INVERSE TRIGONOMETRIC FUNCTION (ITF)

All trigonometric function are periodic and hence not invertible. To make them invertible we cut their domain. $\sin^{-1}x$, $\cos^{-1}x$, $\tan^{-1}x$ etc. denote angles or real numbers whose sine is x, whose cosine is x and whose tangent is x.

Principal Value Range and Domain of ITF

ITF	Domain	Range
sin ⁻¹ x	[-1, 1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
$\cos^{-1}x$	[-1, 1]	$[0, \pi]$
tan ⁻¹ x	R	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
cosec ⁻¹ x	$(-\infty, -1] \cup [1,\infty]$	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]-\{0\}$
sec ⁻¹ x	$(-\infty, -1] \cup [1,\infty]$	$\left[0,\pi\right]-\left\{\frac{\pi}{2}\right\}$
$cot^{-1}x$	R	$(0, \pi)$

$cos^{-1}x$ $cot^{-1}x$ $sec^{-1}x$	All ITF +ve
	sin ⁻¹ x tan ⁻¹ x cosec ⁻¹ x

Note

- (i) Ist quadrant common to all ITF.
- (ii) 3^{rd} quadrant is not used in ITF.
- (iii) 4th quadrant is not used in the clock wise direction.

Note

- (i) All ITF are bounded
- (ii) ITF will be reflection of function about line

y = x.

Graphs of all 6 ITF

 $(I) \quad y = \sin^{-1} x$

Highlights

- (i) $\sin^{-1} x$ is Aperiodic
- (ii) $\sin^{-1} x$ is bounded
- (iii) $\sin^{-1} x$ is odd function
- (iv) $\sin^{-1} x$ is increasing
- (v) Max. value is 1 and Min. value is -1
- (vi) $y = \sin^{-1} x$ $\frac{dy}{dx} = \frac{1}{\sqrt{1 x^2}}$
- (vii) Vertical Tangent

Graphs of all 6 ITF

 $(II) \quad y = \cos^{-1} x$

Highlights

- (i) $\cos^{-1} x$ is Aperiodic
- (ii) $\cos^{-1} x$ is bounded
- (iii) $\cos^{-1} x$ is neither odd nor even
- (iv) $\cos^{-1} x$ is always decreasing
- (v) Vertical tangent at x = 1 or -1
- (vi) Max value is π & min value is 0 (vii) $\frac{dy}{dx}$

Graphs of all 6 ITF

 $\overline{(III)} \quad y = \tan^{-1} x$

Highlights

- (i) $\tan^{-1} x$ is Aperiodic
- (ii) $\tan^{-1} x$ is bounded
- (iii) $\tan^{-1} x$ is odd function
- (iv) $\tan^{-1} x$ is always decreasing
- (v) No vertical tangent
- (vi) No maxima & no minima (vii) $\frac{dy}{dx}$

Graphs of all 6 ITF

 $\overline{(IV)}$ y = cot⁻¹ x

Highlights

- (i) $\cot^{-1} x$ is Aperiodic
- (ii) $\cot^{-1} x$ is bounded
- (iii) Neither odd nor even
- (iv) Decreasing
- (v) No vertical tangent
- (vi) No maxima & no minima (vii) $\frac{dy}{dx}$

Note

(1) $\tan^{-1}(x)$ and $\cot^{-1}(x)$ are continuous and monotonic on $R \neq$ that their range is R

Note

(2) If f (x) is continuous and has a range $R \neq it$ is monotonic.

e.g.
$$y = x^3 - 3x$$

Q. Domain & range of $y = sin^{-1} (e^x)$

Q. Domain & range of $\cos^{-1}[x]$

Q. Domain & range of $\cos^{-1} \{x\}$, $\sin^{-1} \{x\}$

Q. Domain & range of $\cot^{-1}(\operatorname{sgn} x)$

Q. Domain & range of $\tan^{-1} (\log_2 (x^2 - 2x + 2))$

Q. Value of $sin(tan^{-1}(2))$

Q. Value of $cos(tan^{-1}(3))$

$\sin\left(2\sin^{-1}\left(\frac{3}{5}\right)\right)$

Q. Value of $\cos(2 \tan^{-1}(2))$

Q. Value of $\cos(2 \tan^{-1}(3))$

Q. Value of

$$sin\left(\tan^{-1}\cos\cot^{-1}\left(-\frac{1}{\sqrt{3}}\right)\right)$$

Q. Show that :

 $\cos(\tan^{-1}(\sin(\cot^{-1}x))) = \sqrt{\frac{x^2+1}{x^2+2}}$

Q. If $\cos^{-1}x + \cos^{-1}y = 0$ find value of x + y

Q. If $\cos^{-1}x + \cos^{-1}y + \cos^{-1}z = 3\pi$ find value of x+y+z

Q. If $\sin^{-1}x + \sin^{-1}y + \sin^{-1}z = 3\pi/2$ find value of x+y+z

Q. True/False

 $y = sgn(cot^{-1}x) \& y = sin^2x + cos^2x$ are identical functions. Q. If $f : R \to [0, \pi/2)$ $f(x) = \tan^{-1} (x^2 + 2x + \alpha)$, function is onto then find α .
Q. If
$$f: R \to \left[\frac{-\pi}{4}, \frac{\pi}{2}\right]$$
,
 $f(x) = \tan^{-1}(x^2 + 2x + \alpha)$ f(x) is onto find α

Properties of Inverse Property - 1

(I) $f(x) = \sin(\sin^{-1}x)$

(II) $f(x) = \cos(\cos^{-1}x)$

(III) $f(x) = tan (tan^{-1}x)$

(IV) $f(x) = \cot(\cot^{-1}x)$

(V) $f(x) = cosec (cosec^{-1}x)$

(VI) $f(x) = \sec(\sec^{-1}x)$

(VII) $f(x) = \tan^{-1}(\tan x)$

Q.
$$\tan^{-1}\left(\tan\frac{13\pi}{3}\right)$$
 Q. $\tan^{-1}\left(\tan\frac{25\pi}{4}\right)$
Q. $\tan^{-1}\left(\tan\frac{19\pi}{4}\right)$ Q. $\tan^{-1}\left(\tan\frac{37\pi}{4}\right)$
Q. $\tan^{-1}\left(\tan\frac{17\pi}{3}\right)$

1

X

- Q. $\tan^{-1}(\tan 1)$
- Q. \tan^{-1} (tan 2)
- Q. $\tan^{-1}(\tan 3)$
- Q. $\tan^{-1}(\tan 4)$
- Q. $\tan^{-1}(\tan 5)$
- Q. $\tan^{-1}(\tan 6)$
- Q. $\tan^{-1}(\tan 7)$
- Q. $\tan^{-1}(\tan 8)$

(VIII) $f(x) = \cot^{-1}(\cot x)$

Example

Q.
$$\cot^{-1}\cot\left(\frac{11\pi}{3}\right)$$
 Q. $\cot^{-1}\cot\left(\frac{17\pi}{3}\right)$
Q. $\cot^{-1}\cot\left(\frac{13\pi}{7}\right)$ Q. $\cot^{-1}\cot\left(\frac{25\pi}{4}\right)$
Q. $\cot^{-1}\cot\left(\frac{19\pi}{4}\right)$ Q. $\cot^{-1}\cot\left(\frac{37\pi}{4}\right)$

- Q. $\cot^{-1} \cot(1)$
- Q. $\cot^{-1} \cot(2)$
- Q. $\cot^{-1} \cot(3)$
- Q. $\cot^{-1} \cot (4)$
- Q. $\cot^{-1} \cot(5)$
- Q. $\cot^{-1} \cot(6)$
- Q. $\cot^{-1} \cot(7)$
- Q. $\cot^{-1} \cot(8)$

(IX) $f(x) = \cos^{-1}(\cos x)$

Example

Q.
$$\cos^{-1}\left(\cos\frac{11\pi}{3}\right)$$
 Q. $\cos^{-1}\left(\cos\frac{25\pi}{4}\right)$
Q. $\cos^{-1}\left(\cos\frac{7\pi}{3}\right)$ Q. $\cos^{-1}\left(\cos\frac{37\pi}{4}\right)$
Q. $\cos^{-1}\left(\cos\frac{13\pi}{4}\right)$

- Q. $\cos^{-1}(\cos 1)$
- Q. $\cos^{-1}(\cos 2)$
- Q. $\cos^{-1}(\cos 3)$
- Q. $\cos^{-1}(\cos 4)$
- Q. $\cos^{-1}(\cos 5)$
- Q. $\cos^{-1}(\cos 6)$
- Q. $\cos^{-1}(\cos 7)$
- Q. $\cos^{-1}(\cos 8)$

(X) $f(x) = \sin^{-1}(\sin x)$

Find Values :

Q.

Q.
$$\sin^{-1}\left(\sin\frac{13\pi}{3}\right)$$
 Q. $\sin^{-1}\left(\sin\frac{25\pi}{4}\right)$
Q. $\sin^{-1}\left(\sin\frac{19\pi}{4}\right)$ Q. $\sin^{-1}\left(\sin\frac{37\pi}{4}\right)$
Q. $\sin^{-1}\left(\sin\frac{17\pi}{3}\right)$

Find Values :

- Q. $\sin^{-1}(\sin 1)$
- Q. $\sin^{-1}(\sin 2)$
- Q. $\sin^{-1}(\sin 3)$
- Q. $\sin^{-1}(\sin 4)$
- Q. $\sin^{-1}(\sin 5)$
- Q. $\sin^{-1}(\sin 6)$
- Q. $\sin^{-1}(\sin 7)$
- Q. $\sin^{-1}(\sin 8)$

(XI) $f(x) = \sec^{-1}(\sec x)$

(XII) $f(x) = \csc^{-1}(\csc x)$

Inequalities

 $(\cot^{-1}x)^2 - 5\cot^{-1}x + 6 > 0$ Q.

Q. Integral solution of the inequality $3x^2 + 8x < 2\sin^{-1}(\sin 4) - \cos^{-1}(\cos 4)$

Property - 2

(I) $\operatorname{cosec}^{-1} x = \sin^{-1} \frac{1}{x} \& \sin^{-1} x = \operatorname{cosec}^{-1} \frac{1}{x}$

(II)
$$\sec^{-1} x = \cos^{-1} \frac{1}{x}$$
 & $\cos^{-1} x = \sec^{-1} \frac{1}{x}$

(III)
$$\cot^{-1} x = \tan^{-1} \frac{1}{x}$$
; $x > 0 = \pi + \tan^{-1} \frac{1}{x}$; $x < 0$

(I) $\sin^{-1}(-x) = -\sin^{-1}x$

(II)
$$\cos^{-1}(-x) = \pi - \cos^{-1} x$$
 etc.

(I) $\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$

(II)
$$\sec^{-1}x + \csc^{-1}x = \frac{\pi}{2}$$

(III)
$$\tan^{-1}x + \cot^{-1}x = \frac{\pi}{2}$$

Q.
$$tan^{-1}\left(\frac{1}{2}\right) + tan^{-1}(2) + tan^{-1}(\sqrt{3}) = ?$$

Q.
$$sin^{-1}x + cos^{-1}(x^2 - 2x + 2) = \frac{\pi}{2}$$
Q. If $sin^{-1}a + cos^{-1}b = \frac{\pi}{2}$ & $sec^{-1}a + cosec^{-1}b = \frac{\pi}{2}$ Find a + b (a) 2 (b) -2 (c) 0 (d) None

Q. $(tan^{-1}x)^2 + (cot^{-1}x)^2 = \frac{5\pi^2}{8}$

Q. $5tan^{-1}x + 3cot^{-1}x = \frac{7\pi}{4}$

Q. $4\sin^{-1}x + \cos^{-1}x = \frac{3\pi}{4}$

Q.
$$\cot^{-1}\left(\frac{n}{\pi}\right) > \frac{\pi}{6}$$

Find maximum value of $n \in N$

Q. Maximum & Minimum values of $(\sin^{-1}x)^3 + (\cos^{-1}x)^3$

Q. Find the range of $f(x) = \sin^{-1}x + \cos^{-1}x + \tan^{-1}x$.

Property - 5

Q. $x > 0 & y > 0 \tan^{-1}x - \tan^{-1}y = \tan^{-1}\frac{x-y}{1+xy}$

$$\tan^{-1} x + \tan^{-1} y = \begin{bmatrix} \tan^{-1} \frac{x+y}{1-xy}, x > 0, y > 0 \text{ and } xy < 1 \Rightarrow 0 \tan^{-1} x + \tan^{-1} y < \frac{\pi}{2} \\ \pi + \tan^{-1} \frac{x+y}{1-xy}, x > 0, y > 0 \text{ and } xy > 1 \Rightarrow \frac{\pi}{2} < \tan^{-1} x + \tan^{-1} y < \pi \end{bmatrix}$$

Q. $\tan^{-1}1 + \tan^{-1}2 + \tan^{-1}3 = ?$

Q.
$$\tan^{-1} 1 + \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3} = ?$$

Q. Show that :

$$\frac{\tan^{-1}1 + \tan^{-1}2 + \tan^{-1}3}{\cot^{-1} + \cot^{-1}2 + \cot^{-1}3} = 2$$

Q. If $\tan^{-1}4 + \tan^{-1}5 = \cot^{-1}(\lambda)$ then find λ

Q.
$$\alpha = \tan^{-1} 5 - \tan^{-1} 3 + \tan^{-1} \frac{7}{9} = \frac{\pi}{4}$$
 and
 $\beta = \tan^{-1} \frac{2}{11} + \cot^{-1} \frac{24}{7} + \tan^{-1} \frac{1}{3} = \frac{\pi}{4}$, then
(A) $\alpha = \beta$ (B) $\alpha > \beta$
(C) $\alpha < \beta$ (D) $\alpha + \beta = \pi/2$

Find x satisfying $\sin^{-1}\left(\frac{1}{\sqrt{5}}\right) + \cos^{-1}(x) = \frac{\pi}{4}$ Q.

Q.
$$\sin^{-1}\left(\frac{3}{\sqrt{73}}\right) + \cos^{-1}\left(\frac{11}{\sqrt{146}}\right) + \cot^{-1}\left(\sqrt{3}\right)$$

(A) π (B) $\pi/2$ (C) $5\pi/12$ (D) $\pi/3$

Q. Which is greater

$$\cos^{-1}\frac{7}{25} + \cos^{-1}\frac{3}{5}$$

or cot

Q. Find A $2\cos^{-1}\frac{3}{\sqrt{13}} = \tan^{-1}A$

Find B $\frac{1}{2}\cos^{-1}\frac{7}{25} = \tan^{-1}B$ Q.

Property 6

(a) $\sin^{-1} x + \sin^{-1} y =$

$$\begin{bmatrix} \sin^{-1} \left(x \sqrt{1 - y^2} + y \sqrt{1 - x^2} \right) \text{ if } x \ge 0; y \ge 0 \text{ and } x^2 + y^2 \le 1 \\ \pi - \sin^{-1} \left(x \sqrt{1 - y^2} + y \sqrt{1 - x^2} \right) \text{ if } x \ge 0; y \ge 0 \text{ and } x^2 + y^2 > 1 \end{bmatrix}$$

Q. Find whether $\sin^{-1}\frac{3}{5} + \sin^{-1}\frac{12}{13}$ is acute/obtuse.

Property 6

(b) $\sin^{-1} x - \sin^{-1} y$

$$=\sin^{-1}\left(x\sqrt{1-y^{2}}-y\sqrt{1-x^{2}}\right), x > 0; y > 0$$

$$\cos^{-1} x \pm \cos^{-1} y = \cos^{-1} \left(xy \mp \sqrt{1 - x^2} \sqrt{1 - y^2} \right),$$

x > 0; y > 0, x < y.

Q. If $\cos^{-1}x + \cos^{-1}y + \cos^{-1}z = \pi$ then prove that $x^{2} + y^{2} + z^{2} + 2xyz = 1$

Show that $\cos^{-1}\sqrt{\frac{2}{3}} - \cos^{-1}\frac{\sqrt{6}+1}{2\sqrt{3}} = \frac{\pi}{6}$ Q. 6

 $\tan^{-1} x + \tan^{-1} y + \tan^{-1} z$

$$= \tan^{-1} \left[\frac{x + y + z - xyz}{1 - (xy + yz + zx)} \right]$$

Where x > 0, y > 0, z > 0 and xy + yz + zx < 1

Simplification of Inverse Functions by Elementary Substitution

$$f(x) = \sin^{-1} \frac{2x}{1+x^2} = \begin{bmatrix} 2\tan^{-1} x & -1 \le x \le 1 \\ \pi - 2\tan^{-1} x & \text{if } x \ge 1 \\ -\pi - 2\tan^{-1} x & x \le -1 \end{bmatrix}$$

$$f(x) = \cos^{-1} \frac{1 - x^2}{1 + x^2} = \begin{bmatrix} 2 \tan^{-1} x & x \ge 0 \\ -2 \tan^{-1} x & x < 0 \end{bmatrix}$$

$$f(x) = \tan^{-1} \frac{2x}{1-x^2} = \begin{bmatrix} \pi + 2 \tan^{-1} x & x < -1 \\ 2 \tan^{-1} x & -1 < x < 1 \\ 2 \tan^{-1} x - \pi & x > 1 \end{bmatrix}$$

Q. $f(x) = \sin^{-1} \frac{2x}{1+x^2} + 2 \tan^{-1} x$, find $\cos(f(10))$

$$f(x) = \sin^{-1}(3x - 4x^{3}) = \begin{bmatrix} -(\pi + 3\sin^{-1}x) & \text{if } -1 \le x \le -\frac{1}{2} \\ 3\sin^{-1}x & \text{if } -\frac{1}{2} \le x \le \frac{1}{2} \\ \pi - 3\sin^{-1}x & \text{if } \frac{1}{2} \le x \le 1 \end{bmatrix}$$

$$f(x) = \cos^{-1}(4x^{3} - 3x) = \begin{bmatrix} 3\cos^{-1}x - 2\pi & \text{if } -1 \le x \le -\frac{1}{2} \\ 2\pi - 3\cos^{-1}x & \text{if } -\frac{1}{2} \le x \le \frac{1}{2} \\ 3\cos^{-1}x & \text{if } \frac{1}{2} \le x \le 1 \end{bmatrix}$$

$$f(x) = \tan^{-1} \frac{3x - x^3}{1 - 3x^2} = \begin{bmatrix} 3\tan^{-1} x & \text{if } -\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}} \\ -\pi + 3\tan^{-1} x & \text{if } x > \frac{1}{\sqrt{3}} \\ \pi + 3\tan^{-1} x & \text{if } x < -\frac{1}{\sqrt{3}} \end{bmatrix}$$

Identities involving inverse trigonometric functions

Q. Show that $2\tan^{-1}\left(\tan\left(\frac{\pi}{4} - \alpha\right)\tan\frac{\beta}{2}\right) = \cos^{-1}\left(\frac{\sin^2\alpha + \cos\beta}{1 + \sin 2\alpha\cos\beta}\right)$

Q. Show that

$\tan^{-1} x = 2\tan^{-1} [\operatorname{cosec} (\tan^{-1}x) - \tan(\cot^{-1}x)]$
Equations involving inverse trigonometric functions

Q.
$$2 \cot^{-1} 2 - \cos^{-1} \frac{4}{5} = \cos ec^{-1} x$$

Q.
$$\cos^{-1} x - \sin^{-1} x = \cos^{-1} x \sqrt{3}$$

Q. $sin[2cos^{-1} {cot(2tan^{-1}x)}] = 0$

 $\sin^{-1} x + \sin^{-1} 2x = \frac{\pi}{3}$ Q.

Q.
$$\tan^{-1}\frac{x+1}{x-1} + \tan^{-1}\frac{x-1}{x} = \tan^{-1}(-7)$$

Q. $2 \cot^{-1}2 + \cos^{-1}(3/5) = \csc^{-1}x$

Simultaneous equations and Inequations involving I.T.F.

Q. $\cos^{-1} x > \cos^{-1} x^2$

Q. $\sin^{-1}x > \cos^{-1}x$

 $\sin^{-1}x > \sin^{-1}(1-x)$ Q.

Q. arc $tan^2x - 3$ arc tanx + 2 > 0

Q. $[\sin^{-1}x] > [\cos^{-1}x]$

Summation of series

Idea is

$$\tan^{-1} x - \tan^{-1} y = \tan^{-1} \frac{x + y}{1 + xy}$$

Q.
$$\tan^{-1} \frac{x}{1 + (1 \times 2)x^2} + \tan^{-1} \frac{x}{1 + (2 \times 3)x^2} + \dots$$

+ $\tan^{-1} \frac{x}{1 + n(n+1)x^2}$

Q.
$$\tan^{-1} \frac{2}{2+1^2+1^4} + \tan^{-1} \frac{4}{2+2^2+2^1} + \tan^{-1} \frac{6}{2+3^2+3^4} + \dots$$

Q. $S = \sum_{n=1}^{\infty} \tan^{-1} \left(\frac{4n}{n^4 - 2n^2 + 2} \right)$

 $\csc^{-1}\sqrt{5} + \csc^{-1}\sqrt{65} + \csc^{-1}\sqrt{325} + \dots$ Q.

Q. $\cot^{-1}(2a^{-1} + a) + \cot^{-1}(2a^{-1} + 3a) + \cot^{-1}(2a^{-1} + 6a) + \cot^{-1}(2a^{-1} + 10a) + \dots$