

For More Study Material & Test Papers Visit : www.mathsiit.com

DIFFERENTIABILITY OF FUNCTION & METHOD OF DIFFERENTIATION

MANOJ CHAUHAN SIR(IIT-DELHI) EX. SR. FACULTY (BANSAL CLASSES)

KEY CONCEPTS (DIFFERENTIABILITY)

THINGS TO REMEMBER :

1. Right hand & Left hand Derivatives ;

By definition:
$$f'(a) = \underset{h \to 0}{\text{Limit}} \frac{f(a+h)-f(a)}{h}$$
 if it exist

(i) The right hand derivative of f' at x = adenoted by f'(a⁺) is defined by :

$$f'(a^+) = \underset{h \to 0^+}{\text{Limit}} \frac{f(a+h) - f(a)}{h}$$

provided the limit exists & is finite.

(ii) The left hand derivative : of f at x = adenoted by $f'(a^+)$ is defined by :

$$f'(a^{-}) = \underset{h \to 0^{+}}{\text{Limit}} \frac{f(a-h)-f(a)}{-h},$$

Provided the limit exists & is finite.

We also write $f'(a^+) = f'_{+}(a) \& f'(a^-) = f'(a)$.

* This geomtrically means that a unique tangent with finite slope can be drawn at x = a as shown in the figure.

(iii) Derivability & Continuity :

- (a) If f'(a) exists then f(x) is derivable at $x = a \Rightarrow f(x)$ is continuous at x = a.
- (b) If a function f is derivable at x then f is continuous at x.

For :
$$f'(x) = \underset{h \to 0}{\text{Limit}} \frac{f(x+h)-f(x)}{h}$$
 exists.
Also $f(x+h)-f(x) = \frac{f(x+h)-f(x)}{h}$. $h[h \neq 0]$

Therefore :

$$\underset{h \to 0}{\text{Limit}} [f(x+h) - f(x)] = \underset{h \to 0}{\text{Limit}} \frac{f(x+h) - f(x)}{h} h = f'(x) . 0 = 0$$

Therefore $\underset{h\to 0}{\text{Limit}} [f(x+h)-f(x)]=0 \Rightarrow \underset{h\to 0}{\text{Limit}} f(x+h)=f(x) \Rightarrow f \text{ is continuous at } x.$

Note : If f(x) is derivable for every point of its domain of definition, then it is continuous in that domain. The Converse of the above result is not true :

"IF f IS CONTINUOUS AT x, THEN f IS DERIVABLE AT x" IS NOT TRUE.

e.g. the functions $f(x) = |x| \& g(x) = x \sin \frac{1}{x}$; $x \neq 0 \& g(0) = 0$ are continuous at x = 0 but not derivable at x = 0.

NOTE CAREFULLY :

(a) Let $f'_{+}(a) = p \& f'(a) = q$ where p & q are finite then :

- (i) $p = q \Rightarrow f i \bar{s} derivable at x = a \Rightarrow f is continuous at x = a.$
- (ii) $p \neq q \Rightarrow f \text{ is not derivable at } x = a.$

It is very important to note that f may be still continuous at x = a.

In short, for a function f:

- Differentiability \Rightarrow Continuity ; Continuity \Rightarrow derivability;
- Non derivibality \Rightarrow discontinuous ; But discontinuity \Rightarrow Non derivability
- (b) If a function f is not differentiable but is continuous at x = a it geometrically implies a sharp corner at x = a.

3. DERIVABILITY OVER AN INTERVAL :

f(x) is said to be derivable over an interval if it is derivable at each & every point of the interval f(x) is said to be derivable over the closed interval [a, b] if :

- (i) for the points a and b, f'(a+) & f'(b-) exist &
- (ii) for any point c such that a < c < b, f'(c+) & f'(c-) exist & are equal.

Note :

- 1. If f(x) & g(x) are derivable at x = a then the functions f(x) + g(x), f(x) g(x), f(x).g(x) will also be derivable at x = a & if $g(a) \neq 0$ then the function f(x)/g(x) will also be derivable at x = a.
- 2. If f(x) is differentiable at x = a & g(x) is not differentiable at x = a, then the product function F(x) = f(x). g(x) can still be differentiable at x = a e.g. f(x) = x & g(x) = |x|.
- 3. If f(x) & g(x) both are not differentiable at x = a then the product function; $F(x) = f(x) \cdot g(x)$ can still be differentiable at x = a e.g. f(x) = |x| & g(x) = |x|.
- 4. If f(x) & g(x) both are non-deri. at x = a then the sum function F(x) = f(x) + g(x) may be a differentiable function. e.g. f(x) = |x| & g(x) = -|x|
- 5. If f(x) is derivable at $x = a \Rightarrow f'(x)$ is continuous at x = a.

e.g.
$$f(x) = \begin{bmatrix} x^2 \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{bmatrix}$$

6. A surprising result : Suppose that the function f(x) and g(x) defined in the interval (x_1, x_2) containing the point x_0 , and if f is differentiable at $x = x_0$ with $f(x_0) = 0$ together with g is continuous as $x = x_0$ then the function $F(x) = f(x) \cdot g(x)$ is differentiable at $x = x_0$ e.g. $F(x) = sinx \cdot x^{2/3}$ is differentiable at x = 0.

EXERCISE-I

- Q.1 Discuss the continuity & differentiability of the function $f(x) = \sin x + \sin |x|$, $x \in R$. Draw a rough sketch of the graph of f(x).
- Q.2 Examine the continuity and differentiability of $f(x) = |x| + |x-1| + |x-2| x \in R$. Also draw the graph of f(x).
- Q.3 Given a differentiable function f(x) defined for all real x, and is such that $f(x+h)-f(x) \le 6h^2$ for all real h and x. Show that f(x) is constant.
- Q.4 A function *f* is defined as follows: $f(x) = \begin{bmatrix} 1 & \text{for } -\infty < x < 0 \\ 1 + |\sin x| & \text{for } 0 \le x < \frac{\pi}{2} \\ 2 + \left(x \frac{\pi}{2}\right)^2 & \text{for } \frac{\pi}{2} \le x < +\infty \end{bmatrix}$

Discuss the continuity & differentiability at x = 0 & $x = \pi/2$.

- Q.5 Examine the origin for continuity & derrivability in the case of the function f defined by $f(x) = x \tan^{-1}(1/x), x \neq 0$ and f(0) = 0.
- Q.6 Let f(0) = 0 and f'(0) = 1. For a positive integer k, show that

$$\lim_{x \to 0} \frac{1}{x} \left(f(x) + f\left(\frac{x}{2}\right) + \dots + f\left(\frac{x}{k}\right) \right) = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{k}$$

- Q.7 Let $f(x) = xe^{-\left(\frac{1}{|x|} + \frac{1}{x}\right)}$; $x \neq 0$, f(0) = 0, test the continuity & differentiability at x = 0
- Q.8 If f(x) = |x-1|. ([x] [-x]), then find $f'(1^+) \& f'(1^-)$ where [x] denotes greatest integer function.
- Q.9 If $f(x) = \begin{bmatrix} a x^2 b & \text{if } |x| < 1 \\ -\frac{1}{|x|} & \text{if } |x| \ge 1 \end{bmatrix}$ is derivable at x = 1. Find the values of a & b.

- Q.10 Let f(x) be defined in the interval [-2, 2] such that $f(x) = \begin{bmatrix} -1 & , -2 \le x \le 0 \\ x 1 & , 0 < x \le 2 \end{bmatrix}$ g(x) = f(|x|) + |f(x)|. Test the differentiability of g(x) in (-2, 2).
- Q.11 Given $f(x) = \cos^{-1}\left(sgn\left(\frac{2[x]}{3x [x]}\right)\right)$ where sgn(.) denotes the signum function & [.] denotes the greatest integer function. Discuss the continuity & differentiability of f(x) at $x = \pm 1$.
- Q.12 Examine for continuity & differentiability the points x = 1 & x = 2, the function f defined by $f(x) = \begin{bmatrix} x[x] &, & 0 \le x < 2\\ (x-1)[x], & 2 \le x \le 3 \end{bmatrix}$ where [x] = greatest integer less than or equal to x.
- Q.13 $f(x) = x \cdot \left(\frac{e^{[x] + |x|} 2}{[x] + |x|}\right), x \neq 0 \& f(0) = -1 \text{ where } [x] \text{ denotes greatest integer less than or equal to } x.$ Test the differentiability of f(x) at x = 0.
- Q.14 Discuss the continuity & the derivability in [0, 2] of $f(x) = \begin{bmatrix} |2x-3| [x] & \text{for } x \ge 1 \\ \sin \frac{\pi x}{2} & \text{for } x < 1 \end{bmatrix}$ where [] denote greatest integer function.
- Q.15 If f(x) = -1 + |x-1|, $-1 \le x \le 3$; g(x) = 2 |x+1|, $-2 \le x \le 2$, then calculate (fog)(x) & (gof)(x). Draw their graph. Discuss the continuity of (fog)(x) at x = -1 & the differentiability of (gof)(x) at x = 1.

Q.16 The function
$$f(x) = \begin{vmatrix} ax(x-1)+b & when x < 1 \\ x-1 & when 1 \le x \le 3 \end{vmatrix}$$

 $px^2 + qx + 2 & when x > 3 \end{vmatrix}$

Find the values of the constants a, b, p, q so that

(i) f(x) is continuous for all x (ii) f'(1) does not exist (iii) f'(x) is continuous at x=3

- Q.17 Examine the function, f(x) = x. $\frac{a^{1/x} a^{-1/x}}{a^{1/x} + a^{-1/x}}$, $x \neq 0$ (a > 0) and f(0) = 0 for continuity and existence of the derivative at the origin.
- Q.18 Discuss the continuity on $0 \le x \le 1$ & differentiability at x = 0 for the function.

$$f(x) = x \sin \frac{1}{x} \sin \frac{1}{x \sin \frac{1}{x}} \text{ where } x \neq 0, \ x \neq 1/r\pi \& f(0) = f(1/r\pi) = 0,$$

r = 1, 2, 3,....

Q.19 $f(x) = \begin{bmatrix} 1-x & , & (0 \le x \le 1) \\ x+2 & , & (1 < x < 2) \end{bmatrix}$ Discuss the continuity & differentiability of y = f[f(x)] for $0 \le x \le 4$. $4-x \quad , \quad (2 \le x \le 4)$

- Q.20 Let f be a function that is differentiable everywhere and that has the following properties:
 - (i) $f(x+h) = \frac{f(x) + f(h)}{f(-x) + f(-h)}$ for all real x and h. (ii) f(x) > 0 for all real x.
 - (iii) f'(0) = -1 (iv) $f(-x) = \frac{1}{f(x)}$ and $f(x+h) = f(x) \cdot f(h)$ Use the definition of derivative to find f'(x) in terms of f(x).
- Q.21 Discuss the continuity & the derivability of 'f' where $f(x) = \text{degree of } (u^{x^2} + u^2 + 2u 3)$ at $x = \sqrt{2}$.

Q.22 Let f(x) be a function defined on (-a, a) with a > 0. Assume that f(x) is continuous at x = 0 and $\lim_{x \to 0} \frac{f(x) - f(kx)}{x} = \alpha$, where $k \in (0, 1)$ then compute $f'(0^+)$ and $f'(0^-)$, and comment upon the differentiability of f at x = 0.

Q.23 Consider the function,
$$f(x) = \begin{bmatrix} x^2 \left| \cos \frac{\pi}{2x} \right| & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \\ (a) Show that f^*(0) exists and find its value (b) Show that f^*(1/3) does not exist. (c) For what values of x, f^*(x) fails to exist.
(c) For what values of x, f^*(x) fails to exist.
Q.24 Let f(x) be a real valued function not identically zero satisfies the equation, f(x + y^3) = f(x) + (f(y))^{\alpha}$$
 for all real x & y and f'(0)=0 where n(>1) is an odd natural number. Find f(10).
Q.25 A derivable function f: R⁺ → R satisfies the condition $f(x) - f(y) \ge ln \frac{x}{y} + x - y$ for every x, $y \in R^+$.
If g denotes the derivative of f then compute the value of the sum $\sum_{n=1}^{\infty} \binom{1}{n}$.
EXERCISE-II
Fill in the blanks:
Q.1 If f(x) is derivable at x = 3 & f'(3) = 2, then $\liminf_{h \to 0} \frac{r(3+h^2) - f((3-h^2)}{2h} = \frac{r}{2h}$.
Q.2 If f(x) = $|\sin x| \& g(x) = x^3$ then f[g(x)] is $a = x = 0$. (State continuity and derivability)
Q.3 Let f(x) be a function satisfying the condition $f(-x) = f(x)$ for all real x. Iff'(0) exists, then its value is $\frac{r}{1+0} \frac{r^{1/2} + x^{x/2}}{0, x=0}$, the derivative from the right, f'(0') = \underline{x} the derivative from the light, f'(0') = \underline{x} the derivative from the light, f'(0') = \underline{x} (bed reivative from the light, f'(0') = \underline{x} the derivative from the light, f'(0') = \underline{x} the derivative form the cright, f'(0') = \underline{x} the derivative form the cright f'(x) is $\frac{x^2 - x}{1 + 0} \frac{r}{(x^2 - x)^2}$ if $0 \le x \le 1$ then f(x) is $\frac{x^2 - x}{x^2 - x^2} = 1$ (D) not derivable at $x = 1$ but not continuous at $x = 1$ (C) neither derivable nor continuous at $x = 1$ (D) to derivable at $x = 1$ but not continuous at $x = 1$ (C) exist the dorivative form the function f(x) = $\frac{x < x}{x^2 + x + x} = 0$ but continuous at $x = 1$ (C) reither derivable nor continuous at $x = 1$ (D) to derivable at $x = 0$ but continuous at $x = 1$ (C) neither derivable nor continuous at $x = 1$ (D) not derivable at $x = 0$ but continuous at $x = 1$ (C) secontinuous at $x = 1$ (D) to derivable at $x = 0$ but

Q.9 [x] denotes the greatest integer less than or equal to x. If $f(x) = [x] [\sin \pi x] in (-1,1)$ then f(x) is: (A) continuous at x = 0(B) continuous in (-1, 0)(C) differentiable in (-1,1)(D) none

Q.10 Given
$$f(x) = \begin{bmatrix} \log_a \left(a \left[[x] + [-x] \right] \right)^x \left(\frac{a^{\frac{2}{\left[\frac{[x] + [-x]}{|x|} \right]} - 5}}{3 + a^{\frac{1}{|x|}}} \right) & \text{for } |x| \neq 0 \ ; \ a > 1 \\ 0 & \text{for } x = 0 \end{bmatrix}$$
 where [] represents the integral

part function, then :

(A) f is continuous but not differentiable at x = 0(B) f is cont. & diff. at x = 0(C) the differentiability of 'f' at x = 0 depends on the value of a (D) f is cont. & diff. at x = 0 and for a = e only. If $f(x) = \begin{bmatrix} x + \{x\} + x \sin\{x\} & \text{for } x \neq 0 \\ 0 & \text{for } x = 0 \end{bmatrix}$ where $\{x\}$ denotes the fractional part function, then : (A) 'f is continuous & diff. at x = 0 (B) 'f is continuous but not diff. at x = 0Q.11 (C) 'f' is continuous & diff. at x = 2(D) none of these Q.12 The set of all points where the function $f(x) = \frac{x}{1+|x|}$ is differentiable is : (C) $(-\infty, 0) \cup (0, \infty)$ (D) $(0, \infty)$ (E) none (∞, ∞) (B) $[0, \infty)$ Q.13 Let f be an injective and differentiable function such that $f(x) \cdot f(y) + 2 = f(x) + f(y) + f(xy)$ for all non negative real x and y with f'(0) = 0, $f'(1) = 2 \neq f(0)$, then (A) x f'(x) - 2 f(x) + 2 = 0(B) x f'(x) + 2 f(x) - 2 = 0(C) x f'(x) - f(x) + 1 = 0(D) 2f(x) = f'(x) + 2Q.14 Let $f(x) = [n + p \sin x], x \in (0, \pi), n \in I$ and p is a prime number. The number of points where f(x) is not differentiable is (C) 2p + 1 (D) 2p - 1. (A) p - 1(B) p + 1Here [x] denotes greatest integer function. Consider the functions $f(x) = x^2 - 2x$ and g(x) = -|x|Q.15 Statement-1: The composite function F(x) = f(g(x)) is not derivable at x = 0. because Statement-2: $F'(0^+) = 2$ and $F'(0^-) = -2$. (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1. (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1. (C) Statement-1 is true, statement-2 is false. (D) Statement-1 is false, statement-2 is true. Consider the function $f(x) = x^2 - |x^2 - 1| + 2||x| - 1| + 2|x| - 7$. Q.16 **Statement-1:** f is not differentiable at x = 1, -1 and 0.

because

Statement-2: |x| not differentiable at x = 0 and $|x^2 - 1|$ is not differentiable at x = 1 and -1. (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1. (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1. (C) Statement-1 is true, statement-2 is false. (D) Statement-1 is false, statement-2 is true.

	Select the correct alternative : (More than	one are correct)
Q.17	$f(x) = x[x] \text{ in } -1 \le x \le 2 \text{ , where } [x] \text{ is great}$ (A) continuous at x = 0 (C) not differentiable at x = 2	est integer $\leq x$ then f(x) is : (B) discontinuous x = 0 (D) differentiable at x = 2
Q.18	f(x) = 1 + x.[cosx] in $0 < x \le \pi/2$, where [] den (A) It is continuous in $0 < x < \pi/2$ (C) Its maximum value is 2	totes greatest integer function then, (B) It is differentiable in $0 < x < \pi/2$ (D) It is not differentiable in $0 < x < \pi/2$
Q.19	$f(x) = (\sin^{-1}x)^2 \cdot \cos(1/x) \text{ if } x \neq 0; f(0) = 0, f(x)$ (A) continuous no where in $-1 \le x \le 1$ (C) differentiable no where in $-1 \le x \le 1$) is : (B) continuous every where in $-1 \le x \le 1$ (D) differentiable everywhere in $-1 \le x \le 1$
Q.20	$f(x) = x + \sin x in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right).$ It is : (A) Continuous no where (C) Differentiable no where	(B) Continuous every where(D) Differentiable everywhere except at x = 0
Q.21	If $f(x) = 2 + \sin^{-1}x $, it is : (A) continuous no where (C) differentiable no where in its domain	(B) continuous everywhere in its domain(D) Not differentiable at x = 0
Q.22	If $f(x) = x^2$. sin (1/x), $x \neq 0$ and $f(0) = 0$ then, (A) $f(x)$ is continuous at $x = 0$ (C) $f'(x)$ is continuous at $x = 0$	(B) $f(x)$ is derivable at $x = 0$ (D) $f''(x)$ is not derivable at $x = 0$
Q.23	A function which is continuous & not differentiate (A) $f(x) = x$ for $x < 0$ & $f(x) = x^2$ for $x \ge 0$ (C) $h(x) = x x x \in \mathbb{R}$	able at $x = 0$ is : (B) $g(x) = x$ for $x < 0$ & $g(x) = 2x$ for $x \ge 0$ (D) $K(x) = 1 + x , x \in \mathbb{R}$
Q.24	If $\sin^{-1}x + y = 2y$ then y as a function of x is (A) defined for $-1 \le x \le 1$: (B) continuous at x = 0
	(C) differentiable for all x	(D) such that $\frac{dy}{dx} = \frac{1}{3\sqrt{1-x^2}}$ for $-1 < x < 0$
Q.25	Let $f(x) = Cosx \& H(x) = \begin{bmatrix} Min[f(t)/0 \le t \le x] \\ \frac{\pi}{2} - x \end{bmatrix}$	for $0 \le x \le \frac{\pi}{2}$, then for $\frac{\pi}{2} < x \le 3$,
	(A) H (x) is continuous & derivable in [0, 3] (C) H(x) is neither cont. nor deri, at $x = \pi/2$	(B) H(x) is continuous but not derivable at $x = \pi/2$ (D) Maximum value of H(x) in [0,3] is 1
	EXERC	ISE–III
Q.1	The function $f(x) = (x^2 - 1) x^2 - 3x + 2 + co$ (A) -1 (B) 0	s ($ \mathbf{x} $) is NOT differentiable at : (C) 1 (D) 2 [JEE'99, 2(out of 200)]
Q.2	Let $f: R \rightarrow R$ be any function. Define $g: R \rightarrow R$ (A) onto if f is onto (C) continuous if f is continuous	R by $g(x) = f(x) $ for all x. Then g is (B) one one if f is one one (D) differentiable if f is differentiable. [JEE 2000, Screening, 1 out of 35]
Q.3	Discuss the continuity and differentiability of the	the function, $f(\mathbf{x}) = \begin{bmatrix} \frac{\mathbf{x}}{1+ \mathbf{x} } & , & \mathbf{x} \ge 1 \\ \frac{\mathbf{x}}{1- \mathbf{x} } & , & \mathbf{x} < 1 \end{bmatrix}$ [REE, 2000,3]

Q.4				[JEE 2001 (Screening)]
(a)	Let $f : R \rightarrow R$ be a $f(x)$ is NOT differentiated as $f(x) = R + R$ be a formula of the second seco	function defined by, able is:	f(x) = max [x],	x^3]. The set of all points where
	$(A) \{-1, 1\}$	(B) $\{-1, 0\}$	$(C) \{0, 1\}$	(D) $\{-1, 0, 1\}$
(b)	The left hand derivativ	ve of, $f(x) = [x] \sin(\pi)$	x) at $x = k$, k an int	teger is :
	where [] denotes the g	greatest function. (P) $(-1)^{k-1}(k-1)_{\pi}$	$(C) (-1)k k \pi$	(D) $(-1)^{k-1} k \pi$
(a)	(A) (-1) (K - 1) h Which of the following	(B) (-1) $(K-1)\pi$	$(C)(-1) K \pi$	(D)(-1) K h
(C)	(A) $\cos(x) + x $	(B) $\cos(\mathbf{x}) - \mathbf{x} $	$(C)\sin(\mathbf{x}) + $	\mathbf{x} (D) sin ($ \mathbf{x} $) – $ \mathbf{x} $
Q.5	Let $\alpha \in R$. Prove that	t a function $f: \mathbb{R} \to \mathbb{R}$	is differentiable at	α if and only if there is a function
	$g: \mathbb{R} \to \mathbb{R}$ which is co	ntinuous at α and satisf	$f(x) - f(\alpha) = g(x)$	$(x - \alpha)$ for all $x \in \mathbb{R}$. (FE 2001 (mains) 5 out of 100]
				$f_{\rm eff} = 1$
0.6	The domain of the dar	ivative of the function	$f(\mathbf{x}) = \begin{cases} 1 & \mathbf{x} & \mathbf{x} \\ 1 & \mathbf{x} & \mathbf{x} \end{cases}$	$ X \leq 1$
Q.0			$f(\mathbf{x}) = \begin{bmatrix} -(\mathbf{x} - 1) \\ 2 \end{bmatrix}$	$ \mathbf{x} > 1$ is
	$(A) R - \{0\}$	(B) $R - \{1\}$	(C) $R - \{-1\}$	(D) $R - \{-1, 1\}$
				[JEE 2002 (Screening), 3]
Q.7	Let $f: \mathbb{R} \to \mathbb{R}$ be such	that $f(1) = 3$ and $f'(1) = 3$	= 6. The Limit $\left(\frac{f}{x \to 0}\right)$	$\frac{f(1+x)}{f(1)}$ equals
	(A) 1	(B) $e^{1/2}$	(C) e ²	(D) e^{3}
				[JEE 2002 (Screening), 3]
0.8	$f(x) = \begin{cases} x + a & \text{if } x \leq a \end{cases}$	< 0 and $\sigma(x) =$	$\int x+1$ if	x < 0
Q.8	$ x-1 $ if $x \ge 1$	≥ 0 and $g(x)$	$- \left[(x-1)^2 + b \right]$ if	$x \ge 0$
	Where a and b are not continuous for all real differentiable at $x = 0$?	n negative real numbers l x, determine the value Justify your answer.	s. Determine the co s of a and b. Furthe	omposite function gof. If (gof) (x) is er, for these values of a and b, is gof [JEE 2002, 5 out of 60]
Q.9	If a function $f: [-2a]$, hand derivative at $x =$	$2a] \rightarrow R$ is an odd funct a is 0 then find the left h	ion such that $f(x) =$ and derivative at x	$f(2a-x)$ for $x \in [a, 2a]$ and the left =-a. [JEE 2003(Mains) 2 out of 60]
Q.10 (a) The function given by	y = x - 1 is different	tiable for all real nu	umbers except the points
	(A) {0, 1, -1}	$(B) \pm 1$	(C) 1	(D) – 1
			[]	IEE 2005 (Screening), 3]
(b)	If $ f(x_1) - f(x_2) \le (x_1 - f(x_2))$ point (1, 2).	$-x_2)^2$, for all $x_1, x_2 \in \mathbb{R}$.	Find the equation of	of tangent to the curve $y = f(x)$ at the [JEE 2005 (Mains), 2]
Q.11	$If f(\mathbf{x}) = \min(1, \mathbf{x}^2, \mathbf{x})$	³), then		
	(A) $f(x)$ is continuous	$\forall x \in R$	(B) $f'(x) >$	$0, \forall x > 1$
	(C) $f(x)$ is not different	tiable but continuous $\forall z$	$x \in R$ (D) f(x) is no	t differentiable for two values of x [JEE 2006, 5]
Q.12	Let $g(x) = \frac{(x-1)}{ln \cos^{m}(x)}$	$\frac{n}{(x-1)}$; 0 < x < 2, <i>m</i> and	<i>n</i> are integers, <i>m</i>	$\neq 0, n > 0$ and let p be the left hand
	derivative of $ x - 1 $ a	$t t x = 1$. If $\lim_{x \to 1^+} g(x) = 1$	<i>p</i> , then	
	(A) n = 1, m = 1	(B) $n = 1, m = -1$	(C) $n = 2, m = 2$	(D) $n > 2, m = n$ [JEE 2008, 3]

Y CONCEPTS (METHOD OF DIFFERENTIATION)

DEFINITION: 1. If x and x+h belong to the domain of a function f defined by y = f(x), then $\underset{h \to 0}{\text{Limit}} \frac{f(x+h) - f(x)}{h}$ if it exists, is called the **D**ERIVATIVE of f at x & is denoted by f'(x) or $\frac{dy}{dx}$. We have therefore, $f'(x) = \underset{h \to 0}{\text{Limit}} \frac{f(x+h) - f(x)}{h}$ The derivative of a given function f at a point x = a of its domain is defined as : 2. $\underset{h \to 0}{\text{Limit}} \frac{f(a+h) - f(a)}{h}$, provided the limit exists & is denoted by f'(a). Note that alternatively, we can define $f'(a) = \underset{x \to a}{\text{Limit}} \frac{f(x) - f(a)}{x - a}$, provided the limit exists. DERIVATIVE OF f(x) FROM THE FIRST PRINCIPLE / ab INITIO METHOD: 3. If f(x) is a derivable function then, $\lim_{\delta x \to 0} \frac{\delta y}{\delta x} = \lim_{\delta x \to 0} \frac{f(x + \delta x) - f(x)}{\delta x} = f'(x) = \frac{dy}{dx}$ 4. **THEOREMS ON DERIVATIVES :** If u and v are derivable function of x, then, (i) $\frac{d}{dx}(u \pm v) = \frac{du}{dx} \pm \frac{dv}{dx}$ (ii) $\frac{d}{dx}(K u) = K \frac{du}{dx}$, where K is any constant (iii) $\frac{d}{dx}(u,v) = u \frac{dv}{dx} \pm v \frac{du}{dx}$ known as "PRODUCT RULE" (iv) $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\left(\frac{du}{dx}\right) - u\left(\frac{dv}{dx}\right)}{v^2}$ where $v \neq 0$ known as "QUOTIENT RULE" If y = f(u) & u = g(x) then $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$ "CHAIN RULE" (v) **DERIVATIVE OF STANDARDS FUNCTIONS:** 5. (i) $D(x^n) = n \cdot x^{n-1}$; $x \in R, n \in R, x > 0$ (ii) D (e^x) = e^x (iii) $D(a^x) = a^x \cdot \ln a = a > 0$ (iv) $D(\ln x) = \frac{1}{x}$ (v) $D(\log_a x) = \frac{1}{x} \log_a e$ (vi) $D(\sin x) = \cos x$ (vii) $D(\cos x) = -\sin x$ (viii) $D = \tan x = \sec^2 x$ (v) $D(\log_a x) = \frac{1}{x} \log_a e$ (vii) $D(\cos x) = -\sin x$ (viii) $D = \tan x = \sec^2 x$ (v) $D(\cos x) = -\csc x \cdot \cot x$ (xi) $D(\cot x) = -\csc^2 x$ (xii) $D(\operatorname{constant}) = 0$ where $D = \frac{d}{dx}$ 6. **INVERSE FUNCTIONS AND THEIR DERIVATIVES: Theorem :** If the inverse functions f & g are defined by y = f(x) & x = g(y) & if **(a)** f'(x) exists & $f'(x) \neq 0$ then $g'(y) = \frac{1}{f'(x)}$. This result can also be written as, if $\frac{dy}{dx}$ exists & $\frac{dy}{dx} \neq 0$, then $\frac{dx}{dy} = 1 / \left(\frac{dy}{dx}\right)$ or $\frac{dy}{dx} \cdot \frac{dx}{dy} = 1$ or $\frac{dy}{dx} = 1 / \left(\frac{dx}{dy}\right) \left[\frac{dx}{dy} \neq 0\right]$ **(b) Results** : (i) $D(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$, -1 < x < 1 (ii) $D(\cos^{-1}x) = \frac{-1}{\sqrt{1-x^2}}$, -1 < x < 1

(iii)
$$D(\tan^{-1}x) = \frac{1}{1+x^2}$$
, $x \in \mathbb{R}$ (iv) $D(\sec^{-1}x) = \frac{1}{|x|\sqrt{x^2-1}}$, $|x| > 1$

ETOOS Academy Pvt. Ltd. : F-106, Road No. 2, Indraprastha Industrial Area, End of Evergreen Motors (Mahindra Showroom), BSNL Office Lane, Jhalawar Road, Kota, Rajasthan (324005)

(v)
$$D(\csc ec^{-1}x) = \frac{-1}{|x| \sqrt{x^2 - 1}}$$
, $|x| > 1$ (vi) $D(\cot^{-1}x) = \frac{-1}{1 + x^2}$, $x \in \mathbb{R}$

Note : In general if y = f(u) then $\frac{dy}{dx} = f'(u) \cdot \frac{du}{dx}$.

7. LOGARITHMIC DIFFERENTIATION: To find the derivative of :

- a function which is the product or quotient of a number of functions OR (i)
- a function of the form $[f(x)]^{g(x)}$ where f & g are both derivable, it will be found convinient to take (ii) the logarithm of the function first & then differentiate. This is called LOGARITHMIC **DIFFERENTIATION**.

8. **IMPLICIT DIFFERENTIATION**: $\phi(x, y) = 0$

- In order to find dy/dx, in the case of implicit functions, we differentiate each term (i) w.r.t. x regarding y as a functions of x & then collect terms in dy/dx together on one side to finally find dy/dx.
- In answers of dy/dx in the case of implicit functions, both x & y are present. (ii)

9. **PARAMETRIC DIFFERENTIATION:**

If $y = f(\theta)$ & $x = g(\theta)$ where θ is a parameter, then $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}$

DERIVATIVE OF A FUNCTION W.R.T. ANOTHER FUNCTION : 10.

Let y = f(x); z = g(x) then $\frac{dy}{dz} = \frac{dy}{dz} \frac{dx}{dz} = \frac{f'(x)}{g'(x)}$.

DERIVATIVES OF ORDER TWO & THREE : 11.

Let a function y = f(x) be defined on an open interval (a, b). It's derivative, if it exists on (a, b) is a certain function f'(x) [or (dy/dx) or y] & is called the first derivative of v w.r.t. x.

If it happens that the first derivative has a derivative on (a, b) then this derivative is called the second derivative of y w.r.t. x & is denoted by f''(x) or (d^2y/dx^2) or y''.

Similarly, the 3rd order derivative of y w. r. t. x, if it exists, is defined by $\frac{d^3y}{dx^3} = \frac{d}{dx} \left(\frac{d^2y}{dx^2} \right)$ It is also

denoted by f'''(x) or y'''

If $F(x) = \begin{bmatrix} f(x) & g(x) & h(x) \\ l(x) & m(x) & n(x) \\ u(x) & v(x) & w(x) \end{bmatrix}$, where f, g, h, l, m, n, u, v, w are differentiable functions of x then 12.

	f'(x)	g'(x)	h'(x)	f(x)	g(x)	h(x)		f(x)	g(x)	h(x)
F'(x) =	l(x)	m(x)	n(x) +	l'(x)	m'(x)	n'(x)	+	l(x)	m(x)	n(x)
	11(12)	$\mathbf{v}(\mathbf{v})$	TT (TY)	11(12)	$\mathbf{v}(\mathbf{x})$	w(w)		$u'(\mathbf{v})$	$\mathbf{v}'(\mathbf{v})$	w'(v)

$$|u(x) v(x) w(x)|$$
 $|u(x) v(x) w(x)|$ $|u'(x) v'(x) w'(x)|$

13. L' HOSPITAL'S RULE :

If f(x) & g(x) are functions of x such that :

- $\underset{x \to a}{\text{Limit}} f(x) = 0 = \underset{x \to a}{\text{Limit}} g(x) \text{ OR } \underset{x \to a}{\text{Limit}} f(x) = \infty = \underset{x \to a}{\text{Limit}} g(x)$ (i) and
- (ii) Both f(x) & g(x) are continuous at x = a
- (iii) Both f(x) & g(x) are differentiable at x = a&
- Both f'(x) & g'(x) are continuous at x = a, (iv) Then

$$\underset{x \to a}{\text{Limit}} \frac{f(x)}{g(x)} = \underset{x \to a}{\text{Limit}} \frac{f'(x)}{g'(x)} = \underset{x \to a}{\text{Limit}} \frac{f''(x)}{g''(x)} & \text{ so on till indeterminant form vanishes.}$$

14. ANALYSIS AND GRAPHS OF SOME USEFUL FUNCTIONS :

(i)
$$y = f(x) = \sin^{-1} \left(\frac{2x}{1+x^2}\right) = \begin{bmatrix} 2\tan^{-1}x & |x| \le 1\\ \pi - 2\tan^{-1}x & x > 1\\ -(\pi + 2\tan^{-1}x) & x < -1 \end{bmatrix}$$

HIGHLIGHTS:
(a) Domain is $x \in \mathbb{R}$ &
range is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
(b) f is continuous for
all x but not diff:
at $x = 1, -1$
(c) $\frac{dy}{dx} = \begin{bmatrix} \frac{2}{1+x^2} & \text{for } |x| < 1\\ -\frac{2}{1+x^2} & \text{for } |x| > 1\\ -\frac{2}{1+x^2} & \text{for } |x| > 1 \end{bmatrix}$
(d) I in $(-1, 1)$ & D in $(-\infty, -1) \cup (1, \infty)$
(ii) Consider $y = f(x) = \cos^{-1} \left(\frac{1-x^2}{1+x^2}\right) = \begin{bmatrix} 2\tan^{-1}x & \text{if } x \ge 0\\ -2\tan^{-1}x & \text{if } x < 0 \end{bmatrix}$
Highlight to the diff:
(a) Domain is $x \in \mathbb{R}$ &
range is $[0, \pi]$
(b) Continuous for all x
but not diff at $x = 0$
(c) $\frac{dy}{dx} = \begin{bmatrix} \frac{1}{1+x^2} & \text{for } x > 0\\ -\frac{1}{1+x^2} & \text{for } x < 0 \end{bmatrix}$
(iii) $y = f(x) = \tan^{-1} \frac{2x}{1+x^2} = \begin{bmatrix} 2\tan^{-1}x & |x| < 1\\ \pi + 2\tan^{-1}x & x < -1\\ -(\pi - 2\tan^{-1}x) & x > 1 \end{bmatrix}$
Highlight to $x = 1, -1$
(d) L in $(0, \infty)$ & D in $(-\infty, 0)$.
(ii) $y = f(x) = \tan^{-1} \frac{2x}{1+x^2} = \begin{bmatrix} 2\tan^{-1}x & |x| < 1\\ \pi + 2\tan^{-1}x & x < -1\\ -(\pi - 2\tan^{-1}x) & x > 1 \end{bmatrix}$
Highlight to $x = 1, -1$
(c) $\frac{dy}{dx} = \begin{bmatrix} \frac{1}{1+x^2}, \frac{|x| \neq 1}{1+x^2}, \frac{|x| = 1}{1+x^2}, \frac{|x| = 1}{1+x^2}, \frac{|x| = 1}{1+x^2}, \frac{|x| = 1}{1+x^2}, \frac{|x| \neq 1}{1+x^2}, \frac{|x| \neq 1}{1+x^2}, \frac{|x| = 1}{1+x^2},$

ETOOS Academy Pvt. Ltd.: F-106, Road No. 2, Indraprastha Industrial Area, End of Evergreen Motors (Mahindra Showroom), BSNL Office Lane, Jhalawar Road, Kota, Rajasthan (324005)

(iv)
$$y = f(x) = \sin^{-1}(3x - 4x^3) = \begin{bmatrix} -(\pi + 3 \sin^{-1}x) & \text{if } -1 \le x \le -\frac{1}{2} \\ 3\sin^{-1}x & \text{if } -\frac{1}{2} \le x \le \frac{1}{2} \\ \pi - 3\sin^{-1}x & \text{if } \frac{1}{2} \le x \le 1 \end{bmatrix}$$

HIGHLIGHTS :
(a) Domain is $x \in [-1, 1]$ &
range is $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$
(b) Not derivable at $|x| = \frac{1}{2}$
(c) $\frac{dy}{dx} = \left[\frac{\sqrt{1-x^2}}{-\sqrt{1-x^2}} & \text{if } x \in (-\frac{1}{2}, \frac{1}{2}) \\ -\frac{\sqrt{1-x^2}}{\sqrt{1-x^2}} & \text{if } x \in (-1, -\frac{1}{2}) \cup (\frac{1}{2}, 1) \\ (d) \text{ Continuous everywhere in its domain} \\ y = f(x) = \cos^{-1}(4x^3 - 3x) = \begin{bmatrix} 3\cos^{-1}x - 2\pi & \text{if } -1 \le x \le -\frac{1}{2} \\ 2\pi - 3\cos^{-1}x & \text{if } -\frac{1}{2} \le x \le \frac{1}{2} \\ 3\cos^{-1}x & \text{if } -\frac{1}{2} \le x \le \frac{1}{2} \\ 3\cos^{-1}x & \text{if } -\frac{1}{2} \le x \le \frac{1}{2} \\ 3\cos^{-1}x & \text{if } -\frac{1}{2} \le x \le 1 \end{bmatrix}$
HIGHLIGHTS :
(a) Domain is $x \in [-1, 1]$ &
range is $[0, \pi]$
(b) Continuous everywhere in its domain but not derivable at $x = \frac{1}{2}, -\frac{1}{2}$
(c) $1 \ln \left(-\frac{1}{2}, \frac{1}{2} \right)$ &
D in $\left(\frac{1}{2}, 1 \right) \cup [-1^{-1}, \frac{1}{2} \right)$
(d) $\frac{dy}{dx} = \begin{bmatrix} \frac{\sqrt{1-x^2}}{\sqrt{1-x^2}} & \text{if } x \in (-\frac{1}{2}, \frac{1}{2}) \\ -\frac{\sqrt{1-x^2}}{\sqrt{1-x^2}} & \text{if } x \in (-1, -\frac{1}{2}) \cup (\frac{1}{2}, 1) \end{bmatrix}$

GENERAL NOTE:

Concavity in each case is decided by the sign of $2^{\ensuremath{\text{nd}}}$ derivative as :

 $\frac{d^2y}{dx^2} > 0 \implies \text{Concave upwards} \qquad ; \qquad \frac{d^2y}{dx^2} < 0 \implies \text{Concave downwards}$ $\mathbf{D} = \mathbf{D} \in \mathbf{C} = \mathbf{E} \text{ASING} \qquad ; \qquad \mathbf{I} = \mathbf{I} \text{N} \text{C} = \mathbf{E} \text{ASING}$

<u>EXERCISE–I</u>

Q.1 Let f, g and h are differentiable functions. If f(0) = 1; g(0) = 2; h(0) = 3 and the derivatives of their pair wise products at x = 0 are (fg)'(0) = 6; (gh)'(0) = 4 and (h f)'(0) = 5

(fg)'(0) = 6; (gn)'(0) = 4 and (nf)'(0) =then compute the value of (fgh)'(0).

Q.2(a) If
$$y = (\cos x)^{hx} + (\ln x)^x$$
 find $\frac{dy}{dx}$.

(b) If
$$y = e^{x^{e^x}} + e^{x^{x^e}} + x^{e^{e^x}}$$
. Find $\frac{dy}{dx}$

Q.4 If
$$y = \frac{x^2}{2} + \frac{1}{2}x\sqrt{x^2 + 1} + ln\sqrt{x + \sqrt{x^2 + 1}}$$
 prove that $2y = xy' + lny'$. where ' denotes the derivative.

Q.5 If
$$x = \csc \theta - \sin \theta$$
; $y = \csc^n \theta - \sin^n \theta$, then show that $(x^2 + 4) \left(\frac{dy}{dx}\right)^2 - n^2 (y^2 + 4) = 0$.

Q.6 If y = sec 4 x and x = tan⁻¹(t), prove that
$$\frac{dy}{dt} = \frac{16t(1-t^4)}{(1-6t^2+t^4)^2}$$

Q.7 If
$$x = \frac{1+lnt}{t^2}$$
 and $y = \frac{3+2lnt}{t}$. Show that $y\frac{dy}{dx} = 2x\left(\frac{dy}{dx}\right)^2 + 1$.

Q.8 Differentiate
$$\frac{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}$$
 w. r. t. $\sqrt{1-x^{4}}$.

Q.9 Find the derivative with respect to x of the function:

$$(\log_{cosx} sinx) (\log_{sinx} cosx)^{-1} + \arcsin \frac{2x}{1+x^2}$$
 at $x = \frac{\pi}{4}$

Q.10 If
$$\sqrt{1-x^6} + \sqrt{1-y^6} = a^3 \cdot (x^3 - y^3)$$
, prove that $\frac{dy}{dx} = \frac{x^2}{y^2} \sqrt{\frac{1-y^6}{1-x^6}}$.

Q.12 If $y=1+\frac{x_1}{x-x_1}+\frac{x_2 \cdot x}{(x-x_1)(x-x_2)}+\frac{x_3 \cdot x^2}{(x-x_1)(x-x_2)(x-x_3)}+\dots$ upto (n+1) terms then prove that $\frac{dy}{dx} = \frac{y}{x} \left[\frac{x_1}{x_1-x} + \frac{x_2}{x_2-x} + \frac{x_3}{x_3-x} + \dots + \frac{x_n}{x_n-x} \right]$

Q.13 Suppose $f(x) = tan(sin^{-1}(2x))$

- (a) Find the domain and range of f.
- (b) Express f(x) as an algebraic function of x.
- (c) Find f'(1/4).

Q.14 If
$$y = \tan^{-1} \frac{u}{\sqrt{1-u^2}}$$
 & $x = \sec^{-1} \frac{1}{2u^2 - 1}$, $u \in \left(0, \frac{1}{\sqrt{2}}\right) \cup \left(\frac{1}{\sqrt{2}}, 1\right)$ prove that $2\frac{dy}{dx} + 1 = 0$

Q.15 If
$$y = \cot^{-1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}$$
, find $\frac{dy}{dx}$ if $x \in \left(0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right)$.

Q.16 If
$$y = \tan^{-1} \frac{x}{1 + \sqrt{1 - x^2}} + \sin\left(2\tan^{-1}\sqrt{\frac{1 - x}{1 + x}}\right)$$
, then find $\frac{dy}{dx}$ for $x \in (-1, 1)$.

Q.17 Let $f(x) = x^2 - 4x - 3$, x > 2 and let g be the inverse of f. Find the value of g' where f(x) = 2.

Q.18 If
$$y = \tan^{-1} \frac{1}{x^2 + x + 1} + \tan^{-1} \frac{1}{x^2 + 3x + 3} + \tan^{-1} \frac{1}{x^2 + 5x + 7} + \tan^{-1} \frac{1}{x^2 + 7x + 13} + \dots$$
 to n terms.

Find dy/dx, expressing your answer in 2 terms.

Q.19 If
$$y = ln \left(x^{e^x \cdot a^y}\right)^{y^x}$$
 find $\frac{dy}{dx}$.

Q.20 If
$$x = \tan \frac{y}{2} - ln \left(\frac{\left(1 + \tan \frac{y}{2}\right)^2}{\tan \frac{y}{2}} \right)$$
. Show that $\frac{dy}{dx} = \frac{1}{2} \sin y(1 + \sin y + \cos y)$.

Q.21 If
$$\sqrt{x^2 + y^2} = e^{\arcsin \frac{y}{\sqrt{x^2 + y^2}}}$$
. Prove that $\frac{d^2y}{dx^2} = \frac{2(x^2 + y^2)}{(x - y)^3}$, $x > 0$.

Q.22 If $x = 2\cos t - \cos 2t$ & $y = 2\sin t - \sin 2t$, find the value of (d^2y/dx^2) when $t = (\pi/2)$.

Q.23 Find the value of the expression
$$y^3 \frac{d^2y}{dx^2}$$
 on the ellipse $3x^2 + 4y^2 = 12$.

- Q.24 If $f: R \rightarrow R$ is a function such that $f(x) = x^3 + x^2 f'(1) + xf''(2) + f'''(3)$ for all $x \in R$, then prove that f(2) = f(1) f(0).
- Q.25 Let g(x) be a polynomial, of degree one & f(x) be defined by $f(x) = \begin{bmatrix} g(x), & x \le 0 \\ & \\ & (\frac{1+x}{2+x})^{1/x}, & x > 0 \end{bmatrix}$. Find the continuous function f(x) satisfying f'(1) = f(-1)

EXERCISE-II

Q.1 If
$$\sin y = x \sin (a + y)$$
, show that $\frac{dy}{dx} = \frac{\sin a}{1 - 2x \cos a + x^2}$

Q.2 Find a polynomial function f(x) such that f(2x) = f'(x)f''(x).

Q.3 If
$$y = \arccos \sqrt{\frac{\cos 3x}{\cos^3 x}}$$
 then show that $\frac{dy}{dx} = \sqrt{\frac{6}{\cos 2x + \cos 4x}}$, $\sin x > 0$.

- Q.4 Let $y = x \sin kx$. Find the possible value of k for which the differential equation $\frac{d^2y}{dx^2} + y = 2k \cos kx$ holds true for all $x \in \mathbb{R}$.
- Q.5 Prove that if $|a_1 \sin x + a_2 \sin 2x + \dots + a_n \sin nx| \le |\sin x|$ for $x \in \mathbb{R}$, then $|a_1 + 2a_2 + 3a_3 + \dots + na_n| \le 1$
- Q.6 The function $f: \mathbb{R} \to \mathbb{R}$ satisfies $f(x^2) \cdot f''(x) = f'(x) \cdot f'(x^2)$ for all real x. Given that f(1) = 1 and f'''(1) = 8, compute the value of f'(1) + f''(1).
- Q.7(a) Show that the substitution $z = ln\left(\tan\frac{x}{2}\right)$ changes the equation $\frac{d^2y}{dx^2} + \cot x \frac{dy}{dx} + 4y \csc^2 x = 0$ to $(d^2y/dz^2) + 4y = 0.$
 - (b) If the dependent variable y is changed to 'z' by the substitution $y = \tan z$ then the differential equation

$$\frac{d^2 y}{dx^2} = 1 + \frac{2(1+y)}{1+y^2} \left(\frac{dy}{dx}\right)^2 \text{ is changed to } \frac{d^2 z}{dx^2} = \cos^2 z + k \left(\frac{dz}{dx}\right)^2, \text{ then find the value of } k.$$

Q.8 Show that R =
$$\frac{\left[1 + (dy/dx)^2\right]^{3/2}}{d^2y/dx^2}$$
 can be reduced to the form R^{2/3} = $\frac{1}{(d^2y/dx^2)^{2/3}} + \frac{1}{(d^2x/dy^2)^{2/3}}$.

Also show that, if $x=a \sin 2\theta (1+\cos 2\theta) & y=a\cos 2\theta (1-\cos 2\theta)$ then the value of R equals to 4a cos 30.

Q.9 Let
$$f(x) = \frac{\sin x}{x}$$
 if $x \neq 0$ and $f(0) = 1$. Define the function f'(x) for all x and find f"(0) if it exist.

Q.10 Suppose f and g are two functions such that $f, g : \mathbb{R} \to \mathbb{R}$,

$$f(x) = ln\left(1 + \sqrt{1 + x^2}\right) \quad \text{and} \quad g(x) = ln\left(x + \sqrt{1 + x^2}\right)$$

then find the value of $x e^{g(x)} \left(f\left(\frac{1}{x}\right)\right)' + g'(x)$ at $x = 1$.

Q.11 Let
$$f(\mathbf{x}) = \begin{bmatrix} xe^x & x \le 0 \\ x + x^2 - x^3 & x > 0 \end{bmatrix}$$
 then prove that

- (a) f is continuous and differentiable for all x.
- (b) f' is continuous and differentiable for all x.

Q.12
$$f: [0, 1] \rightarrow \mathbb{R}$$
 is defined as $f(x) = \begin{bmatrix} x^3(1-x)\sin(\frac{1}{x^2}) & \text{if } 0 < x \le 1 \\ 0 & \text{if } x = 0 \end{bmatrix}$, then prove that
(a) f is differentiable in $[0, 1]$ (b) f is bounded in $[0, 1]$ (c) f' is bounded in $[0, 1]$

Q.13 Let f(x) be a derivable function at x = 0 & $f\left(\frac{x+y}{k}\right) = \frac{f(x) + f(y)}{k}$ ($k \in \mathbb{R}$, $k \neq 0, 2$). Show that $f(\mathbf{x})$ is either a zero or an odd linear function.

Q.14 Let $\frac{f(x+y)-f(x)}{2} = \frac{f(y)-a}{2} + xy$ for all real x and y. If f(x) is differentiable and f'(0) exists for all real permissible values of 'a' and is equal to $\sqrt{5a-1-a^2}$. Prove that f(x) is positive for all real x.

Q.15

Column-I

(A)
$$f(x) = \begin{bmatrix} ln(1+x^3) \cdot \sin \frac{1}{x}, & \text{if } x > 0 \\ 0, & \text{if } x \le 0 \end{bmatrix}$$

(P) continuous everywhere but not differentiable at
$$x = 0$$

Column-II

(B)
$$g(x) = \begin{bmatrix} ln^2(1+x) \cdot \sin \frac{1}{x}, & \text{if } x > 0 \\ 0, & \text{if } x \le 0 \end{bmatrix}$$
 (Q) differentiable at $x = 0$ but derivative is discontinuous at $x = 0$

(C)
$$u(x) = \begin{bmatrix} ln(1 + \frac{\sin x}{2}), & \text{if } x > 0 \\ 0, & \text{if } x \le 0 \end{bmatrix}$$
 (R) differentiable and has continuous derivative

(D)
$$v(x) = \lim_{t \to 0} \frac{2x}{\pi} \tan^{-1} \left(\frac{2}{t^2}\right)$$

continuous and differentiable
$$at x = 0$$

Q.16 If
$$f(x) = \begin{vmatrix} (x-a)^4 & (x-a)^3 & 1 \\ (x-b)^4 & (x-b)^3 & 1 \\ (x-c)^4 & (x-c)^3 & 1 \end{vmatrix}$$
 then $f'(x) = \lambda \cdot \begin{vmatrix} (x-a)^4 & (x-a)^2 & 1 \\ (x-b)^4 & (x-b)^2 & 1 \\ (x-c)^4 & (x-c)^2 & 1 \end{vmatrix}$. Find the value of λ .

Q.17 If
$$f(x) = \begin{vmatrix} \cos(x+x^2) & \sin(x+x^2) & -\cos(x+x^2) \\ \sin(x-x^2) & \cos(x-x^2) & \sin(x-x^2) \\ \sin 2x & 0 & \sin 2x^2 \end{vmatrix}$$
 then find f'(x).

Q.18 If α be a repeated root of a quadratic equation f(x) = 0 & A(x), B(x), C(x) be the polynomials of

degree 3, 4 & 5 respectively, then show that
$$\begin{vmatrix} A(x) & B(x) & C(x) \\ A(\alpha) & B(\alpha) & C(\alpha) \\ A'(\alpha) & B'(\alpha) & C'(\alpha) \end{vmatrix}$$
 is divisible by f(x), where dash

denotes the derivative.

.

 $\begin{vmatrix} a+x & b+x & c+x \end{vmatrix}$ Let $f(x) = |\ell + x|$ m + x | n + x|. Show that f''(x) = 0 and that f(x) = f(0) + kx where k denotes Q.19 p+x q+x r+x

the sum of all the co-factors of the elements in f(0).

Q.20 If Y = sX and Z = tX, where all the letters denotes the functions of x and suffixes denotes the differentiation w.r.t. x then prove that

$$\begin{vmatrix} X & Y & Z \\ X_1 & Y_1 & Z_1 \\ X_2 & Y_2 & Z_2 \end{vmatrix} = X^3 \begin{vmatrix} s_1 & t_1 \\ s_2 & t_2 \end{vmatrix}$$

<u>EXERCISE-III</u> Evalute the following limits using L'Hospital's Rule or otherwise :

(C)
$$\lim_{x \to 0} \left(\frac{2}{\pi} \cos^{-1} x\right)^{1/x}$$
 equals (R) $e^{-2/\pi}$
(S) $e^{\pi/6}$

EXERCISE-IV

If $f(x) = \frac{x^2 - x}{x^2 + 2x}$, then find the domain and the range of f. Show that f is one-one. Also find the function Q.1 $\frac{df^{-1}(x)}{dx}$ and its domain. [REE'99,6] Q.2(a) If $x^2 + y^2 = 1$, then : (A) $yy'' - 2(y')^2 + 1 = 0$ (B) $yy'' + (y')^2 + 1 = 0$ (C) $v v'' - (v')^2 - 1 = 0$ (D) $yy'' + 2(y')^2 + 1 = 0$ [JEE 2000, Screening, 1 out of 35] (b) Suppose $p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$. If $|p(x)| \le |e^{x-1} - 1|$ for all $x \ge 0$ prove that $|a_1 + 2a_2 + \dots + na_n| \le 1$. [JEE 2000 (Mains) 5 out of 100] Q.3(a) If ln(x+y) = 2xy, then y'(0) = (A) 1 (B) - 1(C) 2(D)0[JEE 2004 (Scr.)] (b) $f(x) = \begin{cases} b \sin^{-1} \left(\frac{x+c}{2} \right), & -\frac{1}{2} < x < 0 \\ \frac{1}{2} & at \ x = 0 \\ \frac{e^{ax/2} - 1}{2}, & 0 < x < \frac{1}{2} \end{cases}$ If f(x) is differentiable at x = 0 and |c| < 1/2 then find the value of 'a' and prove that $64b^2 = 4 - c^2$. [JEE 2004, 4 out of 60] Q.4(a) If y = y(x) and it follows the relation $x \cos y + y \cos x = \pi$, then y''(0)(A) 1 (B) - 1(C) π $(D) - \pi$ (b) If P(x) is a polynomial of degree less than or equal to 2 and S is the set of all such polynomials so that P(1) = 1, P(0) = 0 and $P'(x) > 0 \quad \forall x \in [0, 1]$, then (B) $S = \{(1-a)x^2 + ax, 0 \le a \le 2\}$ (A) $S = \phi$ (C) $(1-a)x^2 + ax$, $a \in (0, \infty)$ (D) S = { $(1-a)x^2 + ax$, 0 < a < 1(c) If f(x) is a continuous and differentiable function and f(1/n) = 0, $\forall n \ge 1$ and $n \in I$, then (B) f(0) = 0, f'(0) = 0(A) $f(x) = 0, x \in (0, 1]$ (C) $f'(x) = 0 = f''(x), x \in (0, 1]$ (D) f(0) = 0 and f'(0) need not to be zero [JEE 2005 (Scr.)] (d) If $f(x-y)=f(x) \cdot g(y)-f(y) \cdot g(x)$ and $g(x-y)=g(x) \cdot g(y)+f(x) \cdot f(y)$ for all $x, y \in \mathbb{R}$. If right hand derivative at x = 0 exists for f(x). Find derivative of g(x) at x = 0. [JEE 2005 (Mains), 4] For x > 0, $\lim_{x \to 0} ((\sin x)^{l/x} + (1/x)^{\sin x})$ is 0.5 (B) - 1(A) 0 (C) 1 (D) 2 [JEE 2006, 3] $\frac{d^2x}{dy^2}$ equals Q.6 $(A)\left(\frac{d^2y}{dx^2}\right)^{-1} \quad (B) - \left(\frac{d^2y}{dx^2}\right)^{-1} \left(\frac{dy}{dx}\right)^{-3} \qquad (C)\left(\frac{d^2y}{dx^2}\right) \left(\frac{dy}{dx}\right)^{-2} \qquad (D) - \left(\frac{d^2y}{dx^2}\right) \left(\frac{dy}{dx}\right)^{-3}$ [JEE 2007, 3]

Q.7(a) Let g (x) = ln f(x) where f (x) is a twice differentiable positive function on $(0, \infty)$ such that f(x+1) = x f(x). Then for N = 1, 2, 3

$$g''\left(N+\frac{1}{2}\right)-g''\left(\frac{1}{2}\right) =$$
(A) $-4\left\{1+\frac{1}{9}+\frac{1}{25}+\dots+\frac{1}{(2N-1)^2}\right\}$ (B) $4\left\{1+\frac{1}{9}+\frac{1}{25}+\dots+\frac{1}{(2N-1)^2}\right\}$
(C) $-4\left\{1+\frac{1}{9}+\frac{1}{25}+\dots+\frac{1}{(2N+1)^2}\right\}$ (D) $4\left\{1+\frac{1}{9}+\frac{1}{25}+\dots+\frac{1}{(2N+1)^2}\right\}$

(b) Let f and g be real valued functions defined on interval (-1, 1) such that g"(x) is continuous, $g(0) \neq 0$, g'(0) = 0, $g''(0) \neq 0$, and $f(x) = g(x) \sin x$.

STATEMENT-1: $\lim_{x\to 0} [g(x) \cot x - g(0) \csc x] = f''(0)$

and

STATEMENT-2: f'(0) = g(0)

- (A) Statement-1 is True, Statement-2 is True; statement-2 is a correct explanation for statement-1
- (B) Statement-1 is True, Statement-2 is True; statement-2 is NOT a correct explanation for statement-1
- (C) Statement-1 is True, Statement-2 is False
- (D) Statement-1 is False, Statement-2 is True

[JEE 2008, 3 + 3]

DIFFERENTIABILITY

EXERCISE-I

Q 1. $f(x)$ is conti. but not derivable at $x = 0$						
Q 2. conti. $\forall x \in \mathbb{R}$, not diff. at $x = 0, 1 \& 2$						
Q 4. conti. but not diff.at $x = 0$; diff. & conti. at $x = \pi/2$ Q 5. conti. but not diff. at $x =$						
Q 7. f is cont. but not diff. at $x = 0$	Q 8. $f'(1^+) = 3$, $f'(1^-) = -1$					
Q 9. $a = 1/2$, $b = 3/2$ Q 10. not derivable at $x = 0$ & $x = 1$						
Q 11. f is cont. & derivable at $x = -1$ but f is neither contract the f is neither contract to the	ont. nor derivable at $x = 1$					
Q 12. discontinuous & not derivable at $x = 1$, continuo	bus but not derivable at $x = 2$					
Q 13. not derivable at $x = 0$						
Q 14. f is conti. at $x = 1$, $3/2$ & disconti. at $x = 2$, f is n	not diff. at $x = 1, 3/2, 2$					
Q15. $(fog)(x) = x+1$ for $-2 \le x \le -1$, $-(x+1)$ for $-(fog)(x)$ is cont. at $x = -1$, $(gof)(x) = x+1$ for $(gof)(x)$ is not differentiable at $x = 1$	$1 < x \le 0 \& x - 1 \text{ for } 0 < x \le 2.$ -1 \le x \le 1 & 3 - x for 1 < x \le 3.					
(gor)(x) is not differentiable at $x - 1$						
Q 16. $a \neq 1, b = 0, p = \frac{1}{3} \text{ and } q = -1$						
Q 17. If $a \in (0, 1)$ $f'(0^+) = -1$; $f'(0^-) = 1 \Rightarrow c$ $a = 1$; $f(x) = 0$ which is constant \Rightarrow continue If $a > 1$ $f'(0^-) = -1$ $f'(0^+) = 1 \Rightarrow$ continue	ontinuous but not derivable ous and derivable uous but not derivable					
Q 18. conti. in $0 \le x \le 1$ & not diff. at $x = 0$						
Q.19 f is conti. but not diff. at $x = 1$, disconti. at $x = 2$	& $x = 3$. cont. & diff.at all other points					
Q.20 $f'(x) = -f(x)$ Q.21 continuous but r	not derivable at $x = \sqrt{2}$ Q.22 f'(0) = $\frac{\alpha}{1-k}$					
Q.23 (a) $f'(0) = 0$, (b) $f'\left(\frac{1}{3}\right) = -\frac{\pi}{2}$ and $f'\left(\frac{1}{3}\right)$	$=\frac{\pi}{2}$, (c) $x = \frac{1}{2n+1}$ $n \in I$					
Q.24 $f(x) = x \implies f(10) = 10$ Q.25 5150						
EXERC	CISE–II					
Q.1 2 Q.2 conti. & diff.	Q.3 0 Q.4 $f'(0^+) = 0, f'(0^-) = 1$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Q.7 A Q.8 D Q.11 D Q.12 A					
Q.13 A Q.14 D	Q.15 A Q.16 D					
Q.17 A, C Q.18 A, B	Q.19 B, D Q.20 B, D					
Q.21 B, D Q.22 A, B, D	Q.23 A, B, D Q.24 A, B, D					
Q.23 A, D						
0.1 D	ISL-111					
Q.2 C Q.3 Discont. hence Q.4 (a) D, (b) A, (c) D Q.6 D	e not deri. at $x = 1 \& -1$. Cont. & deri. at $x = 0$ Q.7 C Q.8 $a = 1; b = 0(gof)'(0) = 0$					
Q.9 $f'(a^{-}) = 0$ Q.10 (a) A, (b) y - **************	2=0 Q.11 A, C Q.12 C					

METHOD OF DIFFERENTIATION EXERCISE-I

Q.1 16

Q.2 (a)
$$Dy = (\cos x)^{\ln x} \left[\frac{\ln(\cos x)}{x} - \tan x \ln x \right] + (\ln x)^{x} \left[\frac{1}{\ln x} + \ln(\ln x) \right];$$

(b) $\frac{dy}{dx} = e^{x^{e^{x}}} \cdot x^{e^{x}} \left[\frac{e^{x}}{x} + e^{x} \ln x \right] + e^{x^{x^{e}}} x^{e-1} x^{x^{e}} [1 + e \ln x] + x^{e^{e^{x}}} e^{e^{x}} \left[\frac{1}{x} + e^{x} \ln x \right]$

Q.3 100 **Q.8**
$$\frac{1+\sqrt{1-x^4}}{x^6}$$
 Q.9 $\frac{32}{16+\pi^2} - \frac{8}{\ln 2}$

Q.13 (a)
$$\left(-\frac{1}{2}, \frac{1}{2}\right)$$
, $(-\infty, \infty)$; (b) f (x) = $\frac{2x}{\sqrt{1-4x^2}}$; (c) $\frac{16\sqrt{3}}{9}$ **Q.15** $\frac{1}{2}$ or $-\frac{1}{2}$

Q.16
$$\frac{1-2x}{2\sqrt{1-x^2}}$$
 Q.17 1/6 **Q.18** $\frac{1}{1+(x+n)^2} - \frac{1}{1+x^2}$ **Q.19** $\frac{y}{x} \cdot \frac{x \ln x + x \ln x \cdot \ln y + 1}{\ln x (1-x-y \ln a)}$

27

Q.22
$$-\frac{3}{2}$$
 Q.23 $-\frac{9}{4}$ Q.25 $f(x) = \begin{bmatrix} -\frac{2}{3} \left\lfloor \frac{1}{6} + \ln \frac{5}{2} \right\rfloor x & \text{if } x \le 0 \\ \left(\frac{1+x}{2+x} \right)^{1/x} & \text{if } x > 0 \end{bmatrix}$
EXERCISE-II

Q.2
$$\frac{4x^3}{9}$$
 Q.4 $k = 1, -1 \text{ or } 0$ **Q.6** 6 Q.7 (b) $k = 2$

Q.9
$$f'(x) = \begin{bmatrix} \frac{x \cos x - \sin x}{x^2} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{bmatrix}$$
; $f''(0) = -\frac{1}{3}$ **Q.10** zero

Q.15 (A) R, S; (B) Q, S; (C) P; (D) R, S **Q.16** 3 **Q.17** $2(1+2x) \cdot \cos 2(x+x^2)$

EXERCISE-III

Q 1.
$$\frac{5}{6}$$
 Q 2. $\frac{1}{6}$ Q 3. $-\frac{1}{3}$ Q 4. 1 Q 5. $-\frac{1}{2}$ Q.6 2
Q.7 f(0)=1; differentiable at x=0, f'(0⁺)=-(1/3); f'(0⁻)=-(1/3) Q.8 -6
Q.9 a=6, b=6, c=0; $\frac{3}{40}$ Q.10 1000 Q.11 n=11

Q.12 f is cont. but not derivable at
$$x = 0$$

Q.13 (a) $a_1^{p_1} \cdot a_2^{p_2} \dots a_n^{p_n}$; (b) a_1 ; (c) a_n
Q.14 $n = 4$
Q.15 (A) S; (B) P; (C) R

EXERCISE-IV

Q.1	Domain of $f(x) = R - \{-2, 0\}$; Range	ge of f	(x)= I	$R - \{-1/2,$	1};	$\frac{\mathrm{d}}{\mathrm{d}x}[\mathrm{f}^{-1}(\mathrm{x})]$	$=\frac{3}{(1-x)^2}$
Q.4	Domain of $f^{-1}(x) = R - \{-1/2, 1\}$ (a) C; (b) B; (c) B, (d) g'(0) = 0	Q.2 (Q.5	a) B C	Q.3 (a Q.6) A D	; (b) a = 1 Q.7	(a) A, (b) D