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KEY  CONCEPTS

1. DEFINITION :

Complex numbers are definited as expressions of the form a + ib where a, b ��R & i = �1 .  It is

denoted by  z  i.e.  z = a + ib. ‘a’  is called as real part of  z (Re z) and ‘b’ is called as imaginary part of

z (Im z).

EVERY  COMPLEX  NUMBER  CAN  BE  REGARDED  AS

Purely real Purely imaginary      Imaginary

   if b = 0       if a = 0         if b � 0

Note :

(a) The set R of real numbers is a proper subset of the Complex Numbers. Hence the  Complete Number

system  is  N �  W �  I  �  Q  �  R  �  C.

(b) Zero is both purely real as well as purely imaginary but not imaginary.

(c) i = �1  is called the imaginary unit. Also  i² = � l  ;  i3 = �i  ;   i4 = 1  etc.

(d) a b  = a b  only if atleast one of either a or b is non-negative.

2. CONJUGATE  COMPLEX :

If  z = a + ib  then  its  conjugate  complex  is  obtained  by  changing  the  sign  of  its  imaginary part  &

is denoted by z .  i.e.  z  = a � ib.

Note  that  :

(i) z + z  =  2 Re(z) (ii) z � z  =  2i Im(z) (iii) z z  = a² + b²   which  is  real

(iv) If z  lies  in  the 1st quadrant then z lies in the 4th quadrant and � z  lies in the 2nd  quadrant.

3. ALGEBRAIC  OPERATIONS :

The algebraic operations on complex numbers are similiar to those on real numbers treating i as a

polynomial. Inequalities in complex numbers are not defined. There is no validity if  we say that complex

number is positive or negative.

e.g.   z > 0,  4 + 2i < 2 + 4 i   are  meaningless .

However in real numbers if a2 + b2 = 0 then a = 0 = b but in complex numbers,

z
1
2 + z

2
2 = 0 does not imply z

1
 = z

2
 = 0.

4. EQUALITY IN COMPLEX NUMBER :

Two complex  numbers  z
1
 = a

1 
+ ib

1
  &  z

2
 = a

2 
+ ib

2
  are  equal  if  and  only  if  their  real  & imaginary

parts coincide.

5. REPRESENTATION  OF  A  COMPLEX  NUMBER  IN  VARIOUS  FORMS :

(a) Cartesian Form (Geometric Representation) :

Every complex number  z = x + i y  can be represented by a point on

the cartesian plane  known as  complex plane (Argand diagram) by the

ordered  pair (x, y).

length OP is called modulus of the  complex number denoted  by �z� &

� is called the argument or amplitude .

eg. �z� = x y2 2�   &

� = tan�1 
y

x
 (angle made by OP with positive x�axis)
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NOTE  :

(i) �z� is always non negative . Unlike real numbers �z� = 
z if z

z if z

	
� 

�

�


0

0
  is not correct

(ii) Argument of a complex number is a many valued function . If  �  is the argument of a complex number

then  2 n��+ �  ;  n � I will also be the argument of that complex number. Any two  arguments of a

complex number differ  by 2n�.

(iii) The unique value of �  such that  – � < ��� � is called the principal value of the argument.

(iv) Unless otherwise stated, amp z  implies principal value of  the argument.

(v) By specifying the modulus & argument a complex number is defined completely. For the complex number

0 + 0 i  the argument is not defined and this is the only complex number which is given by its modulus.

(vi) There exists a one-one correspondence between the points of the plane and the members  of the set of

complex numbers.

(b) Trignometric / Polar  Representation :

z = r (cos � + i sin �)   where | z | = r  ;   arg  z  =  �  ;   z  =  r (cos ��� i sin �)

Note: cos � + i sin �  is also written as  CiS �.

Also cos x = 
2

ee ixix ��
  &  sin x = 

2

ee ixix ��
 are known as Euler's identities.

(c) Exponential  Representation :

z = rei�  ; | z | = r   ;   arg z  =  �   ;   z  = re� i�

6. IMPORTANT  PROPERTIES  OF CONJUGATE / MODULI / AMPLITUDE :

If  z ,  z
1 

,  z
2
� C  then   ;

(a) z + z  = 2 Re (z)    ;    z � z  = 2 i Im (z)    ;    )z(  = z     ;    21
zz �   = 1

z + 2
z   ;

21
zz �  =  1

z � 2
z     ;   21

zz  = 1
z . 2

z �
�
�

�
�
�
�

�

2

1

z

z
 = 

2

1

z

z
   ;   z

2
� 0

(b) | z | � 0  ;  | z | �  Re (z)  ;    | z | � Im (z) ;    | z | = | z  | = | – z | ;    z z  = 
2|z|  ;

� z
1
 z

2 
� = � z

1
 | . � z

2
�       ;     

2

1

z

z
 = 

|z|

|z|

2

1
 ,  z

2
� 0 ,   | zn | = | z |n   ;

| z
1
 + z

2
 |2 + | z

1
 – z

2
 |2 = 2  ][ 2

2
2

1
|z||z| �

��z
1
�� �z

2
�� �� ��z

1 
+ z

2
� �� �z

1
��+ �z

2
� [ TRIANGLE  INEQUALITY ]

(c) (i) amp (z
1 
. z

2
) =  amp  z

1
 + amp z

2
 + 2 k�. k � I

(ii) amp 
z

z

1

2

�

�
�

�

�
�  = amp z

1
� amp z

2
 + 2 k����;     k � I

(iii) amp(zn) = n amp(z)  +  2k� .

where proper value of  k  must be chosen  so  that  RHS  lies  in  (����, ��].

(7) VECTORIAL  REPRESENTATION OF A COMPLEX :

Every complex number can be  considered as  if  it is  the  position vector of that point.  If the point P

represents the complex number z then,  
�

OP  = z   &   �
�

OP�  =  �z��
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NOTE  :

(i) If 
�

OP  = z = r ei �  then 
�

OQ = z
1
 = r ei (� + �)  = z . e i�. If  

�
OP  and 

�
OQ  are

of  unequal magnitude then �
��

� ieOPOQ

(ii) If  A, B, C & D  are four  points  representing  the complex  numbers

z
1
, z

2 
, z

3
  &  z

4
  then

AB �� CD   if   

12

34

zz

zz

�

�
  is purely real ;

AB � CD   if  
12

34

zz

zz

�
�

 is purely imaginary ]

(iii) If  z
1
, z

2
, z

3
are the vertices of an equilateral triangle  where z

0
is its circumcentre then

(a)   z
1
2  + z

2
2  + z

3
2 � z

1 
z

2
� z

2 
z

3
� z

3 
z

1
 = 0 (b)   z

1
2  + z 2

2  + z
3
2  = 3 z

0
2

8. DEMOIVRE’S  THEOREM :

Statement : cos n� + i sin n�  is  the  value  or  one  of  the  values  of  (cos ��+ i sin �)n ¥ n � Q.  The

theorem is  very  useful  in  determining  the  roots  of  any  complex  quantity

Note : Continued  product  of  the  roots  of  a  complex  quantity  should  be  determined

using theory  of  equations.

9. CUBE  ROOT  OF  UNITY :

(i) The cube roots of unity are  1 , 
2

3i1��
 , 

2

3i1��
.

(ii) If  w  is  one  of  the  imaginary  cube  roots  of  unity  then  1 + w + w² = 0. In general

1 + wr + w2r = 0  ;   where  r � I  but  is  not  the  multiple  of  3.

(iii) In polar form the cube roots of unity are :

cos 0 + i sin 0 ;  cos
3

2�
 + i sin

3

2�
,   cos

3

4�
 + i sin

3

4�

(iv) The three cube roots of unity when plotted on the argand plane constitute the verties of an equilateral triangle.

(v) The  following  factorisation  should  be  remembered :

(a, b, c � R & � is the cube root of unity)

a3 � b3 = (a � b) (a � �b) (a � �²b) ; x2 + x + 1 = (x � �) (x � �2) ;

a3 + b3 = (a + b) (a + �b) (a + �2b) ;

a3 + b3 + c3 � 3abc = (a + b + c) (a + �b + �²c) (a + �²b + �c)

10. nth  ROOTS  OF  UNITY :

If  1 , �
1 

,  �
2 

,  �
3 

..... �
n � 1

  are  the  n ,  nth  root  of  unity  then :

(i) They  are  in  G.P.  with  common  ratio  ei(2�/n) &

(ii) 1p + �1
p + � 2

p + .... +� n
p
�1   =  0   if  p  is  not  an  integral  multiple  of  n

        =  n   if  p  is  an  integral  multiple  of  n

(iii) (1 � �
1
) (1 � �

2
) ...... (1 � �

n � 1
)  =  n &

(1 + �
1
) (1 + �

2
) ....... (1 + �

n � 1
) = 0   if  n  is  even  and  1 if  n is odd.

(iv) 1 . �
1 

. �
2 

. �
3 

......... �
n � 1

  =  1 or  �1 according as n is odd or even.

11. THE SUM OF THE FOLLOWING SERIES SHOULD BE REMEMBERED :

(i) cos � + cos 2 � + cos 3 � + ..... + cos n � = 
2sin

2nsin

�
�

 cos �
�
�

�
�
� �

2

1n
��

(ii) sin � + sin 2� + sin 3� + ..... + sin n� =  
2sin

2nsin

�
�

sin �
�
�

�
�
� �

2

1n
��

Note : If �� = (2�/n)  then  the  sum  of  the  above  series  vanishes.
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12. STRAIGHT LINES & CIRCLES IN TERMS OF COMPLEX NUMBERS :

(A) If  z
1
 & z

2
 are two complex numbers then the complex number   z = 

nm

mznz
21

�
�

 divides  the  joins  of  z
1

& z
2
  in the ratio m : n.

Note:

(i) If a , b , c  are  three  real  numbers  such  that   az
1 

+ bz
2 

+ cz
3
 = 0    ;

where  a + b + c = 0  and a,b,c are not all simultaneously zero, then the complex numbers  z
1 
, z

2
 & z

3

are collinear.

(ii) If the vertices  A, B, C  of a  represent the complex nos.  z
1
, z

2
, z

3
  respectively, then :

(a) Centroid  of the    ABC = 
3

zzz
321

��
 :

(b) Orthocentre  of the    ABC =

CseccBsecbAseca

zCsecczBsecbzAseca
321

��
��

OR
CtanBtanAtan

CtanzBtanzAtanz
321

��
��

(c) Incentre  of the    ABC = (az
1 

+ bz
2
 + cz

3
) ! (a + b + c) .

(d) Circumcentre  of the    ABC =  :

(Z
1 
sin 2A + Z

2 
sin 2B + Z

3 
sin 2C) ! (sin 2A + sin 2B + sin 2C) .

(B) amp(z) = �  is a ray emanating from the origin inclined at an angle � to the x�axis.

(C) �z � a� = �z � b�  is  the  perpendicular  bisector  of  the  line  joining  a  to  b.

(D) The equation of a line joining z
1
 & z

2
 is given by ;

z = z
1
 + t (z

1 
� z

2
)  where  t  is  a  perameter.

(E) z = z
1
 (1 + it) where t is a real parameter is a line through the point z

1
 & perpendicular to oz

1
.

(F) The equation of a line passing through z
1
 & z

2
can be expressed in the determinant form as

1zz

1zz
1zz

22

11  = 0. This is also the condition for three complex numbers to be collinear..

(G) Complex equation of a straight line through two given points z
1
 & z

2
 can be written as

21212121
zzzzzzzzzz ����� = 0, which on manipulating takes the form as rzz ���� = 0

where r is real and � is a non zero complex constant.

(H) The  equation  of  circle  having  centre  z
0
 &  radius  "  is :

�z � z
0
� =  "   or   z z � z

0 z �
0

z z + 
0

z z
0
� "² = 0   which is of the form

rzzzz �����  = 0 ,  r is real  centre ��� & radius r��� .

Circle will be real if 0r ���� .

(I) The equation of the circle described on the line  segment joining  z
1
 & z

2
 as diameter is :

(i)  arg
1

2

zz

zz

�
�

 =  ± 
2

�
    or   (z � z

1
) ( z � z 2

) + (z � z
2
) ( z � z 1

) = 0

(J) Condition for four given points  z
1 
, z

2 
, z

3
 & z

4
  to  be concyclic is, the number

14

24

23

13

zz

zz
.

zz

zz

�

�

�

�
 is real. Hence the equation of a circle through 3noncollinear points z

1
, z

2
 & z

3
 can be

taken as 
231

132

zzzz

zzzz

��
��

 is real �#�
231

132

zzzz

zzzz

��
��

= 
231

132

zzzz

zzzz

��
��
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13.(a) Reflection  points  for  a  straight  line :

Two given points P & Q are the reflection points for a given straight line if the given line is the right

bisector of the segment PQ. Note that the two points denoted by the complex numbers  z
1
 & z

2
 will be

the reflection points for the straight line  0rzz �����  if and only if ; 0rzz
21

����� , where r is

real and ��is non zero complex constant.

     (b) Inverse  points  w.r.t. a circle :

Two points P & Q are said to be inverse w.r.t. a circle with centre 'O' and radius ",  if  :

(i)   the point O, P, Q are collinear and on the same side of O.     (ii)  OP . OQ = "2.

Note that the two points  z
1
 & z

2
  will be the inverse points  w.r.t. the circle

0rzzzz ������   if and only if  0rzzzz
2121

������ .

14. PTOLEMY’S  THEOREM :

It  states  that  the  product  of  the  lengths  of  the  diagonals  of  a  convex  quadrilateral  inscribed  in

a  circle  is  equal  to  the  sum  of  the  lengths  of  the  two  pairs of  its  opposite sides.

i.e. �z
1 
� z

3
� �z

2 
� z

4
� = �z

1 
� z

2
� �z

3 
� z

4
� + �z

1 
� z

4
� �z

2 
� z

3
�.

15. LOGARITHM  OF  A  COMPLEX  QUANTITY :

(i) Log
e 
(��+ i $) =  

2

1
Log

e 
(�² + $²) + i �

�
�

�
�
�

�
$

�� �1tann2    where  n � I.

(ii) ii  represents  a  set  of  positive  real  numbers  given  by  
�
�
�

�
�
� ����

2
n2

e ,  n � I.

VERY ELEMENTARY EXERCISE
Q.1 Simplify and express the result in the form of   a + bi

(a) 

2

i2

i21
�
�
�

�
�
�

�
�

   (b) �i (9 + 6 i) (2 � i)�1  (c) 

2
3

1i2

ii4
�
�
�

�
�
�
�

�

�
�

  (d) 
i52

i23

i52

i23

�
�

�
�
�

   (e) 
i2

i2

i2

i2
22

�
�

�
�
�

(f)  A square P
1
P

2
P

3
P

4
 is drawn in the complex plane with P

1
 at (1, 0) and P

3
 at (3, 0). Let P

n
 denotes

the point (x
n
, y

n
) n = 1, 2, 3, 4. Find the numerical value of the product of complex numbers

(x
1
 + i y

1
)(x

2
 + i y

2
)(x

3
 + i y

3
)(x

4
 + i y

4
).

Q.2 Given  that   x , y � R, solve : (a)  (x + 2y) + i (2x � 3y) = 5 � 4i (b)  (x + iy) + (7 � 5i) = 9 + 4i

(c)  x² � y² � i (2x + y) = 2i (d)  (2 + 3i) x² � (3 � 2i) y = 2x � 3y + 5i

Q.3 Find  the  square  root  of  :   (a) 9 + 40 i (b) �11 � 60 i (c) 50 i

Q.4 (a) If  f (x) = x4 + 9x3 + 35x2 � x + 4,  find f ( – 5 + 4i)

(b) If  g (x) = x4 � x3 + x2 + 3x � 5,  find    g(2 + 3i)

Q.5 Among the complex numbers z satisfying the condition z i� � �3 3 3 , find the number having the

least positive argument.

Q.6 Solve the following equations over C and express the result in the form a + ib,  a, b � R.

(a)  ix2 � 3x � 2i = 0 (b)  2 (1 + i) x2 � 4 (2 � i) x � 5 � 3 i = 0

Q.7 Locate the points representing the complex number z on the Argand plane:

(a) �z + 1 � 2i� = 7  ; (b) z z� � �1 1
2 2

= 4  ;  (c)
z

z

�
�

3

3
 = 3 ; (d) �z � 3� = �z � 6�

Q.8 If  a & b are real numbers between 0 & 1 such that the points  z
1
 = a + i, z

2
 = 1 + bi & z

3
 = 0  form an

equilateral triangle, then  find the values of  'a' and 'b'.

Q.9 Let  z
1
 = 1 + i  and  z

2
 = – 1 – i. Find z

3
� C such that triangle z

1
, z

2
, z

3
 is equilaterial.

Q.10 For what real values of x & y are the numbers ��3 + ix2 y & x2 + y + 4i conjugate complex?
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Q.11 Find the  modulus, argument  and  the  principal  argument  of  the  complex  numbers.

(i) 6 (cos 310° � i sin 310°)       (ii) �2 (cos 30° + i sin 30°)         (iii) 
2

4 1 2

�
� �

i

i i( )

Q.12 If  (x + iy)1/3 = a + bi ;  prove that  4 (a2 � b2) = 
x

a

y

b
� .

Q.13 Let z be a complex number such that z � c\R and 2

2

zz1

zz1

��
��

���R, then prove that | z | =1.

Q.14 Prove the identity, 2
2

2
1

2
21

2
21

|z|1|z|1|zz||zz1| ������

Q.15 Prove the identity, 2
2

2
1

2
21

2
21

|z|1|z|1|zz||zz1| ������

Q.16 For any two complex numbers, prove that z z z z1 2

2

1 2

2� � �  = 2 z z1

2

2

2� . Also give the

geometrical interpretation of this identity.

Q.17 (a) Find  all  non�zero complex  numbers  Z  satisfying  Z  = i Z².

(b) If the complex numbers z
1
, z

2
, .................z

n
 lie on the unit circle |z| = 1  then show that

|z
1
 + z

2
 + ..............+z

n
| = |z

1
–1+ z

2
–1+................+z

n
–1|  .

Q.18 Find the Cartesian equation of the locus of 'z' in the complex plane satisfying,   | z – 4 | + ��z + 4 | = 16.

Q.19 Let z = (0, 1) � C. Express %
�

n

0k

kz  in terms of the positive integer n.

Consider a complex number w = 
1z2

iz

�
�

 where z = x + iy, where x, y � R.

Q.20 If the complex number w is purely imaginary then locus of z is

(A) a straight line

(B) a circle with centre �
�
�

�
�
��

2

1
,

4

1
 and radius 

4

5
.

(C) a circle with centre �
�
�

�
�
� �

2

1
,

4

1
 and passing through origin..

(D) neither a circle nor a straight line.

Q.21 If the complex number w is purely real then locus of z is

(A) a straight line passing through origin

(B) a straight line with gradient 3 and y intercept (–1)

(C) a straight line with gradient 2 and y intercept 1.

(D) none

Q.22 If | w | = 1 then the locus of P is

(A) a point circle (B) an imaginary circle

(C) a real circle (D) not a circle.



ETOOS Academy Pvt. Ltd. : F-106, Road No. 2, Indraprastha Industrial Area, End of Evergreen Motors

(Mahindra Showroom), BSNL Office Lane, Jhalawar Road, Kota, Rajasthan (324005)
8

EXERCISE–I

Q.1 Simplify and express the result in the form of  a + bi  :

(a) �i (9 + 6 i) (2 � i)�1 (b) 

2
3

1i2

ii4
�
�
�

�
�
�
�

�

�
�

(c) 
i52

i23

i52

i23

�
�

�
�
�

(d) 
i2

i2

i2

i2
22

�
�

�
�
�

(e) ii ��

Q.2 Find the  modulus , argument  and  the  principal  argument  of  the  complex  numbers.

(i) z = 1 + cos �
�
�

�
�
� �

9

10
 + i sin �

�
�

�
�
� �

9

10
(ii)  (tan1 – i)2

(iii)  z = 
i125i125

i125i125

���
���

(iv) 

5

2
sin

5

2
cos1i

1i

�
��

�
�

�
�
� �
�

�

Q.3 Given  that   x, y � R,  solve :

(a)  (x + 2y) + i (2x � 3y) = 5 � 4i (b)  
1i8

i65

i23

y

i21

x

�
�

�
�

�
�

(c)  x² � y² � i (2x + y) = 2i (d)  (2 + 3i) x² � (3 � 2i) y = 2x � 3y + 5i

(e)  4x² + 3xy + (2xy � 3x²)i = 4y² � (x2/2) + (3xy � 2y²)i

Q.4(a) Let Z is complex satisfying the equation,   z2 – (3 + i)z + m + 2i = 0,  where m �R.

Suppose the equation has a real root, then find the value of m.

      (b) a, b, c are real numbers in the polynomial,   P(Z) = 2Z4 + aZ3 + bZ2 + cZ + 3

If two roots of the equation P(Z) = 0 are 2 and i, then find the value of 'a'.

Q.5(a) Find the real values of  x & y  for which  z
1
 = 9y2 � 4 � 10 i x  and

z
2
 = 8y2 � 20 i  are conjugate complex of each other.

     (b) Find  the  value  of  x4 � x3 + x2 + 3x � 5   if   x = 2 + 3i

Q.6 Solve  the  following  for  z :

z2 – (3 – 2 i)z = (5i – 5)

Q.7(a) If  i Z3 + Z2 � Z + i = 0, then show that | Z | = 1.

      (b) Let  z
1 
 and z

2
  be two complex numbers such that  

21

21

zz2

z2z

�
�

 = 1  and  | z
2 
| � 1, find | z

1 
|.

      (c) Let z
1 
= 10 + 6i  & z

2 
= 4 + 6i. If  z  is any complex number such that the argument of, 

2

1

zz

zz

�
�

 is 
4

�
,  then

prove that  �z � 7 � 9i�= 3 2 .

Q.8 Show that  the product,

&
&

'

(




�

�
�
�
�

�
�
� ��

&
&

'

(




�

�
�
�
�

�
�
� ��

&
&
'

(



�

�
�
�
�

�
�
� ��&

'

(

�

�
�
�
�

�
�
� ��

n2 222

2

i1
1......

2

i1
1

2

i1
1

2

i1
1  is equal to 1

1

22
�

�

�
�

�

�
�

n
 (1+ i)   where  n � 2 .

Q.9 Let z
1
, z

2
 be complex numbers with | z

1
 | = | z

2
 | = 1, prove that  | z

1
 + 1 | + | z

2
 + 1 | + | z

1
z

2
 + 1 | � 2.
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Q.10 Interpret  the  following  locii  in z � C.

(a) 1 < �z � 2i� < 3 (b) Re 4
2zi

i2z
���
�

�
��
�

�
�
�

   (z � 2i)

(c) Arg (z + i) � Arg (z � i) = �/2 (d) Arg (z � a) = �/3 where  a = 3 + 4i.

Q.11 Let  A = {a � R | the equation (1 + 2i)x3 – 2(3 + i)x2 + (5 – 4i)x + 2a2 = 0}

has at least one real root. Find the value of  %
�Aa

2a .

Q.12 P is a point on the Aragand diagram. On the circle with OP as diameter two points Q & R are taken such

that ) POQ = ) QOR = �.  If  ‘O’ is the origin & P, Q & R are  represented by the complex numbers

Z
1 
, Z

2 
& Z

3
  respectively, show that : Z

2
2 . cos 2 � = Z

1 
. Z

3
 cos²�.

Q.13 Let z
1
, z

2
, z

3
 are three pair wise distinct complex numbers and t

1
, t

2
, t

3
 are non-negative real numbers

such that t
1
 + t

2
 + t

3
 = 1. Prove that the complex number z = t

1
z

1
 + t

2
z

2
 + t

3
z

3
 lies inside a triangle with

vertices z
1
, z

2
, z

3
 or on its boundry.

Q.14 Let A * z
1
 ; B * z

2
; C * z

3
 are three complex numbers denoting the vertices of an acute angled triangle.

If the origin ‘O’ is the orthocentre of the triangle, then prove that

z
1 z

2
 + z

1
z

2
 = z

2 z
3
 + z

2
z

3
 = z

3 z
1
 + z

3
z

1

hence show that the   ABC is a right angled triangle + z
1 z

2
 + z

1
z

2
 = z

2 z
3
 + z

2
z

3
 = z

3 z
1
 + z

3
z

1
 = 0

Q.15 Let  � + i$;  �,�$�� R, be a root of the equation  x3 + qx + r = 0;  q, r � R. Find a real cubic equation,

independent of � & $, whose one root is 2�.

Q.16 Find the sum of the series  1(2 – �)(2 – �2) + 2(3 – �) (3 – �2) ....... (n – 1)(n – �)(n – �2) where � is

one of the imaginary cube root of unity.

Q.17 If A, B and C are the angles of a triangle

D = 
iC2iAiB

iAiB2iC

iBiCiA2

eee

eee

eee

�

�

�

   where  i  =  �1

then find the value of D.

Q.18 If  w  is  an  imaginary  cube  root  of  unity  then  prove  that  :

(a) (1 � w + w2) (1 � w2 + w4) (1 � w4 + w8) ..... to  2n  factors = 22n .

(b) If  w  is  a  complex  cube  root  of  unity, find the value of

(1 + w) (1 + w2) (1 + w4) (1 + w8) .....  to  n  factors  .

Q.19 Prove that  

n

cosisin1

cosisin1
�
�
�

�
�
�

����
����

 = cos �
�
�

�
�
� ��
�

n
2

n
 + i sin �

�
�

�
�
� ��
�

n
2

n
. Hence deduce that

5

5
cosi

5
sin1 �

�
�

�
�
� �

�
�

�  + i 
5

5
cosi

5
sin1 �

�
�

�
�
� �

�
�

�  = 0

Q.20 If  cos (� � $) + cos ($ � -) + cos (- � �) = � 3/2 then prove that:

(a)  . cos 2� = 0 = . sin 2� (b) �. sin (��+ $) = 0 = . cos (��+ $)

(c) �. sin2 � = . cos2 � = 3/2 (d) �. sin 3� = 3 sin (��+ $�+ -)
(e) �. cos 3� = 3 cos (��+ $�+ -)
(f)  cos3 (�+�) + cos3 (�+$) + cos3 (�+ -) = 3 cos (�+�) . cos (�+$) . cos (�+ -) where ���R.
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Q.21 Resolve Z5 + 1 into linear & quadratic factors with real coefficients. Deduce that : 4·sin
�

10
·cos

�
5

= 1.

Q.22 If  x = 1+ i 3   ;   y = 1 � i 3   &  z = 2 , then  prove that  xp + yp = zp  for  every  prime  p > 3.

Q.23 Dividing  f(z)  by  z � i,  we  get  the  remainder  i  and  dividing  it  by  z + i, we  get  the remainder

1 + i.  Find  the  remainder  upon  the  division  of  f(z)  by  z² + 1.

Q.24(a) Let  z = x + iy be a complex number, where x and y are real numbers. Let A and B be the sets defined by

A = {z |  | z | � 2}  and  B = {z | (1 – i)z + (1 + i) z � 4}. Find the area of the region A / B.

      (b) For all real numbers x, let the mapping f (x) = 
i�x

1
, where i = 1� . If there exist real number

a, b, c and d  for which f (a), f (b), f (c) and f (d) form a square on the complex plane. Find the area of

the square.

Q.25 Column-I Column-II

(A) Let w be a non real cube root of unity then the number of distinct elements (P) 4

in the set   Nn,m|)w.......ww1( mn2 ����� is

(B) Let  1, w, w2 be the cube root of unity. The least possible (Q) 5

degree of a polynomial with real coefficients having roots

2w, (2 + 3w), (2 + 3w2), (2 – w – w2),  is

(C) � = 6 + 4i  and  $ = (2 + 4i) are two complex numbers on the complex plane. (R) 6

A complex number z satisfying amp
6z

z �
���
�

�
��
�

�
$�
��

 moves on the major (S) 8

segment of a circle whose radius is

EXERCISE–II

Q.1 If 

p q r

q r p

r p q

� 0 ;  where  p , q , r  are the moduli of non�zero complex numbers  u, v, w respectively,,

prove that,  arg
w

v
 = arg

w u

v u

�
�

�
�
�

�
�
�

2

.

Q.2 Let Z = 18 + 26i  where Z
0
 = x

0
 + iy

0
  (x

0
, y

0
� R) is the cube root of Z having least positive argument.

Find the value of  x
0
y

0
(x

0
 + y

0
).

Q.3 Show that the locus formed by z in the equation z3 + iz = 1 never crosses the co-ordinate axes in the

Argand’s plane. Further show that   |z| =  
�

�
Im( )

Re( ) Im( )

z

z z2 1

Q.4 If � is the fifth root of 2 and x = � + �2, prove that   x5 = 10x2 + 10x + 6.

Q.5 Prove  that , with  regard  to  the quadratic  equation  z2 + (p + ip0) z + q + iq0 = 0

 where p , p0, q , q0  are  all  real.

(i) if  the equation has one real root then q 02 � pp 0q 0�+ qp 02 = 0 .

(ii) if  the equation has two equal roots then p2 � p02 = 4q & pp 0�= 2q 0.
State whether these equal roots are real or complex.

Q.6 If the equation (z + 1)7 + z7 = 0 has roots z
1
, z

2
, .... z

7
, find the value of

(a) %
�

7

1r
r
)ZRe( and (b) %

�

7

1r
r
)ZIm(
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Q.7 Find the roots of the equation Zn = (Z + 1)n and show that the points which represent them are collinear

on the complex plane. Hence show that these roots are also the roots of the equation

2
2

Z
n

m
sin2 �

�
�

�
�
� �

 + Z
n

m
sin2

2

�
�
�

�
�
� �

 + 1 = 0.

Q.8 If  the expression  z5 – 32 can be factorised into linear and quadratic factors over real coefficients as

(z5 – 32) = (z – 2)(z2 – pz + 4)(z2 – qz + 4)  then find the value of (p2 + 2p).

Q.9 Let  z
1
 & z

2
  be any two arbitrary complex numbers then prove that :

�z
1 

+ z
2
� ��

|z|

z

|z|

z
|z||z|

2

1

2

2

1

1
21

�� .

Q.10 If Z
r
, r = 1, 2, 3, ......... 2m,  m 1 N are the roots of the equation

Z2m + Z2m-1 + Z2m-2 + ............. + Z + 1 = 0 then prove that % ��r

m

rZ1

2 1

1
 = �m

Q.11(i) Let Cr's denotes the combinatorial coefficients in the expansion of (1 + x)n,  n � N. If the integers

a
n
 = C

0
 + C

3
 + C

6
 + C

9
 + ........

b
n
 = C

1
 + C

4
 + C

7
 + C

10
 + ........

and c
n
 = C

2
 + C

5
 + C

8
 + C

11
 + ........, then

prove that (a)
3
n

3
n

3
n

cba ��  – 3a
n
b

n
c

n
 = 2n, (b) (a

n
 – b

n
)2 + (b

n
 – c

n
)2 + (c

n
 – a

n
)2 = 2.

     (ii) Prove the identity: (C
0
 – C

2
 + C

4
 – C

6
 + .....)2 + (C

1
 – C

3
 + C

5
 – C

7
 + .......)2 = 2n

Q.12 Let  z
1 
, z

2 
, z

3 
, z

4
  be  the  vertices  A , B , C , D  respectively  of  a  square  on  the  Argand diagram

taken  in  anticlockwise  direction  then  prove  that  :

(i) 2z
2
 = (1 + i) z

1
 + (1� i)z

3
& (ii)  2z

4
 = (1� i) z

1
 + (1 + i) z

3

Q.13 Show that all the roots of the equation  1

1

1

1

�
�

�
�
�

�
�
� �

�
�

i x

i x

i a

i a

n

  a � R  are real and distinct.

Q.14 Prove  that:

(a)  cos x + nC
1
 cos 2x + nC

2
 cos 3x + ..... + nC

n
 cos (n + 1) x = 2n . cosn x

2
 . cos 

n ��
��

�
��

2

2
x

(b)  sin x + nC
1
 sin 2x + nC

2
 sin 3x + ..... + nC

n
 sin (n + 1) x = 2n . cosn x

2
. sin 

n ��
��

�
��

2

2
x

(c)  cos 
2

2 1

�
n �

�
�
�

�
�
�  + cos 

4

2 1

�
n �

�
�
�

�
�
�  + cos 

6

2 1

�
n �

�
�
�

�
�
�  + ..... + cos 

2

2 1

n

n

�
�

�
�
�

�
�
�  = �

1

2
 When  n � N.

Q.15 Show that all roots of the equation    a
0
zn +  a

1
zn – 1 + ...... + a

n – 1
z + a

n
 = n,

where | a
i
 | � 1, i = 0, 1, 2, .... , n lie outside the circle with centre at the origin and radius 

n

1n �
.

Q.16 The points A, B, C depict the complex numbers z
1 
, z

2 
, z

3
 respectively on a complex plane & the angle

B & C  of  the triangle ABC are each equal to )(
2

1
��� . Show that

(z
2 
� z

3
)² = 4 (z

3 
� z

1
) (z

1 
� z

2
) sin2 �

2
.
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Q.17 Evaluate: ( ) sin cos3 2
2

11

2

111

10

1

32

p
q

i
q

q

p

p

� ��
��

�
��

�

�
��

�

�
��

��
%% � �

.

Q.18 Let a, b, c be distinct complex numbers such that 
b1

a

�
 = 

c1

b

�
 = 

a1

c

�
 = k. Find the value of k.

Q.19 Let  �,  $ be fixed complex numbers and z is a variable complex number such that,

z � � 2
 + z � $ 2

 = k.

Find out the limits for 'k' such that the locus of  z  is a circle. Find also the centre and radius of the circle.

Q.20 C is the complex number. f : C � R is defined by f (z) = | z3 – z + 2|. Find the maximum value of  f (z)

if  | z | = 1.

Q.21 Let  f (x) = )xi2(coslog
x3cos

if   x � 0 and f (0) = K   (where   i = 1�  ) is continuous at x = 0 then find

the value of K.

Q.22 If  � =  and  f(x) = AA
0
 + 

k �
%

1

20

A
k 
xk, then find the value of,  f (x) + f (�x) + ...... + f(�6x)  independent

of ��.

Q.23 Find the set of points on the argand plane for which the real part of the complex number (1 + i)z2

is positive where z = x + iy , x, y � R and i = �1 .

Q.24 If a and b are positive integer such that N = (a + ib)3 – 107i is a positive integer. Find N.

Q.25 If the biquadratic   x4 + ax3 + bx2 + cx + d = 0  (a, b, c, d � R) has 4 non real roots, two with sum

3 + 4i and the other two with product  13 + i. Find the value of 'b'.

EXERCISE–III

Q.1(a) If  z
1 

, z
2 

, z
3

are complex numbers such that  �z
1
� = �z

2
� = �z

3
� =

321
z

1

z

1

z

1
��  = 1, then

�z
1
 + z

2
 + z

3
�  is :

(A)  equal to 1 (B)  less than 1    (C)  greater than 3           (D)  equal to 3

      (b) If  arg (z) < 0 ,  then  arg (� z) � arg (z) =

(A)  � (B)  ��� (C)  �
�
2

(D)  
�
2

[ JEE 2000 (Screening) 1 + 1 out of 35 ]

Q.2 Given ,  z = cos 
2

2 1

�
n �  + i sin 

2

2 1

�
n �  ,   'n'  a positive integer, find the equation whose roots are,

� = z + z3 + ...... + z2n � 1       &      $ = z2 + z4 + ...... + z2n .

[ REE 2000 (Mains)  3 out of 100 ]

Q.3 Find all those roots of the equation z12 – 56z6 – 512 = 0 whose imaginary part is positive.

[ REE 2000, 3 out of 100 ]
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Q.4(a)  The complex numbers z
1
, z

2
 and z

3
 satisfying 

z z

z z

i1 3

2 3

1 3

2

�
�

�
�

 are the vertices of a triangle which is

(A) of area zero (B) right-angled isosceles

(C) equilateral (D) obtuse – angled isosceles

     (b) Let z
1
 and z

2
 be nth roots of unity which subtend a right angle at the origin. Then n must be of the form

(A) 4k + 1 (B) 4k + 2 (C) 4k + 3 (D) 4k

[ JEE 2001 (Scr) 1 + 1 out of 35 ]

Q.5(a)  Let � � � �
1

2

3

2
i . Then the value of the determinant 

42

22

1

11

111

��
����  is

(A) 3� (B) 3� (� – 1) (C) 3�2 (D) 3�(1 – �)

     (b) For all complex numbers z
1
, z

2
 satisfying |z

1
| = 12 and |z

2
 – 3 – 4i| = 5, the minimum value of

|z
1
 – z

2
| is

(A) 0 (B) 2 (C) 7 (D) 17 [JEE 2002 (Scr) 3+3]

     (c) Let a complex number � , ��� 1, be a root of the equation

zp+q – zp – zq + 1 = 0 where p, q are distinct primes.

Show that either 1 + � + �2 + ...... + �p–1 = 0  or  1 + � + �2 + ...... + �q–1 = 0 , but not both together.

[JEE  2002, (5) ]

Q.6(a)  If  z
1
 and  z

2
 are two complex numbers such that   | z

1
 | < 1 < | z

2
 |  then prove that 1

zz

zz1

21

21 

�

�
.

      (b) Prove that there exists no complex number z such that  | z |  < 
3

1
and %

�

n

1r

r
r za = 1 where | a

r
 | < 2.

[JEE-03, 2 + 2 out of 60]

Q.7(a) � is an imaginary cube root of unity. If (1 + �2)m = (1 + �4)m , then least positive integral value of m is

(A) 6 (B) 5 (C) 4 (D) 3

[JEE 2004 (Scr)]

      (b) Find centre and radius of the circle  determined by all complex numbers z = x + i y satisfying k
)z(

)z(
�

$�
��

,

where 2121 i,i $�$�$�����  are fixed complex and k � 1. [JEE 2004, 2 out of 60 ]

Q.8(a) The locus of z which lies in shaded region is best represented by

(A) z : |z  + 1| > 2, |arg(z + 1)| < �/4

(B) z : |z  - 1| > 2, |arg(z – 1)| < �/4

(C) z : |z  + 1| < 2, |arg(z + 1)| < �/2

(D) z : |z  - 1| < 2, |arg(z - 1)| < �/2

      (b) If a, b, c are integers not all equal and w is a cube root of unity (w � 1), then the minimum value of

|a + bw + cw2| is

(A) 0 (B) 1 (C) 
2

3
(D) 

2

1

[JEE 2005 (Scr), 3 + 3]

  (c) If one of the vertices of the square circumscribing the circle |z – 1| = 2  is i32 � . Find the other

vertices of square. [JEE 2005 (Mains), 4]
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Q.9 If w = �  + i$  where $ � 0 and z � 1, satisfies the condition that 
z1

zww

�
�

 is purely real, then the set of

values of z is

(A) {z : | z | = 1} (B) {z : z = z ) (C) {z : z � 1} (D) {z : | z | = 1, z � 1}

[JEE 2006, 3]

Q.10(a) A man walks a distance of 3 units from the origin towards the North-East (N 45° E) direction. From

there, he walks a distance of 4 units towards the North-West (N 45° W) direction to reach a point P.

Then the position of P in the Argand plane is

(A) 4
e3
�i  + 4i (B) 4e)43( �� ii (C) 4e)34( �� ii (D) 4e)43( �� ii

(b) If  | z | = 1 and z � ± 1, then all the values of 2
z1

z

�
 lie on

(A) a line not passing through the origin (B) | z |  = 2

(C) the x-axis (D) the y-axis [JEE 2007, 3+3]

Q.11(a)A particle P starts from the point z
0
 = 1 + 2i, where i = 1� . It moves first horizontally away from origin

by 5 units and then vertically away from origin by 3 units to reach a point z
1
. From z

1
 the particle moves

2  units in the direction of the vector ĵî �  and then it moves through an angle 
2

�
 in anticlockwise

direction on a circle with centre at origin, to reach a point z
2
. The point z

2
 is given by

(A) 6 + 7i (B) – 7 + 6i (C) 7 + 6i (D) – 6 + 7i

(b) Comprehension (3 questions together)

Let A, B, C be three sets of complex numbers as defined below

A = 1zIm:z �

B = 3|2z|:z ��� i

C = 2)z)1Re((:z �� i

(i) The number of elements in the set A / B / C is

(A) 0 (B) 1 (C) 2 (D) 2

(ii) Let  z  be any point in A / B / C.  Then, | z + 1 – i |2 + | z – 5 – i |2 lies between

(A) 25 and 29 (B) 30 and 34 (C) 35 and 39 (D) 40 and 44

(iii) Let z  be any point in A / B / C and let w be any point satisfying | w – 2 – i | < 3.

Then, | z | – | w | + 3 lies between

(A) –6 and 3 (B) –3 and 6 (C) –6 and 6 (D) –3 and 9

[JEE 2008, 3 + 4 + 4 + 4]

Q.12(a) Let z = cos � + i sin �. Then the value of   %
�

�
15

1m

1m2 )zIm(  at � = 2° is

(A) 32sin

1
(B) 32sin3

1
(C) 32sin2

1
(D) 32sin4

1

   (b) Let z = x + iy be a complex number where x and y are integers. Then the area of the rectangle whose

vertices are the roots of the equation  350zzzz 33 ��  is

(A) 48 (B) 32 (C) 40 (D) 80

[JEE 2009, 3 + 3]
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VERY ELEMENTARY EXERCISE

Q.1 (a)
25

24

25

7
�  i;  (b)

5

12

5

21
� i;  (c)  3 + 4i;  (d) 

29

8
�  + 0i;  (e)

5

22
i;  (f)  15

Q.2 (a) x =1, y = 2;  (b) (2, 9);  (c) (�2 , 2) or � ��
��

�
��

2

3

2

3
, ; (d) (1 ,1) 0

5

2
,

�
��

�
��

Q.3 (a)  ± (5 + 4i) ;   (b)  ± (5 � 6i)   (c)  ± 5(1 + i) Q.4 (a) �160  ; (b) � (77 +108 i)

Q.5 – 
3

2

3 3

2
� i Q.6 (a) � i , � 2i   (b)

3 5

2

� i
 or  �

1

2

� i

Q.7 (a) on a circle of radius 7  with centre (�1, 2) ;  (b) on a unit circle with centre at origin

(c) on a circle with centre (�15/4, 0) & radius 9/4  ; (d) a straight line

Q.8 a = b = 2 � 3 ; Q.9 z
3
 = )1(3'zand)1(3

3
ii ����

Q.10 x = 1,  y = � 4 or  x = � 1,  y = � 4

Q.11 (i)  Modulus = 6 ,  Arg = 2 k� +
5

18

�
 (K � I) ,  Principal  Arg = 

5

18

�
(K � I)

(ii)  Modulus = 2 ,  Arg = 2 k� +
7

6

�
 ,  Principal  Arg = �

5

6

�

(iii)  Modulus = 
5

6
  ,  Arg = 2 k��� tan�1 2 (K � I) , Principal  Arg = � tan�12

Q.17 (a)
3

2 2
�

i
, � �

3

2 2

i
, i Q.18 1

48

y

64

x 22

��

Q.19
4
5

4
6

7

��
��
��

�

3k4nfor)0,0(
2k4nfor)1,0(
1k4nfor)1,1(

k4nfor)0,1(

Q.20 B Q.21 C Q.22 C

EXERCISE–I

Q.1 (a) 
21

5

12

5
�  i    (b)   3 + 4 i   (c) �

8

29
 + 0 i    (d)

22

5
i   (e)  + i02 �   or   i208

Q.2  (i)  Principal  Arg z = �
4

9

�
 ;   �z� = 2 cos

4

9

�
    ;   Arg z = 2 k ���

4

9

�
   k � I

       (ii) Modulus = sec21 ,  Arg = 2 n ����(2 – � ) ,    Principal  Arg = (2 – � )

       (iii)  Principal value of  Agr z = �
�
2

  & �z� = 
3

2
  ;  Principal value of Arg z = 

�
2

 & �z� = 
2

3

(iv) Modulus  = 
5

eccos
2

1 �
 ,  Arg z = 

20

11
n2

�
��  ,    Principal  Arg = 

20

11�

Q.3(a)  x = 1, y = 2;  (b) x = 1 & y = 2 ; (c)  (�2 , 2) or � ��
��

�
��

2

3

2

3
, ; (d) (1 ,1) 0

5

2
,

�
��

�
��

; (e) x =K, y =
3

2

K
K�R

Q.4 (a) 2, (b) – 11/2 Q.5 (a)  [(� 2, 2) ;  (� 2, � 2)]      (b) � (77 +108 i)

Q.6 z = (2 + i)   or   (1 – 3i)

Q.7 (b) 2
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Q.10 (a)  The region between the co encentric circles with centre at (0 , 2) & radii 1 & 3  units

(b)  region outside or on the circle with centre 
2

1
 + 2i and radius 

2

1
.

(c)  semi  circle  (in the 1st & 4th quadrant) x² + y² = 1   (d)  a ray emanating from the point

     (3 + 4i)  directed away from the origin &  having equation 3 4 3 3 0x y� � � �

Q.11 18 Q.15 x3 + q x � r = 0 Q.16 n
n

)1n(n
2

�&'
(

�
� �

Q.17 – 4 Q.18 (b)  one if n is even ;   � w²  if n is odd

Q.21 (Z + 1) (Z² � 2Z cos 36° + 1) (Z² � 2Z cos 108° + 1) Q.23
i z

i
2

1

2
� �

Q.24 (a) � – 2 ; (b) 1/2 Q.25 (A) R;  (B) Q; (C) P

EXERCISE–II

Q.2 12 Q.6 (a) – 
2

7
,  (b) zero Q.24 4 Q.17 48(1 - i)

Q.18 – � or – �2 Q.19 k > 
1

2

2� $�

Q.20 | f (z) | is maximum when z = �, where � is the cube root unity and | f (z) | = 13

Q.21 K = –  
9

4
Q.22 7A

0
 + 7A

7 
x7 + 7A

14 
x14

Q.23 required set is constituted by the angles without their boundaries, whose sides are the straight lines

y = )12( �  x and y + )12( �  x = 0 containing the x � axis

Q.24 198 Q.25 51

EXERCISE–III

Q.1 (a)  A   (b)  A Q.2  z2 + z + 
sin

sin

2

2

n �
� = 0,  where   � = 

2

2 1

�
n �

Q.3 +1 + i 3 , 
8 �3

2

i
, 2 i Q.4 (a) C, (b) D Q.5 (a) B ;  (b)  B

Q.7 (a)  D;  (b) Centre *
1k

k
2

2

�
��$

,  Radius = 1k.||||.k|k|
)1k(

1 222222

2
���$�$��

�

Q.8 (a)   A,   (b)  B,   (c)  z
2
 = – 3 i ;  z

3
 = i31 ��  ;  z

4
 = i31 �� Q.9 D

Q.10 (a) D ; (b) D

Q.11 (a) D ; (b) (i) B;   (ii)  C;  (iii)  D Q.12 (a)  D;  (b)  A


