

For More Study Material & Test Papers Visit : www.mathsiit.com

DETERMINANT

MANOJ CHAUHAN SIR(IIT-DELHI) EX. SR. FACULTY (BANSAL CLASSES)

<u>KEY CONCEPTS</u> DETERMINANT

The symbol $\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$ is called the determinant of order two. 1. Its value is given by : $D = a_1 b_2 - a_2 b_1$

The symbol $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$ is called the determinant of order three. 2.

Its value can be found as : $D = a_1 \begin{vmatrix} b_2 & c_2 \\ b_2 & c_2 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix}$ OR

$$\mathbf{D} = \mathbf{a}_1 \begin{vmatrix} \mathbf{b}_2 & \mathbf{c}_2 \\ \mathbf{b}_3 & \mathbf{c}_3 \end{vmatrix} - \mathbf{b}_1 \begin{vmatrix} \mathbf{a}_2 & \mathbf{c}_2 \\ \mathbf{a}_3 & \mathbf{c}_3 \end{vmatrix} + \mathbf{c}_1 \begin{vmatrix} \mathbf{a}_2 & \mathbf{b}_2 \\ \mathbf{a}_3 & \mathbf{b}_3 \end{vmatrix} \dots \dots \text{ and so on }.$$

In this manner we can expand a determinant in 6 ways using elements of ; \mathbf{R}_1 , \mathbf{R}_2 , \mathbf{R}_3 or \mathbf{C}_1 , \mathbf{C}_2 , \mathbf{C}_3 .

- Following examples of short hand writing large expressions are: 3.
 - $a_1 x + b_1 y + c_1 = 0.....(1)$ The lines : (i) $a_{2}^{1}x + b_{2}^{1}y + c_{2}^{1} = 0.....(2)$ $a_{3}x + b_{3}y + c_{3} = 0.....(3)$ are concurrent if, $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_2 & b_2 & c_1 \end{vmatrix} = 0$.

abc + 2 fgh -

Condition for the consistency of three simultaneous linear equations in 2 variables.

 $ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$ represents a pair of straight lines if : (ii)

$$af^{2} - bg^{2} - ch^{2} = 0 = \begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix}$$

(iiii) Area of a triangle whose vertices are (x_r, y_r) ; r = 1, 2, 3 is :

 $D = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ y_1 & y_2 & 1 \end{vmatrix}$ If D = 0 then the three points are collinear.

Equation of a straight line passing through $(x_1, y_1) \& (x_2, y_2)$ is $\begin{vmatrix} x & y & l \\ x_1 & y_1 & l \\ x_2 & y_2 & 1 \end{vmatrix} = 0$ (iv)

4. **MINORS** :

The minor of a given element of a determinant is the determinant of the elements which remain after deleting the row & the column in which the given element stands . For example, the minor of a_1 in (Key

Concept 2) is $\begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix}$ & the minor of b_2 is $\begin{vmatrix} a_1 & c_1 \\ a_3 & c_3 \end{vmatrix}$.

Hence a determinant of order two will have "4 minors" & a determinant of order three will have "9 minors".

5. **COFACTOR**:

If M_{ii} represents the minor of some typical element then the cofactor is defined as :

 $C_{ij} = (-1)^{i+j} \cdot M_{ij}$; Where i & j denotes the row & column in which the particular element lies. Note that the value of a determinant of order three in terms of 'Minor' & 'Cofactor' can be written as : $\mathbf{D} = \mathbf{a}_{11}\mathbf{M}_{11} - \mathbf{a}_{12}\mathbf{M}_{12} + \mathbf{a}_{13}\mathbf{M}_{13} \text{ or } \mathbf{D} = \mathbf{a}_{11}\mathbf{C}_{11} + \mathbf{a}_{12}\mathbf{C}_{12} + \mathbf{a}_{13}\mathbf{C}_{13} \text{ \& so on}$

6. **PROPERTIES OF DETERMINANTS :**

P-1: The value of a determinant remains unaltered, if the rows & columns are inter changed.

e.g. if
$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = D$$

D & D' are transpose of each other . If D' = -D then it is **SKEW SYMMETRIC** determinant but $D' = D \Rightarrow 2D = 0 \Rightarrow D = 0 \Rightarrow$ Skew symmetric determinant of third order has the value zero.

P-2: If any two rows (or columns) of a determinant be interchanged, the value of determinant is changed in sign only. e.g.

Let
$$\mathbf{D} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
 & $\mathbf{D'} = \begin{vmatrix} a_2 & b_2 & c_2 \\ a_1 & b_1 & c_1 \\ a_3 & b_3 & c_3 \end{vmatrix}$ Then $\mathbf{D'} = -\mathbf{D}$.

P-3: If a determinant has any two rows (or columns) identical, then its value is zero.

e.g. Let
$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_1 & b_1 & c_1 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
 then it can be verified that $D = 0$.

P-4: If all the elements of any row (or column) be multiplied by the same number, then the determinant is multiplied by that number.

e.g. If
$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
 and $D' = \begin{vmatrix} Ka_1 & Kb_1 & Kc_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$ Then $D' = KD$

P–5: If each element of any row (or column) can be expressed as a sum of two terms then the determinant can be expressed as the sum of two determinants . e.g.

$$\begin{vmatrix} a_1 + x & b_1 + y & c_1 + z \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} + \begin{vmatrix} x & y & z \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

P-6: The value of a determinant is not altered by adding to the elements of any row (or column) the same multiples of the corresponding elements of any other row

(or column). e.g. Let
$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
 and
$$D' = \begin{vmatrix} a_1 + ma_2 & b_1 + mb_2 & c_1 + mc_2 \\ a_2 & b_2 & c_2 \\ a_3 + na_2 & b_3 + nb_2 & c_3 + nc_2 \end{vmatrix}$$
. Then $D' = D$

Note : that while applying this property ATLEAST ONE ROW (OR COLUMN) must remain unchanged .

P-7: If by putting x = a the value of a determinant vanishes then (x-a) is a factor of the determinant.

7. MULTIPLICATION OF TWO DETERMINANTS :

(i) $\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \times \begin{vmatrix} l_1 & m_1 \\ l_2 & m_2 \end{vmatrix} = \begin{vmatrix} a_1 l_1 + b_1 l_2 & a_1 m_1 + b_1 m_2 \\ a_2 l_1 + b_2 l_2 & a_2 m_1 + b_2 m_2 \end{vmatrix}$

Similarly two determinants of order three are multiplied.

(ii) If
$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \neq 0$$
 then, $D^2 = \begin{vmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \end{vmatrix}$ where A_i , B_i , C_i are cofactors

PROOF: Consider
$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \times \begin{vmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{vmatrix} = \begin{vmatrix} D & 0 & 0 \\ 0 & D & 0 \\ 0 & 0 & D \end{vmatrix}$$

Note :
$$a_1A_2 + b_1B_2 + c_1C_2 = 0$$
 etc

therefore,
$$\mathbf{D} \mathbf{x} \begin{vmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{vmatrix} = \mathbf{D}^3 \Rightarrow \begin{vmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{vmatrix} = \mathbf{D}^2 \text{ or } \begin{vmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \end{vmatrix} = \mathbf{D}^2$$

8. SYSTEM OF LINEAR EQUATION (IN TWO VARIABLES) :

- (i) Consistent Equations : Definite & unique solution. [intersecting lines]
- (ii) Inconsistent Equation : No solution . [Parallel line]
- (iii) Dependent equation : Infinite solutions . [Identical lines]

Let
$$a_1x + b_1y + c_1 = 0$$
 & $a_2x + b_2y + c_2 = 0$ then :

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2} \implies$$
 Given equations are inconsistent

& $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \implies$ Given equations are dependent

9. **CRAMER'S RULE :** [Simultaneous Equations Involving Three Unknowns] Let $a_1x + b_1y + c_1z = d_1 \dots (I)$; $a_2x + b_2y + c_2z = d_2 \dots (II)$; $a_3x + b_3y + c_3z = d_3 \dots (III)$ Then, $x = \frac{D_1}{D}$, $Y = \frac{D_2}{D}$, $Z = \frac{D_3}{D}$.

Where
$$\mathbf{D} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
; $\mathbf{D}_1 = \begin{vmatrix} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end{vmatrix}$; $\mathbf{D}_2 = \begin{vmatrix} a_1 & d_1 & c_1 \\ a_2 & d_2 & c_2 \\ a_3 & d_3 & c_3 \end{vmatrix}$ & $\mathbf{D}_3 = \begin{vmatrix} a_1 & b_1 & d_1 \\ a_2 & b_2 & d_2 \\ a_3 & b_3 & d_3 \end{vmatrix}$

NOTE :

- (a) If $D \neq 0$ and alteast one of $D_1, D_2, D_3 \neq 0$, then the given system of equations are consistent and have unique non trivial solution.
- (b) If $D \neq 0 \& D_1 = D_2 = D_3 = 0$, then the given system of equations are consistent and have trivial solution only.

(c) If
$$D=D_1=D_2=D_3=0$$
, then the given system of equations are consistent and have infinite solutions.

In case $\begin{array}{c} a_1x + b_1y + c_1z = d_1 \\ a_2x + b_2y + c_2z = d_2 \\ a_3x + b_3y + c_3z = d_3 \end{array}$ represents these parallel planes then also $D = D_1 = D_2 = D_3 = 0$ but the system is inconsistent.

(d) If D = 0 but at least one of D_1, D_2, D_3 is not zero then the equations are inconsistent and have no solution.

10. If x, y, z are not all zero, the condition for $a_1x + b_1y + c_1z = 0$; $a_2x + b_2y + c_2z = 0$ &

$$a_3x + b_3y + c_3z = 0$$
 to be consistent in x, y, z is that $\begin{vmatrix} a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0.$

Remember that if a given system of linear equations have **Only Zero** Solution for all its variables then the given equations are said to have **TRIVIAL SOLUTION**.

<u>EXERCISE-I</u>

Q.1 (a) Prove that the value of the determinant
$$\begin{vmatrix} -7 & 5+3i & \frac{2}{3}-4i \\ 5-3i & 8 & 4+5i \\ \frac{2}{3}+4i & 4-5i & 9 \end{vmatrix}$$
 is real.

(b) On which one of the parameter out of a, p, d or x, the value of the determinant

 $\begin{vmatrix} 1 & a & a^2 \\ \cos(p-d)x & \cos px & \cos(p+d)x \\ \sin(p-d)x & \sin px & \sin(p+d)x \end{vmatrix}$ does not depend.

Q.2 Without expanding as far as possible, prove that

(a)
$$\begin{vmatrix} a^2 + 2a & 2a + 1 & 1 \\ 2a + 1 & a + 2 & 1 \\ 3 & 3 & 1 \end{vmatrix} = (a - 1)^3$$
 (b) $\begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^3 & y^3 & z^3 \end{vmatrix} = [(x - y)(y - z)(z - x)(x + y + z)]$

Q.3 If
$$\begin{vmatrix} x^3 + 1 & x^2 & x \\ y^3 + 1 & y^2 & y \\ z^3 + 1 & z^2 & z \end{vmatrix} = 0$$
 and x, y, z are all different then, prove that $xyz = -1$.

Q.4 Using properties of determinants or otherwise evaluate $\begin{vmatrix} 18 & 40 & 89 \\ 40 & 89 & 198 \\ 89 & 198 & 440 \end{vmatrix}$.

Q.5 Prove that
$$\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)^3$$
.

Q.6 If
$$D = \begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix}$$
 and $D' = \begin{vmatrix} b+c & c+a & a+b \\ a+b & b+c & c+a \\ c+a & a+b & b+c \end{vmatrix}$ then prove that $D' = 2D$.

Q.7 Prove that
$$\begin{vmatrix} 1+a^2-b^2 & 2ab & -2b \\ 2ab & 1-a^2+b^2 & 2a \\ 2b & -2a & 1-a^2-b^2 \end{vmatrix} = (1+a^2+b^2)^3.$$

Q.8 Prove that
$$\begin{vmatrix} a & b-c & c+b \\ a+c & b & c-a \\ a-b & b+a & c \end{vmatrix} = (a+b+c)(a^2+b^2+c^2).$$

Q.9 Show that the value of the determinant
$$\begin{vmatrix} \tan(A+P) & \tan(B+P) & \tan(C+P) \\ \tan(A+Q) & \tan(B+Q) & \tan(C+Q) \\ \tan(A+R) & \tan(B+R) & \tan(C+R) \end{vmatrix}$$
 vanishes for all values of

A, B, C, P, Q & R where
$$A + B + C + P + Q + R = 0$$

Q.10 Prove that
$$\begin{vmatrix} (\beta + \gamma - \alpha - \delta)^4 & (\beta + \gamma - \alpha - \delta)^2 & 1 \\ (\gamma + \alpha - \beta - \delta)^4 & (\gamma + \alpha - \beta - \delta)^2 & 1 \\ (\alpha + \beta - \gamma - \delta)^4 & (\alpha + \beta - \gamma - \delta)^2 & 1 \end{vmatrix} = -64(\alpha - \beta)(\alpha - \gamma)(\alpha - \delta)(\beta - \gamma)(\beta - \delta)(\gamma - \delta)(\gamma - \delta)(\beta - \gamma)(\beta - \delta)(\beta - \beta)(\beta - \beta$$

Q.11 For a fixed positive integer n, if D=
$$\begin{vmatrix} n! & (n+1)! & (n+2)! \\ (n+1)! & (n+2)! & (n+3)! \\ (n+2)! & (n+3)! & (n+4)! \end{vmatrix}$$
 then show that $\left[\frac{D}{(n!)^3} - 4\right]$ is divisible by n.

Q.12 Solve for x

(a)
$$\begin{vmatrix} x+2 & 2x+3 & 3x+4 \\ 2x+3 & 3x+4 & 4x+5 \\ 3x+5 & 5x+8 & 10x+17 \end{vmatrix} = 0.$$
 (b) $\begin{vmatrix} x-2 & 2x-3 & 3x-4 \\ x-4 & 2x-9 & 3x-16 \\ x-8 & 2x-27 & 3x-64 \end{vmatrix} = 0$

Q.13 If
$$a+b+c=0$$
, solve for x: $\begin{vmatrix} a-x & c & b \\ c & b-x & a \\ b & a & c-x \end{vmatrix} = 0.$

Q.14 If $a^2 + b^2 + c^2 = 1$ then show that the value of the determinant

$$\begin{vmatrix} a^{2} + (b^{2} + c^{2})\cos\theta & ba(1 - \cos\theta) & ca(1 - \cos\theta) \\ ab(1 - \cos\theta) & b^{2} + (c^{2} + a^{2})\cos\theta & cb(1 - \cos\theta) \\ ac(1 - \cos\theta) & bc(1 - \cos\theta) & c^{2} + (a^{2} + b^{2})\cos\theta \end{vmatrix}$$
 simplifies to $\cos^{2}\theta$.

Q.15 If
$$p+q+r=0$$
, prove that $\begin{vmatrix} pa & qb & rc \\ qc & ra & pb \\ rb & pc & qa \end{vmatrix} = pqr \begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix}$.

Q.16 If a, b, c are all different &
$$\begin{vmatrix} a & a^3 & a^4 - 1 \\ b & b^3 & b^4 - 1 \\ c & c^3 & c^4 - 1 \end{vmatrix} = 0$$
, then prove that, $abc(ab+bc+ca) = a+b+c$.

Q.17 Show that,
$$\begin{vmatrix} a^2 + \lambda & ab & ac \\ ab & b^2 + \lambda & bc \\ ac & bc & c^2 + \lambda \end{vmatrix}$$
 is divisible by λ^2 and find the other factor.
Q.18 Prove that : $\begin{vmatrix} a^2 & b^2 & c^2 \\ (a+1)^2 & (b+1)^2 & (c+1)^2 \\ (a-1)^2 & (b-1)^2 & (c-1)^2 \end{vmatrix} = 4 \begin{vmatrix} a^2 & b^2 & c^2 \\ a & b & c \\ 1 & 1 & 1 \end{vmatrix}$.

Q.19 In a
$$\triangle$$
 ABC, determine condition under which $\begin{vmatrix} \cot \frac{A}{2} & \cot \frac{B}{2} & \cot \frac{C}{2} \\ \tan \frac{B}{2} + \tan \frac{C}{2} & \tan \frac{C}{2} + \tan \frac{A}{2} & \tan \frac{A}{2} + \tan \frac{B}{2} \\ 1 & 1 & 1 \end{vmatrix} = 0$
Q.20 Prove that: $\begin{vmatrix} (a-p)^2 & (a-q)^2 & (a-r)^2 \\ (b-p)^2 & (b-q)^2 & (b-r)^2 \\ (c-p)^2 & (c-q)^2 & (c-r)^2 \end{vmatrix} = \begin{vmatrix} (1+ap)^2 & (1+aq)^2 & (1+ar)^2 \\ (1+bp)^2 & (1+bq)^2 & (1+br)^2 \\ (1+cp)^2 & (1+cq)^2 & (1+cr)^2 \end{vmatrix}$

Q.21 Prove that
$$\begin{vmatrix} (a_1 - b_1)^2 & (a_1 - b_2)^2 & (a_1 - b_3)^2 \\ (a_2 - b_1)^2 & (a_2 - b_2)^2 & (a_2 - b_3)^2 \\ (a_3 - b_1)^2 & (a_3 - b_2)^2 & (a_3 - b_3)^2 \end{vmatrix} = 2(a_1 - a_2)(a_2 - a_3)(a_3 - a_1)(b_1 - b_2)(b_2 - b_3)(b_3 - b_1)$$

Q.22 Prove that
$$\begin{vmatrix} 2 & \alpha + \beta + \gamma + \delta & \alpha\beta + \gamma\delta \\ \alpha + \beta + \gamma + \delta & 2(\alpha + \beta)(\gamma + \delta) & \alpha\beta(\gamma + \delta) + \gamma\delta(\alpha + \beta) \\ \alpha\beta + \gamma\delta & \alpha\beta(\gamma + \delta) + \gamma\delta(\alpha + \beta) & 2\alpha\beta\gamma\delta \end{vmatrix} = 0.$$

Q.23 If $ax_1^2 + by_1^2 + cz_1^2 = ax_2^2 + by_2^2 + cz_2^2 = ax_3^2 + by_3^2 + cz_3^2 = d$ and $ax_2x_3 + by_2y_3 + cz_2z_3 = ax_3x_1 + by_3y_1 + cz_3z_1 = ax_1x_2 + by_1y_2 + cz_1z_2 = f$,

then prove that
$$\begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} = (d-f) \left[\frac{d+2f}{abc} \right]^{1/2}$$
 (a, b, c \neq 0)

Q.24 If $S_r = \alpha^r + \beta^r + \gamma^r$ then show that $\begin{vmatrix} S_0 & S_1 & S_2 \\ S_1 & S_2 & S_3 \\ S_2 & S_3 & S_4 \end{vmatrix} = (\alpha - \beta)^2 (\beta - \gamma)^2 (\gamma - \alpha)^2$.

Q.25 If
$$u = ax^2 + 2bxy + cy^2$$
, $u' = a'x^2 + 2b'xy + c'y^2$. Prove that
$$\begin{vmatrix} y^2 & -xy & x^2 \\ a & b & c \\ a' & b' & c' \end{vmatrix} = \begin{vmatrix} ax + by & bx + cy \\ a'x + b'y & b'x + c'y \end{vmatrix} = -\frac{1}{y} \begin{vmatrix} u & u' \\ ax + by & a'x + b'y \end{vmatrix}.$$

<u>EXERCISE-II</u>

- Q.1 Solve the following using Cramer's rule and state whether consistent or not.
- Q.2 For what value of K do the following system of equations possess a non trivial (i.e. not all zero) solution over the set of rationals Q? x + Ky + 3z = 0, 3x + Ky - 2z = 0, 2x + 3y - 4z = 0. For that value of K, find all the solutions of the system.

Q.3 The system of equations

- $\alpha x + y + z = \alpha 1$ $x + \alpha y + z = \alpha 1$ $x + y + \alpha z = \alpha 1$ has no solution. Find α .
- Q.4 If the equations a(y+z) = x, b(z+x) = y, c(x+y) = z have nontrivial solutions, then find the value of 1

$$\frac{1}{1+a} + \frac{1}{1+b} + \frac{1}{1+c}$$
.

- Q.5 Given x = cy+bz; y = az + cx; z = bx+ay where x, y, z are not all zero, prove that $a^2 + b^2 + c^2 + 2 abc = 1$.
- Q.6 Given $a = \frac{x}{y-z}$; $b = \frac{y}{z-x}$; $c = \frac{z}{x-y}$ where x, y, z are not all zero, prove that: 1 + ab + bc + ca = 0.

- Q.7 If $\sin q \neq \cos q$ and x, y, z satisfy the equations $x \cos p - y \sin p + z = \cos q + 1$ $x \sin p + y \cos p + z = 1 - \sin q$ $x \cos(p+q) - y \sin (p+q) + z = 2$ then find the value of $x^2 + y^2 + z^2$.
- Q.8 Investigate for what values of λ , μ the simultaneous equations x + y + z = 6; x + 2y + 3z = 10 & $x + 2y + \lambda z = \mu$ have; (a) A unique solution. (b) An infinite number of solutions. (c) No solution.
- Q.9 For what values of p, the equations : x+y+z=1 ; x+2y+4z=p & $x+4y+10z=p^2$ have a solution? Solve them completely in each case.
- Q.10 Solve the equations : Kx+2y-2z=1, 4x+2Ky-z=2, 6x+6y+Kz=3 considering specially the case when K=2.
- Q.11 Let a, b, c, d are distinct numbers to be chosen from the set $\{1, 2, 3, 4, 5\}$. If the least possible positive solution for x to the system of equations $\begin{array}{c} ax + by = 1 \\ cx + dy = 2 \end{array}$ can be expressed in the form $\frac{p}{q}$ where p and q are relatively prime, then find the value of (p + q).

Q.12 If
$$bc+qr = ca+rp = ab+pq = -1$$
 show that $\begin{vmatrix} ap & a & p \\ bq & b & q \\ cr & c & r \end{vmatrix} = 0.$

- Q.13 If the following system of equations (a t)x + by + cz = 0, bx + (c t)y + az = 0 and cx+ay+(b-t)z=0 has non-trivial solutions for different values of t, then show that we can express product of these values of t in the form of determinant.
- Q.14 Show that the system of equations 3x - y + 4z = 3, x + 2y - 3z = -2 and $6x + 5y + \lambda z = -3$ has at least one solution for any real number λ . Find the set of solutions of $\lambda = -5$.
- Q.15 Solve the system of equations ; $z + ay + a^{2}x + a^{3} = 0$ $z + by + b^{2}x + b^{3} = 0$ $z + cy + c^{2}x + c^{3} = 0$

EXERCISE-III

Q.1 If the system of equations x - Ky - z = 0, Kx - y - z = 0 and x + y - z = 0 has a non zero solution, then the possible values of K are (A) -1, 2 (B) 1, 2 (C) 0, 1 (D) -1, 1

[JEE 2000 (Screening)]

Q.2 Prove that for all values of θ , $\begin{vmatrix} \sin\theta & \cos\theta & \sin 2\theta \\ \sin(\theta + \frac{2\pi}{3}) & \cos(\theta + \frac{2\pi}{3}) & \sin(2\theta + \frac{4\pi}{3}) \\ \sin(\theta - \frac{2\pi}{3}) & \cos(\theta - \frac{2\pi}{3}) & \sin(2\theta - \frac{4\pi}{3}) \end{vmatrix} = 0$

[JEE 2000 (Mains), 3 out of 100]

- Q.3 Find the real values of r for which the following system of linear equations has a non-trivial solution. Also find the non-trivial solutions :
 - 2 r x 2 y + 3 z = 0x + r y + 2 z = 0 2 x + r z = 0 [REE 2000 (Mains), 3 out of 100]

Solve for x the equation Q.4

 $\begin{vmatrix} a^2 & a & 1\\ \sin(n+1)x & \sin nx & \sin(n-1)x\\ \cos(n+1)x & \cos nx & \cos(n-1)x \end{vmatrix} = 0$

[REE 2001 (Mains), 3 out of 100]

Q.5 Test the consistency and solve them when consistent, the following system of equations for all values of λ x + y + z = 1

$$x + 3y - 2z = \lambda$$

 $3x + (\lambda + 2)y - 3z = 2\lambda + 1$ [REE 2001 (Mains), 5 out of 100]

Let a, b, c be real numbers with $a^2 + b^2 + c^2 = 1$. Show that the equation Q.6

$$\begin{vmatrix} ax - by - c & bx + ay & cx + a \\ bx + ay & -ax + by - c & cy + b \\ cx + a & cy + b & -ax - by + c \end{vmatrix} = 0$$

represents a straight line.

[JEE 2001 (Mains), 6 out of 100]

[JEE 2004 (Screening)]

Q.7 The number of values of k for which the system of equations (k+1)x + 8y = 4kkx + (k+3)y = 3k - 1has infinitely many solutions is (C) 2 (A) 0 **(B)**1 (D) inifinite [JEE 2002 (Screening), 3]

The value of λ for which the system of equations 2x - y - z = 12, x - 2y + z = -4, $x + y + \lambda z = 4$ has no Q.8 solution is (B) –3 (C) 2 (A) 3 (D) - 2

Q.9(a) Consider three points $P = (-\sin(\beta - \alpha), -\cos\beta), Q = (\cos(\beta - \alpha), \sin\beta)$ and R = $(\cos(\beta - \alpha + \theta), \sin(\beta - \theta))$, where $0 < \alpha, \beta, \theta < \pi/4$

(A) P lies on the line segment RQ (C) R lies on the line segment QP

(B) Q lies on the line segment PR (D) P, Q, R are non collinear

(b) Consider the system of equations

$$x-2y+3z = -1$$

-x+y-2z = k
$$x-3y+4z = 1$$

STATEMENT-1: The system of equations has no solution for $k \neq 3$. and

STATEMENT-2: The determinant $\begin{vmatrix} 1 & 3 & -1 \\ -1 & -2 & k \\ 1 & 4 & 1 \end{vmatrix} \neq 0$, for $k \neq 3$.

(A) Statement-1 is True, Statement-2 is True; statement-2 is a correct explanation for statement-1

(B) Statement-1 is True, Statement-2 is True; statement-2 is NOT a correct explanation for statement-1

- (C) Statement-1 is True, Statement-2 is False
- (D) Statement-1 is False, Statement-2 is True [JEE 2008, 3 + 3]

ANSWER KEY <u>DETERMINANT</u> EXERCISE-I

Q.1 (b) p

Q.4
$$-1$$
 Q.11 $(ab'-a'b)(bc'-b'c)(ca'-c'a)$ Q.12 $(a) x = -1$ or $x = -2$; $(b) x = 4$

Q.13
$$x = 0$$
 or $x = \pm \sqrt{\frac{3}{2}(a^2 + b^2 + c^2)}$

Q.17
$$\lambda^2 (a^2 + b^2 + c^2 + \lambda)$$

Q.19 Triangle ABC is isosceles.

EXERCISE-II

- Q.1 (a) x = 1, y = 2, z = 3; consistent (b) x = 2, y = -1, z = 1; consistent (c) inconsistent
- Q.2 K = $\frac{33}{2}$, x: y: z = $-\frac{15}{2}$: 1: -3 Q.3 -2 Q.4 2 Q.7 2

Q.8 (a) $\lambda \neq 3$ (b) $\lambda = 3, \mu = 10$ (c) $\lambda = 3, \mu \neq 10$

Q.9 x = 1 + 2K, y = -3K, z = K, when p = 1; x = 2K, y = 1 - 3K, z = K when p = 2; where $K \in R$

Q.10 If
$$K \neq 2$$
, $\frac{x}{2(K+6)} = \frac{y}{2K+3} = \frac{z}{6(K-2)} = \frac{1}{2(K^2+2K+15)}$,
If K=2, then $x = \lambda$, $y = \frac{1-2\lambda}{2}$ and $z = 0$ where $\lambda \in \mathbb{R}$
Q.11 19 Q.13 $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$
Q.14 If $\lambda \neq -5$ then $x = \frac{4}{7}$; $y = -\frac{9}{7}$ and $z = 0$;
If $\lambda = 5$ then $x = \frac{4-5K}{7}$; $y = \frac{13K-9}{7}$ and $z = K$ where $K \in \mathbb{R}$

Q.15
$$x = -(a + b + c)$$
, $y = ab + bc + ca$, $z = -abc$

EXERCISE-III

Q.1 D Q.3
$$r=2$$
; $x=k$; $y=\frac{k}{2}$; $z=-k$ where $k \in R - \{0\}$

 $Q.4 \qquad x = n\pi, n \in I$

Q.5 If $\lambda = 5$, system is consistent with infinite solution given by z = K, $y = \frac{1}{2}(3K + 4)$ and $x = -\frac{1}{2}(5K + 2)$ where $K \in \mathbb{R}$ If $\lambda \neq 5$, system is consistent with unique solution given by $z = \frac{1}{3}(1 - \lambda)$; $x = \frac{1}{3}(\lambda + 2)$ and y = 0.

Q.7 B Q.8 D Q.9 (a) D; (b) A