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KEY CONCEPTS (DIFFERENTIABILITY)

THINGS TO REMEMBER :
1. Right hand & Left hand Derivatives ;

s fath)f) Y=t
By definition : f'(a) = thglolt — % ifitexist fan. s
) The right hand derivative of f' atx=a Y Right secant through A

denoted by f'(a”) is defined by :

_Limit fa+h)-f(a)
h—0* h >

fath) — f(a)

|

| e
|
1

(s a, f(a)
f'(a”) A

Left secant through A
a-h,f(a-h)

provided the limit exists & is finite.
(i) The left hand derivative : of fatx =a [ e
denoted by f'(a”) is defined by :
o f(a—h)-f
£ (a*) :Iﬁlir(l)lf (a_—})l(a)’
Provided the limit exists & is finite.
We also write f'(a") =f',(a) & f'(a))=f"_(a).
* This geomtrically means that a unique tangent with finite slope can be drawn at x = a as shown in the figure.
(iii)  Derivability & Continuity :
(a) If f'(a) exists then f(x) is derivable at x=a = f(x) is continuous-at x =a.

h |

lo

(b) If a function f'is derivable at x then f'is continuous at x.
Limit f(x+h)-f(x)
h—0 h
f(x + h)-f(x)
h

For:f'(x)= exists.

Also f(x + h)—f(x)= hh = 0]

Therefore :

L ... f(x+h)-£( ,
Iﬁin,olt [f(x4 h)-f(x)] :L}En)olt - h) X)'hzf(x)'ozo

Therefore Lhigoit [f(x +h)-f(x)]=0= Lhigoit f (x+h) = f(x) = f'is continuous at X.

Note : Iff(x) is derivable for every point of its domain of definition, then it is continuous in that domain.
The Converse of the above result isnot true :
“TF f1S CONTINUOUS AT x, THEN f IS DERIVABLE AT x ” IS NOT TRUE.

e.g. the functions f(x) = ‘x‘ & g(x) =x sinl ; x # 0 & g(0) = 0 are continuous at
X

x =0 but not derivable at x = 0.
NOTE CAREFULLY @
(a) Letf’ (a)=p & f' (a)=qwhere p & q are finite then :
@) p=q= fis derivable atx =a = f'is continuous at x = a.
(i) p #q = fisnot derivable at x =a.
It is very important to note that f may be still continuous at x =a.
In short, for a function f*:
Differentiability = Continuity ; Continuity = derivability ;
Non derivibality = discontinuous ; But discontinuity = Non derivability

(b) If a function fis not differentiable but is continuous at x = a it geometrically implies a sharp corner at
X =a.
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DERIVABILITY OVER AN INTERVAL @

f(x)1s said to be derivable over an interval if it is derivable at each & every point of the interval f(x) is said
to be derivable over the closed interval [a, b] if :

for the pointsaand b, f'(a+) & f'(b—) exist &

for any point ¢ such thata <c <b, f'(ct+) & f'(c—) exist & are equal.

If f(x) & g(x) are derivable at x = a then the functions f(x) + g(x), f(x) — g(x) , f(x).g(x)
will also be derivable at x =a & if g(a) # 0 then the function f(x)/g(x) will also be derivable atx =a.
If f(x) is differentiable at x =a & g(x) is not differentiable at x = a, then the product function F(x) = f(x)
g(x) can still be differentiable atx =a e.g. f(x) =x & g(x) = x|

If f(x) & g(x) both are not differentiable at x = a then the product function ;

F(x)=f(x) g(x) can still be differentiable at x =a e.g. f(x)= | x | & g(x)= |x]|.

If f(x) & g(x) both are non-deri. at x = a then the sum function F(x) = f(x) + g(x) may be a differentiable
function. e.g. f(x) = | X | &gx)=- | X ‘ :

If f(x) is derivable at x =a =% f'(x) is continuous at x =a.

_|x*sinl if x#0

e 1) 0 if x=0

A surprising result : Suppose that the functionf(x) and g (x) defined in the interval (x|, x,) containing
the point x , and if f'is differentiable at x = x,, with f (x)) = 0 together with g is continuous as x = x, then
the function F (x) =f(x) - g (x) is differentiable atx = x

e.g. F (x)=sinx - x?? is differentiable at x = 0.

EXERCISE-I1

Discuss the continuity & differentiability.of the function f(x) =sinx +sin | x
of the graph of f(x).

Examine the continuity and differentiability of f(x) = |x | +{x-1] + |x-2| x eR.
Also draw the graph of {(x).

,X € R. Draw arough sketch

Given a differentiable function f(x) defined for all real x, and is such that
f(x+h)—f(x)< 6h? forallreal z and x. Show that 7(x) is constant.

1 for —oo<x<0
A functionf is defined as follows: f(x)= |4+ [sin x| for 0<x<%
2+(x—§)z for J<x<+oo
Discuss the continuity & differentiability at x =0 & x = 1/2.

Examine the origin for continuity & derrivability in the case of the function f defined by
f(x) = x tan"!(1/x) , x#0 and f{0) = 0.

Letf(0)=0and ' (0)= 1. For a positive integer k, show that
.1 X X 1 1 1
Lim—| f(x)+f| = [+...f] = | | = 1+—+= -
xl—{gx( (x) (J [kjj 1+2+3+ ...... +k

{1
Letf(x)= xe (‘X‘ X) ;x#0, f(0) =0, test the continuity & differentiability at x =0
Iff(x)=|x — 1] . ([x] = [—x]), then find £'(1") & f'(1°) where [x] denotes greatest integer function.

ax’=b if [x[<1 '
Ifflx) = . is derivable at x = 1. Find the values ofa & b.
—L if [x|>1

x|
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Q.10

Q.11

Q.12

Q.13

Q.14

Q.15

Q.16

Q.17

Q.18

Q.19

Q.20

Q.21

-1, —=2<x<0
x—1, 0<x<Z£2
o(x)=f(|x )+ | f(x) | . Test the differentiability of g(x) in (- 2, 2).

ﬂn where sgn (.) denotes the signum function & [.] denotes the greatest

Let f(x) be defined in the interval [-2, 2] such that f(x) ={

Given f(x)=cos™! [sgn (

3x — [x]
integer function. Discuss the continuity & differentiability of f (x) atx =+ 1.

Examine for continuity & differentiability the points x = 1 & x = 2, the function f defined by

ﬂx):[xh] , 0<x<2

where [x] = greatest integer less than or equal to x.
x-1)[x], 2<x<3

[ Jelx ] _
f(x)=x { ﬁ] , X # 0 & 1(0) =—1 where [x] denotes greatest integer less than or equal to x.

Test the differentiability of f(x) atx = 0.

. .. C e |2X—3| [x] for x>1
Discuss the continuity & the derivability in [0, 2] of f(x) =" .«
sin—- for x<1

where [ ] denote greatest integer function .

If f(x) = -1+ ‘x—l , -1 <x<3; gx)=2-~ |x+1 , =2 <x <2, then calculate
(fog) (x) & (gof) (x). Draw their graph. Discuss the continuity of (fog) (x) atx =—1 & the differentiability
of (gof) (x)atx=1.

ax(x—1)+b whenx <1
The function f(x) = [ x—1 when1<x<3

px> +qx+2 whenx >3

Find the values of the constants a, b, p, q so that

(1) f(x)iscontinuous forallx (ii) f'(1)doesnotexist (ii1) f'(x)1is continuousatx=3
1/x -1/x
Examine the function, f(x) =x. % ,X# 0 (a>0)and f(0) =0 for continuity and existence of
a“+a”

the derivative at the origin.

Discuss the continuityon 0<x < 1 & differentiability at x = 0 for the function.

wherex 0, x= 1/rn& f(0)=f(1/rm)=0,

1.
f(x) = x:sin. —sin —
X x.sin -

I-x , (0<x<1)
f(x)=|x+2 , (1<x<2) Discuss the continuity & differentiability of y=f[f(x)] for 0 <x <4.
4-x , (2<x<4)

Let /' be a function that is differentiable every where and that has the following properties:
, f(x)+f(h)
A T WA
1
(ii) f'(0)=-1 (iV)f(—X):% and f(x +h)=f(x) - f(h)
Use the definition of derivative to find /" (x) in terms of f(x).
Discuss the continuity & the derivability of 'f where f (x) = degree of (u¥+ u?+ 2u — 3) at x = 2.

forall real x and h. (i1) f (x)> 0 forall real x.
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Q.22

Q.23

Q.24

Q.25

Q.1

Q.2
Q.3

Q.4

Q.5

Q.6

Q.7

Q.8

Let f(x) be a function defined on (—a, a) with a > 0. Assume that f(x) is continuous at x = 0 and

. -f(k
Llrg w = o, wherek € (0, 1) then compute f'(07)and f'(07), and comment upon the
X—>

differentiability of fatx=0.

x? c052i if x#0
Consider the function, f(x)= { x
0 if x=0
(@) Show that 1" (0) exists and find its value (b) Show that /" (1/ 3) does not exist.

(c) For what values of x, " (x) fails to exist.

Let f(x) be areal valued function not identically zero satisfies the equation,
f(x +y") =1(x) + (f(y))" for all real x & y and " (0)>0 where n (> 1) is an odd natural number. Find f(10).

X
A derivable function f: R™— R satisfies the condition f(x)—f(y) > /n ; +x—yforeveryx,y € R".

100
If g denotes the derivative of f/ then compute the value of the sum z g(lj .
n
EXERCISE-II

n=1

Fill in the blanks :

f(3+h?) - f((3-h?) _
2h?

If f(x) is derivable atx =3 & f'(3) =2, then Lhimoit
-

Iff(x)= |sinx | & g(x) =x3 then f[g(x)] is & at x=0. (State continuity and derivability)

Let f(x) be a function satisfying the condition f(—x) =1(x) for allreal x.Ift'(0) exists, then its value is .
X

—7x#0
For the function f(x) :[ 1 "‘51 S the derivative fromthe right, f(07) = & the derivative

5

fromthe left, f(07)=.

The number of points at which the function f(x) = max. {a—x,a+x, b}, —co<x <o, 0 <a<b cannot
be differentiable is
Select the correct alternative : (only one is correct)

—X if  x<0

The furiétion f(x) is defined as follows f(x)=| X if  0<x<l thenf(x)is:

x> —x+1 if x>l

(A) derivableand continuous at x =0 (B) derivable at x = 1 but not continuous at x = 1
(C) neither derivable nor continuous atx=1 (D) not derivable at x =0 but continuous at x = 1

For what triplets of real numbers (a, b, ¢) with a # 0 the function

f(X):[ax2 +bx + ¢ otherwise
(A) {(a, 1-2a, a)| agR,a#0} (B) {(a, 1-2a, c)| a,ceR,a#0}
(©O) {(a, b, c)| a,b,ceR,a+b+c=1} (D) {(a, 1-2a, 0) | agR,a=#0}

X x<1
is differentiable for all real x ?

A function f defined as f(x) =x[x] for — 1 <x <3 where [x] defines the greatest integer <x is :
(A) continuous at all points in the domain of f but non-derivable at a finite number of points

(B) discontinuous at all points & hence non-derivable at all points in the domain of f(x)

(C) discontinuous at a finite number of points but not derivable at all points in the domain of f(x)
(D) discontinuous & also non-derivable at a finite number of points of f(x).
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Q.9

Q.10

Q.11

Q.12

Q.13

Q.14

Q.15

Q.16

[x] denotes the greatest integer less than or equal to x. If f(x) =[x] [sin x] in (—1,1) then f(x) is :

(A) continuous at x =0 (B) continuous in (-1, 0)
(C) differentiable in (—1,1) (D) none
RN
) log, (a|[x] + [—x]|)X a—l for |x| #0;a>1 ]
Given f(x)= 344N where [ ] represents the integral
| 0 for x=0

part function, then :

(A) fis continuous but not differentiable atx =0

(B) fis cont. & diff. atx =0

(C) the differentiability of 'f' at x =0 depends on the value of a
(D) fis cont. & diff. at x =0 and for a=e¢ only.

X + {x} + xsin{x} for x=0

Iff(x)= where {x} denotes the fractional part function, then :
0 for x =0

(A)'f is continuous & diff. atx =0 (B) 'f' iscontinuous but not diff. atx=0

(C)'f'is continuous & diff. atx =2 (D) none of these

The set of all points where the function f(x) = %M is differentiableis :

(A) (=00, 0) (B)[0,) (C) (=0, 0) U (0,0) (D) (0,0) (E)none

Let fbe an injective and differentiable function such that f(x)* f(y) + 2 =f(x) + f(y) + f(xy) for all non
negative real x and y with /'(0)=0, f'(1) =2 # f(0), then

(A)xf'(X)-2f(x)+2=0 B)xf'(x)+2f(x)-2=0

O xf'x)-fx)+1=0 D 2fx)=/"(x)+2

Letf(x)=[n+psinx],x €(0,7),n € [ and p is a prime number. The number of points where f(X) is
not differentiable is

(A)p-1 B)p+t1 O 2p+1 (D)2p-1.

Here [x] denotes greatest integer function.

Consider the functions f(x) =x%>=2xX and g (x)=—|x|
Statement-1:  The composite function F (x)= f (g(x)) isnot derivable atx =0.

because

Statement-2: F'(0")=2and F'(07) =-2.

(A) Statement-1 istrue, statement-2 is true and statement-2 is correct explanation for statement-1.
(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement- 1.
(C) Statement-1 is true, statement-2 is false. (D) Statement-1 is false, statement-2 is true.

Consider the function f(x)= x? —‘Xz —1‘+2||X|—1|+2|X|—7_

Statement-1: f isnot differentiable atx=1,—1 and 0.

because

Statement-2: |x |not differentiable at x =0and |x>— 1| is not differentiable at x =1 and — 1.

(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
(C) Statement-1 is true, statement-2 is false. (D) Statement-1 is false, statement-2 is true.
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Select the correct alternative : (More than one are correct)

Q.17 f(x)= | x[x] ‘ in—1<x <2, where [x] is greatest integer <x then f(x) is :

(A) continuous at x =0 (B) discontinuous x =0

(C) not differentiable at x =2 (D) differentiable atx =2
Q.18 f(x)=1+x.[cosx]in0<x<7/2,where [ | denotes greatest integer function then,

(A) It is continuous in 0 <x < 7/2 (B) It is differentiable in 0 <x <7/2

(C) Its maximum value is 2 (D) It is not differentiable in 0 < x< /2
Q.19 f(x)=(sin"'x)%. cos(1/x)ifx #0; f(0)=0, f(x) is:

(A) continuous no wherein—1<x <1 (B) continuous every wherein —1 <x <1

(C) differentiable no where in—1 <x <1 (D) differentiable everywhere in —1 <x <1
Q.20 f(x)=|x|+ |sinx]| in(-g,gj tis :

(A) Continuous no where (B) Continuous every where

(C) Differentiable no where (D) Differentiable everywhere except at x =0
Q.21 Iff(x)=2+|sin"'x/,itis:

(A) continuous no where (B) continuous everywhere in its domain

(C) differentiable no where in its domain (D) Not differentiable at x =0
Q.22 Iff(x)=x2sin(1/x),x#0and f(0)=0 then,

(A) f(x) is continuous at x =0 (B) f(x) isderivable at x=0

(C) f'(x)1s continuous atx =0 (D) f'(x) 1s not derivable atx =0

Q.23 A function which is continuous & not differentiable at x =01s :
(A)f(x)=xforx <0 & f(x)=x*forx >0 (B) g(x)=xforx <0 & g(x)=2x forx >0

(C)h(x)=x|x|xeR (D)K(x)=1+|x|,xeR
Q.24 Ifsin"'x+ |y| =2y thenyasa function of x is :
(A) defined for-1 <x <1 (B) continuous atx =0
(C) differentiable for all x (D) such that? — - for—1 <x<0
X 3y1-x

Min[f(t)/0<t<x] for 0<x<Z then
T—X for 7<x<3
(A) H (x) is continuous & derivable in[0,3]  (B) H(x) is continuous but not derivable at x = /2

(C) H(x)is neither cont. nor deri.atx =a/2 (D) Maximum value of H(x) in [0,3] is 1

Q.25 Letf(x)=Cosx & H(x)=

EXERCISE-III
Q.1  The function f(X)=(x>—1) | x2<3x +2 | +cos (| x|)is NOT differentiable at :
(A)-1 (B) 0 ©)1 (D)2
[JEE'99, 2(out 0f200)]
Q.2  Letf:R— Rbeany function. Defineg: R —> Rbyg(x)= | f(x) | forall x. Then g1is
(A) onto if fis onto (B) one one if fis one one

(C) continuous if f'is continuous (D) differentiable if f'is differentiable.
[JEE 2000, Screening, 1 out of 35]

X >
mERNLE

—

Q.3 Discuss the continuity and differentiability of the function, f(x)= . [REE,2000,3]

I ° Ix|<1
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Q4 [JEE 2001 (Screening)]
(a) Let f : R — R be a function defined by , f (x) = max [ x , x? ]. The set of all points where
f(x) is NOT differentiable is :

(A){=1,1} (B) {-1,0§ (©) {0, 1} (D) {-1.,0,1}
(b) The left hand derivative of, f (x) =[ x ] sin (tx) atx =k , k an integer is :

where [ ] denotes the greatest function.

(A)Dk-Drn B) (D !(k-Dn (C)(-D*kn D)D" 'kn

(c) Which of the following functions is differentiable at x =0?
(A)cos(|x‘)+ |X‘ (B)cos(‘x‘)— ‘x| (C)sin(‘x|)+ |X‘ (D)sin(|x‘)— |X‘

Q.5 Letae R.Prove thata function f: R — R is differentiable at o if and only if there is a function
g : R — R which is continuous at o and satisfies f{x) — fo)) = g(x) (x —a) forall x € R.
[JEE 2001, (mains) 5 out of 100]

tan” x if x| €1

Q.6 The domain of the derivative of the function f(x)= 1 (xI-1) if|x|>1 1
2

(A)R—{0} (B)R— {1} (OR-{-1} (D)R=1-1,1}
[JEE2002(Screening), 3]

Q.7 Letf: R > Rbesuchthat f(1)=3 and (1) = 6. The Limit (Mj equals
x—0 £(D)

(A)1 (B)e'? (C) ¢ (D) ¢’
[JEE 2002 (Screening), 3]
x+a if x<0 x+1 if x<0
Q8 TOO=1 1) it x20 @ =)y 4 4f x>0

Where a and b are non negative real numbers. Determine the composite function gof. If (gof) (x) is
continuous for all real x, determine the values of a andb. Further, for these values of aand b, is gof
differentiable at x = 0? Justify your answer. [JEE 2002, 5 out of 60]

Q.9 Ifafunctionf:[—2a,2a] — R isan odd function such that f (x) =f(2a—x) for x € [a, 2a] and the left
hand derivative at x = a1s 0 then find the left hand derivative at x =—a. [JEE 2003(Mains) 2 out of 60]

Q.10(a) The function given by y= | Ix|=1 | isdifferentiable for all real numbers except the points

(A) {0, 1,=1} B)+1 ©1 D)-1
[JEE 2005 (Screening), 3]
(b) If [fi(x,)—1(x,) [ < (X, — X2)2, for allx, x, € R. Find the equation of tangent to the curve y = (x) at the

point (1, 2). [JEE 2005 (Mains), 2]
Q.11 Iff(x)=min. (1, x?,x3), then
(A) f(x)1is continuous V.X € R (B) f'(x) >0, Vx>1

(C) f(x) is not differentiable but continuous V xeR (D) f(x) is not differentiable for two values of x
[JEE 2006, 5]

(x-D"

Q.12 Let g(x)= —ln cos™ (x—1)

; 0 <x <2, mand n are integers, m # 0, n > 0 and let p be the left hand

derivative of | x — 1 |atx =1. If Lim g(x)=p, then

x—l1"
(A)n=1,m=1 B)n=1,m=-1 (C)n=2,m=2 (D)n>2, m=n
[JEE 2008, 3]
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KEY CONCEPTS (METHOD OF DIFFERENTIATION)
DEFINITION :
If x and x+h belong to the domain of a function f defined by y=1(x), then

Limit f&x+0)-()
h—0 h

if it exists, is called the DerivaTive of f at x & is denoted by

(x) or & ey Limit £+ =)
f'(x) or o We have therefore, f'(x)= 57, —
The derivative of a given function fat a point x =a of its domain is defined as :

Limit f@+h)-f(a)

h—s0 o , provided the limit exists & is denoted by f'(a).

Limit f&)—f(a)

X—a X—a
DERIVATIVE OF f(x) FROM THE FIRST PRINCIPLE /ab INITIO METHOD:
Limit 8 _ Limig J0O0Z09 _ gy dy

Note that alternatively, we can define f'(a) = , provided the limit exists.

If f(x) is a derivable function then

> x-0 §x ox—0 OX dx

THEOREMS ON DERIVATIVES :

Ifu and v are derivable function of X, then,

: _du by A DO -

@) ™ (uxv) = " * " (i) dX(K =K B , where K is any constant
eee i _ d_V E 13 2

(iiii) ix (u.v)=u = tv " known as “ Propuct RULE

d V() —u(d
(@iv) ix (%j = w where v#0 known as “ QUOTIENT RULE ”
A\
_ = ﬂ _ d_y E 13 L)

v) If y=1f(u) & u=g(x) then % o b CHAIN RULE
DERIVATIVE OF STANDARDS FUNCTIONS :

(i) Dx)=nx¥'; xeR, neR, x>0 (ii) D (e¥)=¢*

(iii) D (2% =a% Ina a>0 (iv) D (Inx)= + v) D (logx)= ~ log e

X X
(vi) D (sinx) =cosx (vii) D (cosx) =—sinx (viii) D =tanx = sec’x

(ix) D(secx)=secx . tanx (x) D (cosecx)=— cosecx . cotx

d
(xi) D (cotx) =—cosec’x (xii) D (constant) =0 where D = i

X
INVERSE FUNCTIONS AND THEIR DERIVATIVES :
(a) Theorem : If the inverse functions f & g are defined by y=f(x) & x=g(y) & if

f'(x) exists & f'(x) #0then g'(y) = ﬁ . This result can also be written as, if % exists &

d
B0, then Eo 1/ (L) o BBy ﬂ:l/[d_Xj
dx dy dx dx dy dx dy

(b) Results :

dx
gy * )

@) D(sin' x)= !

, —l<x<l (i) D(cos™' x)= , —l<x<l
2

1-x 1-x?

! xeR (iv) D (sec”' x)= !

(iii)  D(an™'x)= ;
1+x? x| Vx*-1

s |X|>1
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10.

11.

12.

13.

) D(cosec 'x)= s x[>1 (vi) D(cot™' x)=—

-1
- , XeR
|x| Vx2—1 1+x?

Note : In general if y= f(u) then dy =f'(u). du .
dx dx

LOGARITHMIC DIFFERENTIATION : To find the derivative of :
@) a function which is the product or quotient of a number of functions OR

(i) a function of the form [f(x)]¢® where f & g are both derivable, it will be found convinient to take
the logarithm of the function first & then differentiate. This is called LOGARITHMIC

DIFFERENTIATION .

IMPLICIT DIFFERENTIATION: ¢ (x,y)=0

({)] In order to find dy/dx, in the case of implicit functions, we differentiate each term
w.r.t. X regarding y as a functions of x & then collect terms in dy/dx together on one side to
finally find dy/dx.

(i) In answers of dy/dx in the case of implicit functions, both x & yare present .

PARAMETRIC DIFFERENTIATION :

dy _dy/de

dx  dx/do
DERIVATIVE OF A FUNCTION W.R.T.ANOTHER FUNCTION :

dy dy/dx f(x)

Let y=1f(x) ; z=g(x) then dz dz/dx gm0

If y=1(0) & x=g(0) where 0 is a parameter, then

DERIVATIVES OF ORDERTWO & THREE :

Let a function y = f(x) be defined on an open interval (a, b). It’s derivative, if it exists on
(a, b) 1is a certain function f'(x) [or (dy/dx) or y] & 1is called the first derivative
of y w.r.t. x.

If it happens that the first derivative has a derivative on (a, b) then this derivative is called the second
derivative of y wit. t. x & is denoted by f''(x) or(d*y/dx?) or y".

3 2
Similarly, the 3" order derivative of y w. r. t./x , if it exists, is defined by ng(ﬁJ Itis also
denoted by f"'(x)ory"".
f(x)._ g(x) " h(x)
If F(x)= |Ix) m(x) n(x)|, where f,g,h,1,m,n,u,v,w aredifferentiable functions of x then
ux) vx) wx)
f(x) g'kx) b f(x) gx) hx) fx) gx) hE)
F'x)=|1x) mx) nx| + [I'(x) mEx) n'Ex)| + [lx) mEx) nx)
ux) v(x) wi(x) ux) v(x) w(x) u'x) v w(x)
L’ HOSPITAL’S RULE :
Iff(x) & g(x) are functions of x such that :

(i) Limit f(X) =0= Limit g(X) OR Limit f(X) == Limit g(x) and

X—a X—>a X—>a X—a
(i) Both f(x) & g(x)are continuous atx =a &
(iii)  Both f(x) & g(x) are differentiable atx =a &

(iv)  Bothf'(x) & g'(x)arecontinuousatx=a, Then

Limit f®) _ Limit f'®) _ Limit ") &

soon till indeterminant form vanishes.
X—a g(x) X—a g’ (X) X—a g" (X)
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14.

ANALYSIS AND GRAPHS OF SOME USEFULFUNCTIONS :

2 tan"' x |X| <1
(M) y=f(x)=sin‘(lzxz] =|n—-2tan'x x> 1
+ X
—(Tc+2tan71x) x < -1
HIGHLIGHTS :
(a) Domain is xeR &
. T T
range is [—E ; 5}
(b) f is continuous for o y
all x but not diff.
at x=1,-1 I D
2
; = for |x|<1 — 0 I
(©) d_y = | non existent for |X| =1 D I
x -2 for |x| >1
1+x
. . —t/2
d I[in(-1,1) & D in(-0,-1) U (1,)
. 1-x? 2 tan”' x if x=20
ii Consider =f(x)=cos’! ( ] =
) y=1() 1+x? —2tan'x if x<0
HIGHLIGHTS :
(a) Domain is x eR & y
range is [0, m) T
(b) Continuous for all x
but not diff. at x=0 \ 1
/2
2 for . x >0
dy 1+x \
(©) il non existent for x =10
* - 2 for x<0 N
1+x 1 0 1
d Lin (0,0) & D in (-9, 0)
5 2 tan' X |x| <1
(iiii) y=f(x)=tan'11 Xz =| 7 +2tan"'x x< -1
— X
—(n—2tan’1x) x>1
HIGHLIGHTS : y
(a) Domain is R-{1,-1} & o T2 o
. T T
rangeis | -—, = I I
5 ( 27 2j
(b) f is neither continuous =T 0 T X
nor diff. at x=1,-1 I 1
2
dy — 1+x° |X| * 1 c
¢ - = _
© dx Lon existent |x| =1 m/2
d [V x inits domain (e) It is bound for all x
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—(n+3sin*1x) if —1<x<-

) y=f(x)=sin!'(3x—-4x%)=| 3sin"'x if —1<x<1
m - 3sin”'x if ;<x<I1
HIGHLIGHTS : y
(a) Domain is x e [-1,1] & /2
PO DS D
rangeis | =57 o I
1 'Jz_§ /
. _1 -12 Y 172
()  Notderivableat |x| = > — G Gt x
3 : 1 1
o o [@E Ty |
c e
3 : 1 1
dx - — if XE(-I,-;)U(;,I)
—7/2
(d) Continuous everywhere in its domain
3cos'x —2n if —1<x< -7
— — -1 3 — -1 :
v) y=f(x)=cos'(4x’-3x)=|2n-3cos x if -1<x<4
3cos ' x if J<x<I
HIGHLIGHTS :
(a) Domain is x € [-151] &
range is [0, 7] y
T
(b) Continuous. everywhere in its domain
: 1 1/ i\D
but not derivable at x = 507 D
/2
© ~1in [-— l] &
2°2 I
1 -1 1
Din (—,1}{1,——) G2 0 124G X
2 2
3 9 1 1
dy v & if x E(_E 7)
@ = -
X — — 1 XE(—I E)U(E’l)
GENERAL NOTE :
Concavity in each case is decided by the sign of 2™ derivative as :
d’y d’y
i =0 = Concave upwards ; i <0 = Concave downwards
D = DECREASING 5 I = INCREASING
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EXERCISE-I
Q.1  Let f, gand 4 are differentiable functions. If /(0)=1;g(0)=2 ;& (0)=3 and the derivatives of their
pair wise products at x =0 are
(fg)0)=6; (gh)(0)=4 and (h)'(0)=5
then compute the value of (fgh)'(0).
dy

Q.2(a) Ify=(cos x)™ + (Inx)* find .

eX x® eX dy
If y=¢* +e¢* +x° . Find —.
b)) If y=e e X ind i

1 1 1
. =X+ — —— — el ) - )
Q.3 Let f(x)=x Tt Ixt Ixt o . Compute the value of £(100) - /" (100)

2

Q4 Ify= X? + % xVx% +1+myx+vx? +1 prove that 2y=xy'+ In y’. where ' denotes the derivative.

2
Q.5 Ifx=cosecO-sin@ ; y=cosec"0—sin"0, thenshow that (x2.+ 4) (?j —n?(y?+4)=0-
X

Q6 If 4 x and x = tan"\(t) that B LANIETHD
. =SeC4a4 X and X = tan ,provetnat ~_ ==~ 5 .5 .
Y P dt (-6t +t*)?

1+ /nt 3+ 2/nt ?
Q7 Ifx=—s and y= 2 2™ Show that y &Y = a9 | 1.
t t dx dx

\/1+X2+\/1—X2

Q.8  Differentiate \/1—2 \/1—2 W.Lt ]_x4.
+x"—Vl=x

Q.9  Find the derivative with respect to x of the function:

2X T
. 71 . _
(log, sinx) (logg, cosx)™' +arcsin 1+ atx = R
[06. {6 —a3 (+3-x3 dy _ x* [1-y°
Q.10 If y1—x"44/1-y® =a’. (x’—y"), prove that d_x= — O
y —X
d 1
Q11 Ify=x+ j prove that S
X + L dx 2 X
X+ ! + 1
X+Foverusbonnnnnns X 1
X+
Xt it
X1 X2 . X X3 ,x2
A2 If y=1+ + + +..... upto (n+ 1) terms then prove that
QL2 Iy ) (xx) T (Y- x —xy) WP @D p
d X X X X
b AN ) S B I —
dx X[X—X X,-X X3—X X, —X
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Q.13

Q.14

Q.15

Q.16

Q.17

Q.18

Q.19

Q.20

Q.21

Q.22

Q.23

Q.24

Q.25

Suppose f(x) =tan (sirf1 (2x))
(@) Find the domain and range of f.

(b) Express f(x) as an algebaric function of x.
(c)  Finds" (1/4).

T —ooa 1 1 1 ﬂ _
If y=tanm — & x=sec’ ———, ue|0,—— |U| —,]1| provethat2—— +1=0.
1-u? 20 -1 J2 2 dx

Ify= Cot_lx/lJrs%nx +\/1—s?nx . find dy i x e (O,E U [E,nj.
J1+sinx —+/1—sinx dx 2 2

X [ox dy
If y=tan > +sin|2tan” ,|[—— |, thenfind forx € (-1, 1).
I+V1-x 1+x dx

Letf(x)=x?—4x -3, x>2 and let g be the inverse of f. Find the value of g’ where f (x) =2.

- 1 - _ 1 K
If y=tan 12—+tan : 5 +tan 12—+tan e

...... to n terms.
X +x+1 X +3x+3 X" +5x+7 X2 +7x+13

Find dy/dx, expressing your answerin 2 terms.

x v\ d
Ify=ln(xe -ay)y find d_Z'

2
(1 + tan y)
v 2)

tan Y
2

d
et 2

y
_t __l =
If x=tan n

5 siny(1 + sin y + cos y).

arcsin—=

= v 2(x% +v2
Ifyx? 4y’ =e 5" Prové that dxz = Ez _-;;,3 ), x>0.

If x =2cost — cos2t & y= 2sint —sin2t, find the value of (d’y/dx?) when t = (n/2).

42
Find the value of the expression y3 d_}z/ on the ellipse 3x* +4y?>=12.
X

If f: R— Ris a function such that f(x) = x3+x2{"(1) + xf"(2) +{"(3) for all x € R, then prove that
£(2)=f(1) - £(0).
g(x), x<0

Let g(x) be a polynomial, of degree one & f(x) be defined by f(x)= {

( 1+x j”x
, x>0
Find the continuous function f(x) satisfying f'(1)=1f(—1) 2+x
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EXERCISE-II

dy sina
Q.1 If siny=xsin(a+y),show that = .
dx  1-2xcosa+x’

Q.2 Find apolynomial function f(x) such that f(2x)=/"(x) /" (X).

d
Q.3 If y= arccos % then show tha Y_ 6 , sinx > 0.
| cos’ x dx c0S2X +cosdx
2

d
Q.4  Lety=xsinkx. Find the possible value of k for which the differential equation —Z +y=2k cos kx
holds true forall x € R. dx

Q.5  Provethatif |a, sinx +a,sin2x+....... +a sinnx |<[sinx|forx € R, then
la, +2a,+3a; +... +na [<1

Q.6  The function /: R — R satisfies f(x?) - f"(x) = f'(x) - f'(x?) for all real x. Given that /(1) =1 and
f"(1) =8, compute the value of f'(1)+f"(1).
2
Q.7(a) Show that the substitution z= ln[tan %) changes the equation dy +cot x dy +4ycosec’x =0 to

d_2 dx
(d2y/dz2)+ 4y =0. X
(b) Ifthe dependent variable y is changed to 'z' by the substitution y = tan z_then the differential equation
dzy_1+2(1+y)(dy 2

2 . d°z 2 dz 2
—~— | ischangedto — = cos” z#k|'—— | Jthen find the value of k.
dx dx dx

dx? 1+y2

1+ (dy/axP ] ! !

can be reduced to the form R?3 = 3t 7 -
sz/dXZ (dzy/dxz)2 (dzx/dyz)2
Also show that, if x=a sin20(1+c0s20) & y=ac0s20(1—cos20) then the value of R equals to 4a cos36.

Q.8 ShowthatR =

sin X
Q9 Letf(x)= T if x#0and f(0)=1. Define the function f' (x) for all x and find f" (0) if it exist.

Q.10 Suppose fand g are two functions such thatf, g: R — R,

f(x)=ln(l+mj hd g(x)=ln[x+mj

1

then find the value of x e2®) (f LLD +g'(x) atx=1.
X

xe” x<0
Q.11 Letf(x)= [ then prove that

X+X°4%x° x>0

(a)  fiscontinuous and differentiable for all x.
(b)  f'iscontinuous and differentiable for all x.

2

x3(1—x)sin(ij if 0<x<1
X

Q.12 f:[0,1] > Risdefinedas f(x)= { , then prove that
0 if x=0

(a)  fisdifferentiablein[0, 1] (b)  fisboundedin[0,1] (¢)  f"isboundedin|O0, 1]
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+ f f
Let f(x) be a derivable functionat x=0 & f (X y) _ I+ 1)

Q.13 K ” (k e R, k#0,2). Show that
f(x)1s either a zero or an odd linear function.
f —f f(y)—-a
Q.14 Let W = % +xy forallreal x and y. If f(x) is differentiable and f'(0) exists
for all real permissible values of'a' and is equal to /54 — 1 — 52 . Prove that f (x) is positive for all real x.
Q.15 Column-I Column-IT
ln(l+x3)-sinl, if x>0 .
A) f(x)= [ X (P) continuous everywhere but not
0, if x<0 differentiable at x =0
2 1
In“(1+x)-sin—, if x>0 . )
B) g(x)= X Q) differentiable at x = 0but
L0, if x<0 derivative is discontinuous atx =0
oo 1+ 222 if x>0
©) u®Xx-= 2 R) differentiable and has
L0, if x<0 continuous derivative
Lim 2—Xtan*1 2 continuous and differentiable
() v(y=Lim " tan™| 5 () contin
(x-a)* (x-a)® 1 (x-a)* (x-a)® 1
Q.16 If f(x)=|(x-b)* (x-b)>" 1| then f'(x)=1.|(x-b)* (xb)?> 1|.Find the value of A.
(x—)* (x—)® 1 (x—)* A(x—)? 1
cos(x+x2) sin(x+x2) —cos(x+x2)
Q.17 Iffx)= sin(x—x?) »cos(x—x°) sin(x—x>){ then find f (x).
sin2x 0 sin2x?
Q.18 Ifa bearepeated root of a quadratic equation f(x) =0 & A(x), B(x), C(x) be the polynomials of
A(x) B(x) C(x)
degree 3,4 & 5 respectively , thenshow that | A(a) B(a) C(a)| is divisible by f(x), where dash
A'(a) B'(a) C'(a)
denotes the derivative.
a+x b+x c+x
Q.19 Let f(x)=|/+x m#x n+x|. Showthat f " (x)=0 and that f(x)=1f(0) +kx where k denotes
p+x q+x Tr+x
the sum of all the co-factors of the elements in £(0).
Q.20 IfY=sXandZ=tX, where all the letters denotes the functions of x and suffixes denotes the differentiation
w.r.t. X then prove that
X Y Z st
X, Y Z|=x3! 1
$; 4
X, Y, Z,
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EXERCISE-I1I

Evalute the following limits using L’ Hospital’s Rule or otherwise :

[ 1 1—x2 x+ln(\/x2+l—x)
im — .
Q1 x>0 | xsin'x  x? Q2 I;l)ng 3
.1 1 ()
Lim | — _ Lim x
Q3 x—0 |:X2 Sin2 X:| Q4 x>0t
03 Lim 1+sinx—cos>;+ln(1—x) 06 . sin x — (sin X)sinx
' x—0 X tan"x ' x—>7 1—sinX +n(sinx)
.7 Find the value of f{0) so that the function f(x)= 1.2 , X #(01s continuous at x =0 & examine the
2
X e*-
differentiability of f(x) at x =0.
. 2
08 Lim sin(3x~)
x990 ncos(2x°—x)
: asinx —bx +cx? +x°
Q.9 I;I_)n(} > ROORTOX 3 x ; exists & is finite, find the values of a, b, ¢ & thelimit.
2x“In(1+x)—-2x" +x
6000 /i 16000
Q.10 Evaluate: Lim X 5 (sin );())00
x>0 x“-(sinx)
. l—cosx-cos2x-cos3x........ cosnx
Q.11 If I;g{)l 2 has the value equal to 253, find the value of n
(wheren e N).
Q.12 Givenareal valued function f(x) as follows:
2 : X
X~ +2cosx—2 1 =1
f(x) = : for x<0; £(0)= 57 & ()= S X 6“(2 cosx) for x > 0. Test the
X X
continuity and differentiability of f(x) at x =0.
Q.13 Leta,>a,>a; du........ a,>15.p,>p, > Py >p,>0;suchthatp, +p, +p;+.... +p,=1
Also F (x)= (plaf +pya; +......+p a; )‘/X . Compute
(a) Lim F(x) (b) LimF(x) (¢) Lim F(x)
x—0* X—>00 X—>—0
Q.14 If Lim 1—cos3x-cos19x -cos217x ......... cos3 ' x —310_find the value of .
20 L C0S~ X "COS— X COS £ Xennnn.... cos— X
3 9 27 n
Q.15 Column-I contains function defined on R and Column-II contains their properties. Match them.
Column-I Column-IT
n
1+ tanzl
. n
@ | equal ® e
1+sin—
3n
B) Lim ! — equals Q) ¢?
x—0" -
(1+ cosec x)/M¢inx)
) | 1/x
©) Lim [— cos Xj equals R) "
x—0 \ 7T
(S) e7t/6
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EXERCISE-IV

Q1 Iffkx)= 2 , then find the domain and the range of f. Show that f is one-one. Also find the function
df dlx(x) and its domain. [ REE'99,6 ]

Q.2(a) If x2+y>=1, then:
(A) yy” 2(y)y+1= (B) yy'+(y')’+1=0
©) yy'-()-1=0 (D) yy" +2 (') +1=0

[ JEE 2000, Screening, 1 out of 35 ]

(b) Suppose p(x)=a,+a x+a,x*+.....+a x".If |p(x)| < |e"‘1

a,+2a,+ ... +na | <1. [ JEE 2000 (Mains) 5 out of 100 ]
Q.3(a) If I (x+y)=2xy,theny'(0)=
(A)1 (B)-1 (©)2 (D)0 [ JEE 2004 (Scr.)]
4 x+c 1
bsin” | —— |, ——<x<0
2 2
(b)) fx)= % at x=0
ax/2
© _R O<x<l
X 2

If f(x) is differentiable at x =0 and | ¢ | < 1/2 then find the value of'a'and prove that 64b?= 4 — 2.

[JEE 2004, 4 out of 60]
Q.4(a) If y=y(x) and it follows therelation X cos y +y cos x = 1t, then y"(0)

(A1 (B)-1 (C)m (D)=
(b) If P(x) is a polynomial of degree less than or equal to 2.and S is the set of all such polynomials so that
P(1)=1,P(0)=0and P'(x)>0 V x € [0, 1], then
(A)S=¢ (B)S={(1-a)x*>+ax, 0<a<2
(C) (1 —a)x*+ax, a € (0, ) (D)S={(1-ax*+ax, 0<a<l

(c) If f(x)is acontinuous and differentiable function and f (l/ n) =0,V n>1andn €1, then
(A)fxX)=0,x € (0, 1] B)f(0)=0,f'(0)=0
O)f'x)=0=1f"(x),x e (0, 1] (D) £(0)=0and f' (0) need not to be zero
[JEE 2005 (Scr.)]

(d) If fx=y)=f(x) g —f(¥) g (x)and g (x—y) =g (x) - g (y) T f(x) - f(y) forall x, y € R. If right
hand derivative at x = 0 exists for f(x). Find derivative of g (x)atx=0. [JEE 2005 (Mains), 4]

Q.5 Forx>0, Ling((sin X)X+ (l/x)sm) is
(A)0 (B)—1 ©)1 (D)2 [JEE 2006, 3]

2
Q.6 j—); equals
y

a2y v ) (v a2y \( dy )2 a2y )V dy )
o o-(2) (&) oY o (Y

[JEE 2007, 3]
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Q.7(a) Let g (x) = In f (x) where f (x) is a twice differentiable positive function on (0, o) such that
f(x+1)=xf(x). ThenforN=1,2,3

1 1
" N+_ _ " _ _
s ( 2) s [2j

(A)—4 1+l+i+ ..... +; (B)41+l+i+ ..... +;
9" 25 (2N —1)2 9 25 (2N-1)?

(b) Letfand gbe real valued functions defined on interval (-1, 1) such that g"(x) is continuous, g(0) # 0,
g'(0)=0, g"(0)#0, and f (x) =g (x) sin X.

STATEMENT-1: Ling [g(x) cot x —g(0) cosec x] =£"(0)
X—>

and

STATEMENT-2: £'(0) =g(0)

(A) Statement-1 is True, Statement-2 is True; statement-2 is a correct explanation for statement- 1
(B) Statement-1 is True, Statement-2 is True ; statement-2is NOT a correct explanation for statement-1
(C) Statement-1 is True, Statement-2 is False

(D) Statement-1 is False, Statement-2 is True [JEE 2008, 3 + 3]
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DIFFERENTIABILITY

EXERCISE-I
Q 1. f(x) is conti. but not derivable at x =0

Q2.conti. V x € R,notdiff. atx=0,1 &2

Q 4. conti. but not diff.at x =0 ; diff. & conti. at x =1/2 Q5. conti. but not diff. atx =0
Q7. fiscont. butnot diff. atx =0 Q8. (1M =3,f(1")=-1
Q9.a=12,b=32 Q 10.notderivableatx=0& x=1

Q 11. fis cont. & derivable at x =—1 but f'is neither cont. nor derivable at x = 1

Q 12. discontinuous & not derivable at x = 1, continuous but not derivable atx =2

Q 13. not derivableatx =0

Q14.fisconti.atx=1,3/2 & disconti. at x =2, fis not diff. at x =1, 3/2,2

Q15. (fog)(x) =x+1 for—-2<x<-1,-(x+1)for—-1 <x<0 & x—1 forO<x<2.
(fog)(x) is cont. at x =—1, (gof)(x) =x+1 for—1,<x <1 &3 —x for | <x<3.
(gof)(x) is not differentiable atx =1

Q16. a=# l,b=0,p=%and q=-1

Q17. If ae(0,1) f'(0")=-1; f'(07)=1 = continuous but not derivable
a=1; f(x)=0 whichis constant = continuous and.derivable
If a>1 f'(07)=-1; f' (0")=1 = continuous but not derivable
Q18. conti.in0<x<1&notdiff. atx=0

Q.19 fis conti. but not diff. atx = I, disconti. at x = 2:& x = 3. cont.& diff.at all other points

Q20 f'(x)=—f(x) Q.21 continuous butnot defivableatx = J3 Q.22 f'(0)= ﬁ
2 @ £ (=00 [l == T and | ] =T @x=——nel
Q23 @ £'(O)=0, M) |G| = andf'| 2= (@x=5— ne
Q24 f(x)=x = f(10)=10 Q.25 5150
EXERCISE-II
Q1 2 Q.2 conti. & diff. Q3 0 Q4 f'(0H=0,f'(00)=1
Q5 2 Q.6 D Q.7 A Q8 D
Q9B Q.10 B Q.11 D Q.12 A
Q13 A Q14 D Q.15 A Q.16 D
Q.17 A,C Q.18 A,B Q.19B,D Q.20B,D
Q.21 B,D Q.22 A,B,D Q.23 A,B,D Q.24A,B,D
Q25 A,D
EXERCISE-III
Q1 D
Q2 C Q.3 Discont. hencenotderi.atx=1& —1. Cont. & deri. atx =0
Q4 (@D, (A, (c)D Q6 D Q7 C Q8 a=1;b=0(gof)(0)=0
Q9 f'(a)=0 Q.10 (a) A, (b)y—-2=0 Q11 A,C Q12 C

ok ok sk sk sk sk ok ook sk sk sk ok ook ook sk sk ok ok sk ok sk ok ok ok

ETOOS Academy Pvt. Ltd. : F-106, Road No. 2, Indraprastha Industrial Area, End of Evergreen Motors
(Mahindra Showroom), BSNL Office Lane, Jhalawar Road, Kota, Rajasthan (324005)

(]
<



METHOD OF DIFFERENTIATION
EXERCISE-1

Q1 16

X nx

Q.2 (a) Dy= (COSX)IHX {M — tanx lnx} + (lnx)x [IL + 1n(1nX)j|;

(b) dy _ e .xex{e—kexlnx}exx XXX 1+ elnx +x eex{l—kexlnx}
dx X X
1+41-x* 32 8

3 100 8 9 -
Q Q x° Q 16+7* 1n2

13 (_l 1) - (b) f(x) = /—ZX (o 1093 15 Lot
Q‘ (a) 2’ 2 (—O0,00)’( ) (X)_ 1—4X2 ) (C) 9 Q‘ 2 2

iy 1-2x I 18 1 1 19 Y. Xx/nx+Xx/nx./ny +1
Q16 ,j— 2 Q7 QI8 T Y X sy ina)

—z[l+ln§}( if x<0
9 362
Q2 _3 Q23 -, Q25 f(o= )
2 X
( Lt XJ if x>0
24X
EXERCISE-1II
4x3
Q2 - Q4 Kk=1,—1lor 0 Q6 6 Q.7(b) k=2
xcosxz—smx 20 |
Q9 f'(x)= X ;£ (0)= — 3 Q.10 zero
0 if x=0

Q.15 (A)R,S;(B)Q,S;(C)P;(D)R,S Q16 3 Q.17 2(1+2x).cos 2(x + x2)

EXERCISE-ITI

5 1 1 1
Q1. - Q2 Q375 Q41 Q5. -5 Q6 2
Q.7 f(0)=1; differentiable atx =0, f'(0")=—-(1/3); f(0°)=—-(1/3) Q.8 -6
Q9 a=6b=6c=0; % Q.10 1000 Q11 n=11
Q.12 fiscont. but not derivable at x=0 Q.13 (a)a}'-a..a’; (b)a;; ()a,
Q.14 n=4 Q.15 (A)S: (B)P:(C)R

EXERCISE-IV

. d . 3
Q.1 Domainof f(x)=R - {-2,0}; Range of f(x)=R—-{-1/2, 1}; d_x[f (x)] = T=x2

Domainof f'(x)= R-{-1/2,1} Q.2(a)B Q3(@) A;(b) a=1
Q4 (a) C;(b)B; (¢) B, (d)g'(0)=0 Q5 C Q6 D Q7 (@A, (b)D

ETOOS Academy Pvt. Ltd. : F-106, Road No. 2, Indraprastha Industrial Area, End of Evergreen Motors

21
(Mahindra Showroom), BSNL Office Lane, Jhalawar Road, Kota, Rajasthan (324005)



