complex numbers $(x_1 + i y_1)(x_2 + i y_2)(x_3 + i y_3)(x_4 + i y_4).$
- Given that $x, y \in R$, solve: (a) (x+2y) + i(2x-3y) = 5-4i (b) (x+iy) + (7-5i) = 9+4iQ.2 (c) $x^2 - y^2 - i(2x + y) = 2i$ (d) $(2 + 3i)x^2 - (3 - 2i)y = 2x - 3y + 5i$
- Find the square root of : (a) 9 + 40 i (b) -11 60 iQ.3 (c) 50 i

Q.4 (a) If
$$f(x) = x^4 + 9x^3 + 35x^2 - x + 4$$
, find $f(-5+4i)$
(b) If $g(x) = x^4 - x^3 + x^2 + 3x - 5$, find $g(2+3i)$

- Among the complex numbers z satisfying the condition $|z + 3 \sqrt{3}i| = \sqrt{3}$, find the number having the Q.5 least positive argument.
- Solve the following equations over C and express the result in the form a + ib, $a, b \in R$. Q.6 (a) $ix^2 - 3x - 2i = 0$ (b) $2(1+i)x^2 - 4(2-i)x - 5 - 3i = 0$
- Q.7 Locate the points representing the complex number z on the Argand plane:

(a)
$$|z+1-2i| = \sqrt{7}$$
; (b) $|z-1|^2 + |z+1|^2 = 4$; (c) $\left|\frac{z-3}{z+3}\right| = 3$; (d) $|z-3| = |z-6|$

- Q.8 If a & b are real numbers between 0 & 1 such that the points $z_1 = a + i$, $z_2 = 1 + bi$ & $z_3 = 0$ form an equilateral triangle, then find the values of 'a' and 'b'.
- Let $z_1 = 1 + i$ and $z_2 = -1 i$. Find $z_3 \in C$ such that triangle z_1, z_2, z_3 is equilaterial. Q.9
- Q.10 For what real values of x & y are the numbers $-3 + ix^2 y \& x^2 + y + 4i$ conjugate complex?

Q.11 Find the modulus, argument and the principal argument of the complex numbers. (i) $6(\cos 310^\circ - i \sin 310^\circ)$ (ii) $-2(\cos 30^\circ + i \sin 30^\circ)$ (iii) $\frac{2+i}{4i+(1+i)^2}$

Q.12 If $(x + iy)^{1/3} = a + bi$; prove that $4(a^2 - b^2) = \frac{x}{a} + \frac{y}{b}$.

Q.13 Let z be a complex number such that $z \in c \setminus R$ and $\frac{1+z+z^2}{1-z+z^2} \in R$, then prove that |z|=1.

Q.14 Prove the identity,
$$|1-z_1\overline{z}_2|^2 - |z_1-z_2|^2 = (1-|z_1|^2)(1-|z_2|^2)$$

Q.15 Prove the identity,
$$|1 + z_1 \overline{z}_2|^2 + |z_1 - z_2|^2 = (1 + |z_1|^2)(1 + |z_2|^2)$$

Q.16 For any two complex numbers, prove that $|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2[|z_1|^2 + |z_2|^2]$. Also give the geometrical interpretation of this identity.

- Q.17 (a) Find all non-zero complex numbers Z satisfying $\overline{Z} = i Z^2$.
 - (b) If the complex numbers z_1, z_2, \dots, z_n lie on the unit circle |z| = 1 then show that $|z_1 + z_2 + \dots + z_n| = |z_1^{-1} + z_2^{-1} + \dots + z_n^{-1}|$.
- Q.18 Find the Cartesian equation of the locus of 'z' in the complex plane satisfying, |z-4|+|z+4|=16.
- Q.19 Let $z = (0, 1) \in C$. Express $\sum_{k=0}^{n} z^k$ in terms of the positive integer n.

Paragraph for question nos. 20 to 22

Consider a complex number $w = \frac{z-i}{2z+1}$ where z = x + iy, where $x, y \in \mathbb{R}$.

Q.20 If the complex number w is purely imaginary then locus of z is (A) a straight line

(B) a circle with centre $\left(-\frac{1}{4}, \frac{1}{2}\right)$ and radius $\frac{\sqrt{5}}{4}$.

(C) a circle with centre $\left(\frac{1}{4}, -\frac{1}{2}\right)$ and passing through origin..

- (D) neither a circle nor a straight line.
- Q.21 If the complex number w is purely real then locus of z is
 - (A) a straight line passing through origin
 - (B) a straight line with gradient 3 and y intercept (-1)
 - (C) a straight line with gradient 2 and y intercept 1.
 - (D) none
- Q.22 If |w| = 1 then the locus of P is
 - (A) a point circle (B) an imaginary circle
 - (C) a real circle (D) not a circle.

EXERCISE-I

Q.1 Simplify and express the result in the form of a + bi:

(a)
$$-i(9+6i)(2-i)^{-1}$$
 (b) $\left(\frac{4i^3-i}{2i+1}\right)^2$ (c) $\frac{3+2i}{2-5i} + \frac{3-2i}{2+5i}$
(d) $\frac{(2+i)^2}{2-i} - \frac{(2-i)^2}{2+i}$ (e) $\sqrt{i} + \sqrt{-i}$

Q.2 Find the modulus, argument and the principal argument of the complex numbers.

(i)
$$z = 1 + \cos\left(\frac{10\pi}{9}\right) + i \sin\left(\frac{10\pi}{9}\right)$$

(ii) $(\tan 1 - i)^2$
(iii) $z = \frac{\sqrt{5+12i} + \sqrt{5-12i}}{\sqrt{5+12i} - \sqrt{5-12i}}$
(iv) $\frac{i-1}{i\left(1 - \cos\frac{2\pi}{5}\right) + \sin\frac{2\pi}{5}}$
Given that $x, y \in \mathbb{R}$, solve :
(a) $(x + 2y) + i(2x - 3y) = 5 - 4i$
(b) $\frac{x}{1 - 2i} + \frac{y}{2 - 2i} = \frac{5 + 6i}{2i}$

(a)
$$(x + 2y) + 1(2x - 3y) - 3 - 41$$

(b) $\frac{1}{1+2i} + \frac{3}{3+2i} - \frac{8i-1}{8i-1}$
(c) $x^2 - y^2 - i(2x + y) = 2i$
(d) $(2 + 3i)x^2 - (3 - 2i)y = 2x - 3y + 5i$
(e) $4x^2 + 3xy + (2xy - 3x^2)i = 4y^2 - (x^2/2) + (3xy - 2y^2)i$

- Q.4(a) Let Z is complex satisfying the equation, $z^2 (3+i)z + m + 2i = 0$, where $m \in \mathbb{R}$. Suppose the equation has a real root, then find the value of m.
 - (b) a, b, c are real numbers in the polynomial, $P(Z) = 2Z^4 + aZ^3 + bZ^2 + cZ + 3$ If two roots of the equation P(Z) = 0 are 2 and i, then find the value of 'a'.
- Q.5(a) Find the real values of x & y for which $z_1 = 9y^2 4 10ix$ and $z_2 = 8y^2 20i$ are conjugate complex of each other.
 - (b) Find the value of $x^4 x^3 + x^2 + 3x 5$ if x = 2 + 3i
- Q.6 Solve the following for z: $z^2 - (3-2i)z = (5i-5)$

Q.3

Q.7(a) If $iZ^3 + Z^2 - Z + i = 0$, then show that |Z| = 1.

(b) Let z_1 and z_2 be two complex numbers such that $\left|\frac{z_1 - 2z_2}{2 - z_1 \overline{z}_2}\right| = 1$ and $|z_2| \neq 1$, find $|z_1|$.

(c) Let $z_1 = 10 + 6i$ & $z_2 = 4 + 6i$. If z is any complex number such that the argument of, $\frac{z - z_1}{z - z_2}$ is $\frac{\pi}{4}$, then prove that $|z - 7 - 9i| = 3\sqrt{2}$.

Q.8 Show that the product,

$$\left[1+\left(\frac{1+i}{2}\right)\right]\left[1+\left(\frac{1+i}{2}\right)^{2}\right]\left[1+\left(\frac{1+i}{2}\right)^{2^{2}}\right]\dots\left[1+\left(\frac{1+i}{2}\right)^{2^{n}}\right] \text{ is equal to } \left(1-\frac{1}{2^{2^{n}}}\right)(1+i) \text{ where } n \ge 2$$

Q.9 Let z_1, z_2 be complex numbers with $|z_1| = |z_2| = 1$, prove that $|z_1 + 1| + |z_2 + 1| + |z_1 + |z_2 + 1| \ge 2$.

Q.10 Interpret the following locii in $z \in C$.

(a) 1 < |z-2i| < 3 (b) $\operatorname{Re}\left(\frac{z+2i}{iz+2}\right) \le 4$ $(z \ne 2i)$

(c)
$$\operatorname{Arg}(z+i) - \operatorname{Arg}(z-i) = \pi/2$$
 (d) $\operatorname{Arg}(z-a) = \pi/3$ where $a = 3 + 4i$.

Q.11 Let A = {a \in R | the equation $(1 + 2i)x^3 - 2(3 + i)x^2 + (5 - 4i)x + 2a^2 = 0$ } has at least one real root. Find the value of $\sum_{a \in A} a^2$.

- Q.12 P is a point on the Aragand diagram. On the circle with OP as diameter two points Q & R are taken such that $\angle POQ = \angle QOR = \theta$. If 'O' is the origin & P, Q & R are represented by the complex numbers $Z_1, Z_2 \& Z_3$ respectively, show that : $Z_2^2 . \cos 2\theta = Z_1 . Z_3 \cos^2 \theta$.
- Q.13 Let z_1, z_2, z_3 are three pair wise distinct complex numbers and t_1, t_2, t_3 are non-negative real numbers such that $t_1 + t_2 + t_3 = 1$. Prove that the complex number $z = t_1z_1 + t_2z_2 + t_3z_3$ lies inside a triangle with vertices z_1, z_2, z_3 or on its boundry.
- Q.14 Let $A \equiv z_1$; $B \equiv z_2$; $C \equiv z_3$ are three complex numbers denoting the vertices of an acute angled triangle. If the origin 'O' is the orthocentre of the triangle, then prove that

$$\mathbf{z}_1 \,\overline{\mathbf{z}}_2 + \overline{\mathbf{z}}_1 \,\mathbf{z}_2 = \mathbf{z}_2 \,\overline{\mathbf{z}}_3 + \overline{\mathbf{z}}_2 \,\mathbf{z}_3 = \mathbf{z}_3 \,\overline{\mathbf{z}}_1 + \overline{\mathbf{z}}_3 \,\mathbf{z}_1$$

hence show that the \triangle ABC is a right angled triangle $\Leftrightarrow z_1 \overline{z}_2 + \overline{z}_1 z_2 = z_2 \overline{z}_3 + \overline{z}_2 z_3 = z_3 \overline{z}_1 + \overline{z}_3 z_1 = 0$

- Q.15 Let $\alpha + i\beta$; $\alpha, \beta \in R$, be a root of the equation $x^3 + qx + r = 0$; $q, r \in R$. Find a real cubic equation, independent of $\alpha \& \beta$, whose one root is 2α .
- Q.16 Find the sum of the series $1(2-\omega)(2-\omega^2) + 2(3-\omega)(3-\omega^2) \dots (n-1)(n-\omega)(n-\omega^2)$ where ω is one of the imaginary cube root of unity.
- Q.17 If A, B and C are the angles of a triangle

$$D = \begin{vmatrix} e^{-2iA} & e^{iC} & e^{iB} \\ e^{iC} & e^{-2iB} & e^{iA} \\ e^{iB} & e^{iA} & e^{-2iC} \end{vmatrix} \text{ where } i = \sqrt{-1}$$

then find the value of D.

Q.18 If w is an imaginary cube root of unity then prove that :

(a)
$$(1 - w + w^2) (1 - w^2 + w^4) (1 - w^4 + w^8) \dots$$
 to 2n factors = 2^{2n} .

(b) If w is a complex cube root of unity, find the value of $(1 + w) (1 + w^2) (1 + w^4) (1 + w^8) \dots$ to n factors.

Q.19 Prove that
$$\left(\frac{1+\sin\theta+i\cos\theta}{1+\sin\theta-i\cos\theta}\right)^n = \cos\left(\frac{n\pi}{2}-n\theta\right) + i\sin\left(\frac{n\pi}{2}-n\theta\right)$$
. Hence deduce that
 $\left(1+\sin\frac{\pi}{5}+i\cos\frac{\pi}{5}\right)^5 + i\left(1+\sin\frac{\pi}{5}-i\cos\frac{\pi}{5}\right)^5 = 0$
Q.20 If $\cos(\alpha-\beta) + \cos(\beta-\gamma) + \cos(\gamma-\alpha) = -3/2$ then prove that:
(a) $\Sigma \cos 2\alpha = 0 = \Sigma \sin 2\alpha$ (b) $\Sigma \sin(\alpha+\beta) = 0 = \Sigma \cos(\alpha+\beta)$
(c) $\Sigma \sin^2 \alpha = \Sigma \cos^2 \alpha = 3/2$ (d) $\Sigma \sin 3\alpha = 3 \sin(\alpha+\beta+\gamma)$
(e) $\Sigma \cos 3\alpha = 3 \cos(\alpha+\beta+\gamma)$
(f) $\cos^3(\theta+\alpha) + \cos^3(\theta+\beta) + \cos^3(\theta+\gamma) = 3\cos(\theta+\alpha) \cdot \cos(\theta+\beta) \cdot \cos(\theta+\gamma)$ where $\theta \in \mathbb{R}$.

Q.21 Resolve $Z^5 + 1$ into linear & quadratic factors with real coefficients. Deduce that : $4 \cdot \sin \frac{\pi}{10} \cdot \cos \frac{\pi}{5} = 1$.

- Q.22 If $x = 1 + i\sqrt{3}$; $y = 1 i\sqrt{3}$ & z = 2, then prove that $x^p + y^p = z^p$ for every prime p > 3.
- Q.23 Dividing f(z) by z-i, we get the remainder i and dividing it by z+i, we get the remainder 1+i. Find the remainder upon the division of f(z) by z^2+1 .
- Q.24(a) Let z = x + iy be a complex number, where x and y are real numbers. Let A and B be the sets defined by $A = \{z \mid |z| \le 2\}$ and $B = \{z \mid (1 i)z + (1 + i)\overline{z} \ge 4\}$. Find the area of the region $A \cap B$.

(b) For all real numbers x, let the mapping $f(x) = \frac{1}{x-i}$, where $i = \sqrt{-1}$. If there exist real number *a*, *b*, *c* and *d* for which f(a), f(b), f(c) and f(d) form a square on the complex plane. Find the area of the square.

Q.25

Column-II

(Q) 5

(A) Let w be a non real cube root of unity then the number of distinct elements (P) = 4

n the set
$$\{(1 + w + w^2 + \dots + w^n)^m \mid m, n \in N\}$$
 is

- (B) Let 1, w, w² be the cube root of unity. The least possible degree of a polynomial with real coefficients having roots 2w, (2 + 3w), $(2 + 3w^2)$, $(2 w w^2)$, is
- (C) $\alpha = 6 + 4i$ and $\beta = (2 + 4i)$ are two complex numbers on the complex plane. (R) 6

A complex number z satisfying
$$\operatorname{amp}\left(\frac{z-\alpha}{z-\beta}\right) = \frac{\pi}{6}$$
 moves on the major (S) 8

segment of a circle whose radius is

<u>EXERCISE–II</u>

Q.1 If $\begin{vmatrix} p & q & r \\ q & r & p \\ r & p & q \end{vmatrix} = 0$; where p,q,r are the moduli of non-zero complex numbers u, v, w respectively,

prove that, $\arg \frac{W}{v} = \arg \left(\frac{W-u}{v-u}\right)^2$.

Column-I

- Q.2 Let Z = 18 + 26i where $Z_0 = x_0 + iy_0$ ($x_0, y_0 \in \mathbb{R}$) is the cube root of Z having least positive argument. Find the value of $x_0y_0(x_0 + y_0)$.
- Q.3 Show that the locus formed by z in the equation $z^3 + iz = 1$ never crosses the co-ordinate axes in the

Argand's plane. Further show that
$$|z| = \sqrt{\frac{-\text{Im}(z)}{2 \text{Re}(z) \text{Im}(z) + 1}}$$

- Q.4 If ω is the fifth root of 2 and $x = \omega + \omega^2$, prove that $x^5 = 10x^2 + 10x + 6$.
- Q.5 Prove that, with regard to the quadratic equation $z^2 + (p + ip')z + q + iq' = 0$ where p, p', q, q' are all real.
 - (i) if the equation has one real root then $q'^2 pp'q' + qp'^2 = 0$.
 - (ii) if the equation has two equal roots then $p^2 p'^2 = 4q \& pp' = 2q'$. State whether these equal roots are real or complex.

Q.6 If the equation
$$(z + 1)^7 + z^7 = 0$$
 has roots z_1, z_2, \dots, z_7 , find the value of

(a)
$$\sum_{r=1}^{7} \text{Re}(Z_r)$$
 and (b) $\sum_{r=1}^{7} \text{Im}(Z_r)$

Q.7 Find the roots of the equation $Z^n = (Z+1)^n$ and show that the points which represent them are collinear on the complex plane. Hence show that these roots are also the roots of the equation

$$\left(2\sin\frac{m\pi}{n}\right)^2\overline{Z}^2 + \left(2\sin\frac{m\pi}{n}\right)^2\overline{Z} + 1 = 0.$$

- If the expression $z^5 32$ can be factorised into linear and quadratic factors over real coefficients as 0.8 $(z^{5}-32) = (z-2)(z^{2}-pz+4)(z^{2}-qz+4)$ then find the value of $(p^{2}+2p)$.
- Let $z_1 \& z_2$ be any two arbitrary complex numbers then prove that : Q.9

$$|z_1 + z_2| \ge \frac{1}{2} (|z_1| + |z_2|) \left| \frac{z_1}{|z_1|} + \frac{z_2}{|z_2|} \right|$$

Q.10 If Z_r , $r = 1, 2, 3, \dots, 2m$, m ε N are the roots of the equation

$$Z^{2m} + Z^{2m-1} + Z^{2m-2} + \dots + Z + 1 = 0$$
 then prove that $\sum_{r=1}^{2m} \frac{1}{Z_r - 1} = -m$

Q.11(i) Let Cr's denotes the combinatorial coefficients in the expansion of $(1 + x)^n$, $n \in N$. If the integers

$$a_{n} = C_{0} + C_{3} + C_{6} + C_{9} + \dots$$

$$b_{n} = C_{1} + C_{4} + C_{7} + C_{10} + \dots$$

and $c_{n} = C_{2} + C_{5} + C_{8} + C_{11} + \dots$, then
prove that (a) $a_{n}^{3} + b_{n}^{3} + c_{n}^{3} - 3a_{n}b_{n}c_{n} = 2^{n}$, (b) $(a_{n} - b_{n})^{2} + (b_{n} - c_{n})^{2} + (c_{n} - a_{n})^{2} = 2$

(ii) Prove the identity: $(C_0 - C_2 + C_4 - C_6 +)^2 + (C_1 - C_3 + C_5 - C_7 +)^2 = 2^n$ Q.12 Let z_1, z_2, z_3, z_4 be the vertices A, B, C, D respectively of a square on the Argand diagram taken in anticlockwise direction then prove that : (ii) $2z_4 = (1-i)z_1 + (1+i)z_3$ (i) $2z_2 = (1+i)z_1 + (1-i)z_3$ &

Show that all the roots of the equation $\left(\frac{1+ix}{1-ix}\right)^n = \frac{1+ia}{1-ia}$ $a \in \mathbb{R}$ are real and distinct. Q.13

Q.14 Prove that:

(a)
$$\cos x + {}^{n}C_{1} \cos 2x + {}^{n}C_{2} \cos 3x + \dots + {}^{n}C_{n} \cos (n+1) x = 2^{n} \cdot \cos^{n} \frac{x}{2} \cdot \cos\left(\frac{n+2}{2}\right) x$$

(b) $\sin x + {}^{n}C_{1} \sin 2x + {}^{n}C_{2} \sin 3x + \dots + {}^{n}C_{n} \sin (n+1) x = 2^{n} \cdot \cos^{n} \frac{x}{2} \cdot \sin\left(\frac{n+2}{2}\right) x$

(c)
$$\cos\left(\frac{2\pi}{2n+1}\right) + \cos\left(\frac{4\pi}{2n+1}\right) + \cos\left(\frac{6\pi}{2n+1}\right) + \dots + \cos\left(\frac{2n\pi}{2n+1}\right) = -\frac{1}{2}$$
 When $n \in \mathbb{N}$.

Q.15 Show that all roots of the equation $a_0z^n + a_1z^{n-1} + \dots + a_{n-1}z + a_n = n$, where $|a_i| \le 1, i = 0, 1, 2, ..., n$ lie outside the circle with centre at the origin and radius $\frac{n-1}{n}$.

The points A, B, C depict the complex numbers z₁, z₂, z₃ respectively on a complex plane & the angle Q.16 B & C of the triangle ABC are each equal to $\frac{1}{2}(\pi - \alpha)$. Show that $(z_2 - z_3)^2 = 4 (z_3 - z_1) (z_1 - z_2) \sin^2 \frac{\alpha}{2}$

Q.17 Evaluate:
$$\sum_{p=1}^{32} (3p+2) \left(\sum_{q=1}^{10} \left(\sin \frac{2q\pi}{11} - i \cos \frac{2q\pi}{11} \right) \right)^p$$
.

Q.18 Let a, b, c be distinct complex numbers such that $\frac{a}{1-b} = \frac{b}{1-c} = \frac{c}{1-a} = k$. Find the value of k.

Q.19 Let α , β be fixed complex numbers and z is a variable complex number such that,

$$\left|z-\alpha\right|^{2}+\left|z-\beta\right|^{2}=k.$$

Find out the limits for 'k' such that the locus of z is a circle. Find also the centre and radius of the circle.

- Q.20 C is the complex number. $f: C \rightarrow R$ is defined by $f(z) = |z^3 z + 2|$. Find the maximum value of f(z) if |z| = 1.
- Q.21 Let $f(x) = \log_{\cos 3x} (\cos 2ix)$ if $x \neq 0$ and f(0) = K (where $i = \sqrt{-1}$) is continuous at x = 0 then find the value of K.

Q.22 If
$$\alpha = e^{\frac{2\pi i}{7}}$$
 and $f(x) = A_0 + \sum_{k=1}^{20} A_k x^k$, then find the value of, $f(x) + f(\alpha x) + \dots + f(\alpha^6 x)$ independent of α .

- Q.23 Find the set of points on the argand plane for which the real part of the complex number $(1 + i)z^2$ is positive where z = x + iy, $x, y \in R$ and $i = \sqrt{-1}$.
- Q.24 If a and b are positive integer such that $N = (a + ib)^3 107i$ is a positive integer. Find N.
- Q.25 If the biquadratic $x^4 + ax^3 + bx^2 + cx + d = 0$ (a, b, c, $d \in \mathbb{R}$) has 4 non real roots, two with sum 3 + 4i and the other two with product 13 + i. Find the value of 'b'.

<u>EXERCISE-III</u>

Q.1(a) If z_1, z_2, z_3 are complex numbers such that $|z_1| = |z_2| = |z_3| = \left|\frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3}\right| = 1$, then $|z_1 + z_2 + z_3|$ is: (A) equal to 1 (B) less than 1 (C) greater than 3 (D) equal to 3 (b) If $\arg(z) < 0$, then $\arg(-z) - \arg(z) =$ (A) π (B) $-\pi$ (C) $-\frac{\pi}{2}$ (D) $\frac{\pi}{2}$ [JEE 2000 (Screening) 1 + 1 out of 35] Q.2 Given, $z = \cos \frac{2\pi}{2n+1} + i \sin \frac{2\pi}{2n+1}$, 'n' a positive integer, find the equation whose roots are, $\alpha = z + z^3 + \dots + z^{2n-1}$ & $\beta = z^2 + z^4 + \dots + z^{2n}$. [REE 2000 (Mains) 3 out of 100] Q.3 Find all those roots of the equation $z^{12} - 56z^6 - 512 = 0$ whose imaginary part is positive.

[REE 2000, 3 out of 100]

		$z_{1} = z_{2} = 1 - i_{3}\sqrt{3}$	
Q.4(a)	The complex numbers z_1, z_2 and z_3 satisfying	$\frac{z_1 - z_3}{z_2 - z_3} = \frac{1 - 1\sqrt{3}}{2}$ are	the vertices of a triangle which is
	(A) of area zero(C) equilateral	(B) right-angled isosc (D) obtuse – angled i	celes sosceles
(b)	Let z_1 and z_2 be nth roots of unity which subte (A) $4k + 1$ (B) $4k + 2$	nd a right angle at the o (C) 4k + 3 [JEH	rigin. Then n must be of the form (D) 4k E 2001 (Scr) 1 + 1 out of 35]
Q.5(a)	Let $\omega = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$. Then the value of the det	terminant $\begin{vmatrix} 1 & 1 \\ 1 & -1 - \omega^2 \\ 1 & \omega^2 \end{vmatrix}$	$\begin{vmatrix} 1 \\ \omega^2 \\ \omega^4 \end{vmatrix}$ is
	(A) 3ω (B) $3\omega(\omega-1)$	(C) $3\omega^2$	(D) $3\omega(1-\omega)$
(b)	For all complex numbers z_1 , z_2 satisfying $ z_1 - z_2 $ is	$ z_1 = 12 \text{ and } z_2 - 3 -$	4i = 5, the minimum value of
		(C) 7	(D) 17 [JEE 2002 (Scr) 3+3]
(c)	Let a complex number α , $\alpha \neq 1$, be a root of $z^{p+q} - z^p - z^q + 1 = 0$ where p, q are distinct Show that either $1 + \alpha + \alpha^2 + \dots + \alpha^{p-1} = 0$	Solution the equation the primes. or $1 + \alpha + \alpha^2 + \dots + \alpha^2$	$\alpha^{q-1} = 0$, but not both together. [JEE 2002, (5)]
Q.6(a)	If z_1 and z_2 are two complex numbers such	that $ z_1 < 1 < z_2 $ the	then prove that $\left \frac{1 - z_1 \overline{z}_2}{z_1 - z_2} \right < 1$.
(b)	Prove that there exists no complex number z	$ z < \frac{1}{3}$ and	d $\sum_{r=1}^{n} a_r z^r = 1$ where $ a_r < 2$.
Q.7(a)	ω is an imaginary cube root of unity. If $(1 + \omega^2)$ (A) 6 (B) 5	$^{m} = (1 + \omega^{4})^{m}$, then lead (C) 4	[JEE-03, 2 + 2 out of 60] ast positive integral value of m is (D) 3 [JEE 2004 (Scr)]
(b)) Find centre and radius of the circle determined	by all complex numbers	$z = x + i y$ satisfying $\left \frac{(z - \alpha)}{(z - \beta)} \right = k$,
	where $\alpha = \alpha_1 + i\alpha_2$, $\beta = \beta_1 + i\beta_2$ are fixed contained as $\beta = \beta_1 + i\beta_2$.	complex and $k \neq 1$.	[JEE 2004, 2 out of 60]
Q.8(a)	The locus of z which lies in shaded region is be (A) z : $ z + 1 \ge 2$, $ \arg(z + 1) \le \pi/4$ (B) z : $ z - 1 \ge 2$, $ \arg(z - 1) \le \pi/4$ (C) z : $ z + 1 \le 2$, $ \arg(z + 1) \le \pi/2$ (D) z : $ z - 1 \le 2$, $ \arg(z - 1) \le \pi/2$ (D) z : $ z - 1 \le 2$, $ \arg(z - 1) \le \pi/2$	est represented by	$p(\sqrt{2}-1,\sqrt{2})$ (-1,0) (1,0)

- $|a + bw + cw^2|$ is
- (A) 0 (B) 1 (C) $\frac{\sqrt{3}}{2}$ (D) $\frac{1}{2}$
 - [JEE 2005 (Scr), 3 + 3]
- (c) If one of the vertices of the square circumscribing the circle $|z-1| = \sqrt{2}$ is $2 + \sqrt{3}i$. Find the other vertices of square. [JEE 2005 (Mains), 4]

Q.9	If $w = \alpha + i\beta$ where	$\beta \neq 0$ and $z \neq 1$, satisfie	es the condition that $\frac{W}{d}$	$\frac{\overline{w}z}{\overline{w}}$ is purely real, then the set of	
~	values of z is	,	1-	-Z	
	(A) $\{z \cdot z = 1\}$	(B) $\{z \cdot z = \overline{z}\}$	$(C) \{z : z \neq 1\}$	(D) $\{z \cdot z = 1 z \neq 1\}$	
	$(II)(Z \cdot Z = I)$	$(\mathbf{D}) (\mathbf{Z}, \mathbf{Z} - \mathbf{Z})$	$(\mathbf{C}) (\mathbf{Z} \cdot \mathbf{Z} + \mathbf{I})$	(D) $(2.127 - 1, 277)$ [JEE 2006-3]	
Q.10	(a) A man walks a dist	ance of 3 units from the	e origin towards the Nort	th-East (N 45° E) direction. From	
-	there, he walks a dis	stance of 4 units towar	ds the North-West (N 45	5° W) direction to reach a point P.	
	Then the position of	P in the Argand plane is	S		
	(A) $3e^{i\pi/4} + 4i$	(B) $(3-4i)e^{i\pi/4}$	(C) $(4+3i)e^{i\pi/4}$	(D) $(3+4i)e^{i\pi/4}$	
(b) If $ z = 1$ and $z \neq \pm$	1, then all the values o	$f \frac{z}{1-z^2}$ lie on		
	(A) a line not passing	g through the origin	(B) $ z = \sqrt{2}$		
	(C) the x-axis		(D) the y-axis	[JEE 2007, 3+3]	
Q.11(a) A particle P starts from	box the point $z_0 = 1 + 2i$,	where $i = \sqrt{-1}$. It moves	first horizontally away from origin	
	by 5 units and then v	vertically away from orig	gin by 3 units to reach a p	oint z_1 . From z_1 the particle moves	
	$\sqrt{2}$ units in the dire	ection of the vector \hat{i} +	\hat{j} and then it moves thro	hugh an angle $\frac{\pi}{2}$ in anticlockwise	
	direction on a circle	with centre at origin, to	preach a point z_2 . The po	int z_{2} is given by	
	(A) $6 + 7i$	(B) $-7 + 6i$	(C) $7 + 6i^2$	(D) - 6 + 7i	
(b)	Comprehension (3	9 questions together)			
	Let A, B, C be three	sets of complex numb	ers as defined below		
	$\mathbf{A} = \{\mathbf{z} : \mathbf{Im} \mathbf{z}\}$	$z \ge 1$			
	$B = \{z : z - z\}$	-2-i = 3			
	$C = \begin{cases} z \cdot Re d \end{cases}$	$(1-i)_{7} = \sqrt{2}$			
(i)	The number of elen	nents in the set $A \cap B \cap B$	Cis		
(1)	(A) 0	(B) 1	(C) 2	$(D) \infty$	
(ii)	Let z be any point	in $A \cap B \cap C$ Then	$ z+1-i ^2+ z-5-i ^2$	² lies between	
(1)	(A) 25 and 29	(B) 30 and 34	(C) 35 and 39	(D) 40 and 44	
(iii)	Let z be any point i	in $A \cap B \cap C$ and let w	be any point satisfying	w-2-i < 3.	
	Then, $ z - w + 3$	lies between	<i>J</i> 1 <i>J C</i>		
	(A) –6 and 3	(B)-3 and 6	(C) –6 and 6	(D) - 3 and 9	
				[JEE 2008, 3 + 4 + 4 + 4]	
0.10			$\sum_{m=1}^{15} Im(\pi^{2m-1})$		
Q.12	(a) Let $z = \cos \theta + 1 \sin \theta$	θ . Then the value of	$\sum_{m=1}^{m} \min(z) \text{ at } \theta = 2^{\circ} t$	IS	
	1	1	1	1	
	(A) $\frac{1}{\sin 2^{\circ}}$	(B) $\frac{1}{3\sin 2^{\circ}}$	(C) $\frac{1}{2\sin 2^{\circ}}$	(D) $\frac{1}{4\sin 2^{\circ}}$	
(b)	Let $z = x + iy$ be a co	omplex number where	x and v are integers. The	en the area of the rectangle whose	
(-)	vertices are the roots of the equation $z\overline{z}^3 + \overline{z}z^3 = 350$ is				
	(A) 48	(B) 32	(C) 40	(D) 80	
				[JEE 2009, 3 + 3]	

	ANSWER KEY						
	VERY ELEMENTARY EXERCISE						
Q.1	(a) $\frac{7}{25} + \frac{24}{25}$ i; (b) $\frac{21}{5} - \frac{12}{5}$ i; (c) $3 + 4$ i; (d) $-\frac{8}{29} + 0$ i; (e) $\frac{22}{5}$ i; (f) 15						
Q.2	(a) $x = 1, y = 2;$ (b) (2, 9); (c) (-2, 2) or $\left(-\frac{2}{3}, -\frac{2}{3}\right);$ (d) (1, 1) $\left(0, \frac{5}{2}\right)$						
Q.3	(a) $\pm (5+4i)$; (b) $\pm (5-6i)$ (c) $\pm 5(1+i)$ Q.4 (a) -160 ; (b) $-(77+108i)$						
Q.5	$-\frac{3}{2} + \frac{3\sqrt{3}}{2}i$ Q.6 (a) $-i, -2i$ (b) $\frac{3-5i}{2}$ or $-\frac{1+i}{2}$						
Q.7	(a) on a circle of radius $\sqrt{7}$ with centre (-1, 2); (b) on a unit circle with centre at origin (c) on a circle with centre (-15/4, 0) & radius 9/4; (d) a straight line						
Q.8	a = b = $2 - \sqrt{3}$; Q.9 $z_3 = \sqrt{3}(1-i)$ and $z'_3 = \sqrt{3}(-1-i)$						
Q.10	x = 1, y = -4 or x = -1, y = -4						
Q.11	(i) Modulus = 6, Arg = $2 k \pi + \frac{5\pi}{18}$ (K \in I), Principal Arg = $\frac{5\pi}{18}$ (K \in I)						
	(ii) Modulus = 2, Arg = 2 k $\pi + \frac{7\pi}{6}$, Principal Arg = $-\frac{5\pi}{6}$						
	(iii) Modulus = $\frac{\sqrt{5}}{6}$, Arg = 2 k π - tan ⁻¹ 2 (K \in I), Principal Arg = - tan ⁻¹ 2						
Q.17	(a) $\frac{\sqrt{3}}{2} - \frac{i}{2}, -\frac{\sqrt{3}}{2} - \frac{i}{2}, i$ Q.18 $\frac{x^2}{64} + \frac{y^2}{48} = 1$						
Q.19	$\begin{cases} (1,0) & \text{for } n = 4k \\ (1,1) & \text{for } n = 4k + 1 \\ (0,1) & \text{for } n = 4k + 2 \\ (0,0) & \text{for } n = 4k + 3 \end{cases} Q.20 \text{ B} Q.21 \text{ C} Q.22 \text{ C}$						
	EXERCISE-I						
Q.1 (a) $\frac{21}{5} - \frac{12}{5}i$ (b) $3 + 4i$ (c) $-\frac{8}{29} + 0i$ (d) $\frac{22}{5}i$ (e) $\pm\sqrt{2} + 0i$ or $0 \pm \sqrt{2}i$						
Q.2 (i) Principal Arg $z = -\frac{4\pi}{9}$; $ z = 2\cos\frac{4\pi}{9}$; Arg $z = 2k\pi - \frac{4\pi}{9}$ $k \in I$) Modulus = sec ² 1, Arg = $2n\pi + (2 - \pi)$, Principal Arg = $(2 - \pi)$						
(iii) Principal value of Agr $z = -\frac{\pi}{2}$ & $ z = \frac{3}{2}$; Principal value of Arg $z = \frac{\pi}{2}$ & $ z = \frac{2}{3}$						
(iv) Modulus $=$ $\frac{1}{\sqrt{2}} \cos ec \frac{\pi}{5}$, Arg $z = 2n\pi + \frac{11\pi}{20}$, Principal Arg $=$ $\frac{11\pi}{20}$						
Q.3(a)	x = 1, y = 2; (b) x = 1 & y = 2; (c) (-2, 2) or $\left(-\frac{2}{3}, -\frac{2}{3}\right)$; (d) (1, 1) $\left(0, \frac{5}{2}\right)$; (e) x = K, y = $\frac{3K}{2}$ K \in R						
Q.4 Q.6 Q.7	(a) 2, (b) $-11/2$ Q.5 (a) $[(-2, 2); (-2, -2)]$ (b) $-(77+108 i)$ z = (2 + i) or (1 - 3i) (b) 2						

Q.10 (a) The region between the co encentric circles with centre at (0, 2) & radii 1 & 3 units

(b) region outside or on the circle with centre $\frac{1}{2}$ + 2i and radius $\frac{1}{2}$.

(c) semi circle (in the 1st & 4th quadrant) $x^2 + y^2 = 1$ (d) a ray emanating from the point (3+4i) directed away from the origin & having equation $\sqrt{3}x - y + 4 - 3\sqrt{3} = 0$

Q.11 18 **Q.15**
$$x^3 + qx - r = 0$$
 Q.16 $\left[\frac{n(n+1)}{n}\right]^2 - n$

Q.17 - 4 Q.18 (b) one if n is even; $-w^2$ if n is odd

Q.21 (Z + 1) (Z² – 2Z cos 36° + 1) (Z² – 2Z cos 108° + 1) **Q.24** (a) π – 2; (b) 1/2 **Q.25** (A) R; (B) Q; (C) P

EXERCISE-II

Q.2 12 **Q.6** (a) $-\frac{7}{2}$, (b) zero **Q.24** 4 **Q.17** 48(1 - i)

Q.18 - ω or - ω^2 **Q.19** k > $\frac{1}{2} |\alpha - \beta|^2$

Q.20 | f(z) | is maximum when $z = \omega$, where ω is the cube root unity and $|f(z)| = \sqrt{13}$

Q.21 K = $-\frac{4}{9}$ **Q.22** 7A₀ + 7A₇x⁷ + 7A₁₄x¹⁴

Q.23 required set is constituted by the angles without their boundaries, whose sides are the straight lines

 $y = (\sqrt{2} - 1) x \text{ and } y + (\sqrt{2} + 1) x = 0 \text{ containing the } x - axis$ Q.24 198 Q.25 51

EXERCISE-III

Q.1 (a) A **(b)** A **Q.2** $z^2 + z + \frac{\sin^2 n \theta}{\sin^2 \theta} = 0$, where $\theta = \frac{2 \pi}{2n+1}$

Q.3
$$\pm 1 + i\sqrt{3}$$
, $\frac{(\pm\sqrt{3}+i)}{\sqrt{2}}$, $\sqrt{2}i$ Q.4 (a) C, (b) D Q.5 (a) B; (b) B

Q.7 (a) D; (b) Centre =
$$\frac{k^2\beta - \alpha}{k^2 - 1}$$
, Radius = $\frac{1}{(k^2 - 1)}\sqrt{|\alpha - k^2\beta|^2 - (k^2 \cdot |\beta|^2 - |\alpha|^2)(k^2 - 1)}$

Q.8 (a) A, (b) B, (c)
$$z_2 = -\sqrt{3}i$$
; $z_3 = (1 - \sqrt{3}) + i$; $z_4 = (1 + \sqrt{3}) - i$ **Q.9** D
Q.10 (a) D; (b) D
Q.11 (a) D; (b) (i) B; (ii) C; (iii) D **Q.12** (a) D; (b) A