

For More Study Material & Test Papers Visit : www.mathsiit.com

LOGARITHM

MANOJ CHAUHAN SIR(IIT-DELHI) EX. SR. FACULTY (BANSAL CLASSES)

KEY CONCEPTS (LOGARITHM)

THINGS TO REMEMBER:

1. LOGARITHM OF A NUMBER :

The logarithm of the number N to the base 'a' is the exponent indicating the power to which the base 'a' must be raised to obtain the number N. This number is designated as log_aN.

$$\log_a N = x \iff a^x = N \quad , \ a > 0 \quad , \ a \neq 1 \quad \& \quad N > 0$$

If a = 10, then we write log b rather than $\log_{10} b$.

If a = e, we write $\ln b$ rather than $\log_e b$.

The existence and uniqueness of the number log_aN follows from the properties of an exponential functions.

From the definition of the logarithm of the number N to the base 'a', we have an

identity :
$$\label{eq:alpha} a^{\log_a N} = N \ , \ a > 0 \ , \ a \neq 1 \ \& \ N > 0$$

This is known as the FUNDAMENTAL LOGARITHMIC IDENTITY.

NOTE : $\log_{2} 1 = 0$ $(a > 0, a \neq 1)$ $\log_a a = 1$ $(a > 0, a \neq 1)$ and $\log_{1/a}^{n} a = -1$ (a > 0, a \ne 1)

THE PRINCIPAL PROPERTIES OF LOGARITHMS: 2.

Let M & N are arbitrary posiitive numbers, a > 0, $a \ne 1$, b > 0, $b \ne 1$ and α is any real number then :

(i)
$$\log_{a}(M \cdot N) = \log_{a}M + \log_{a}N$$

(ii) $\log_{a}(M/N) = \log_{a}M - \log_{a}N$
(iii) $\log_{a}M^{\alpha} = \alpha \cdot \log_{a}M$
(iv) $\log_{b}M = \frac{\log_{a}M}{\log_{a}b}$
NOTE: $\swarrow \log_{b}a \cdot \log_{a}b = 1 \Leftrightarrow \log_{b}a = 1/\log_{a}b$.
 $\swarrow \log_{b}a \cdot \log_{c}b \cdot \log_{a}c = 1$
 $\swarrow \log_{v}x \cdot \log_{z}y \cdot \log_{a}z = \log_{a}x$.
 $\swarrow e^{\ln a^{x}} = a^{x}$

3. * PROPERTIES OF MONOTONOCITY OF LOGARITHM :

- For a > 1 the inequality $0 < x < y \& \log_a x < \log_a y$ are equivalent. (i)
- For 0 < a < 1 the inequality $0 < x < y \& \log_a x > \log_a y$ are equivalent. **(ii)**

If a > 1 then $\log_a x$ (iii) $0 < x < a^{p}$

- (iv)
- **(v)**
- If 0 < a < 1 then $\log_a x > p \implies 0 < x < a^p$ (**vi**)

NOTE THAT:

- If the number & the base are on one side of the unity, then the logarithm is positive; If the number & <u>A</u> the base are on different sides of unity, then the logarithm is negative.
- The base of the logarithm 'a' must not equal unity otherwise numbers not equal to unity will not have a logarithm & any number will be the logarithm of unity.
- $\sqrt[n]{a} = a^{1/n}$ For a non negative number 'a' & $n \ge 2$, $n \in N$

* Will be covered in detail in QUADRATIC EQAUTION

REMEMBER						
$\log_{10} 2 = 0.3010$						
$\log_{10} 3 = 0.4771$						
ln 2 = 0.693						
<i>l</i> n 10 = 2.303						

EXERCISE-I

Q.18 Prove that $a^x - b^y = 0$ where $x = \sqrt{\log_a b}$ & $y = \sqrt{\log_b a}$, a > 0, b > 0 & $a, b \neq 1$.

Q.19 If a, b, c are positive real numbers such that $a^{\log_3 7} = 27$; $b^{\log_7 11} = 49$ and $c^{\log_{11} 25} = \sqrt{11}$. Find the value of $\left(a^{(\log_3 7)^2} + b^{(\log_7 11)^2} + c^{(\log_{11} 25)^2}\right)$. Q.20 (a) Solve for x, $\frac{\log_{10}(x-3)}{\log_{10}(x^2-21)} = \frac{1}{2}$ (b) $\log(\log x) + \log(\log x^3 - 2) = 0$; where base of log is 10 everywhere. (c) $\log_x 2 \cdot \log_{2x} 2 = \log_{4x} 2$ (d) $5^{\log x} + 5x^{\log 5} = 3$ (a > 0); where base of log is a. Q.21 If x, y > 0, $\log x + \log y = \frac{10}{2}$ and xy = 144, then $\frac{x+y}{2} = \sqrt{N}$ where N is a natural number, find the

Q.21 If x, y>0, $\log_y x + \log_x y = \frac{10}{3}$ and xy = 144, then $\frac{x+y}{2} = \sqrt{N}$ where N is a natural number, find the value of N.

Q.22 Solve the system of equations:

 $\begin{array}{l} \log_a x \ \log_a(xyz) = 48\\ \log_a y \ \log_a(xyz) = 12 \ , \ a > 0, \ a \neq 1.\\ \log_a z \ \log_a(xyz) = 84 \end{array}$

- Q.23 (a) Given: $\log_{10}34.56 = 1.5386$, find $\log_{10}3.456$; $\log_{10}0.3456$ & $\log_{10}0.003456$.
 - (b) Find the number of positive integers which have the characteristic 3, when the base of the logarithm is 7.
 - (c) If $\log_{10} 2 = 0.3010 \& \log_{10} 3 = 0.4771$, find the value of $\log_{10}(2.25)$.
 - (d) Find the antilogarithm of 0.75, if the base of the logarithm is 2401.
- Q.24 If $\log_{10} 2 = 0.3010$, $\log_{10} 3 = 0.4771$. Find the number of integers in :
 - (a) 5^{200} (b) 6^{15} & (c) the number of zeros after the decimal in 3^{-100} .
- Q.25 Let \mathbf{L}' denotes the antilog of 0.4 to the base 1024. and \mathbf{M}' denotes the number of digits in 6^{10} (Given $\log_{10} 2 = 0.3010$, $\log_{10} 3 = 0.4771$) in \mathbf{M}' denotes the number of positive integers which have the characteristic 2, when base of the logarithm is 6. Find the value of LMN.

EXERCISE-II

Note : From Q.1 to Q.7, solve the equation for x :

Q.1 $x^{\log x+4} = 32$, where base of logarithm is 2.

Q.2
$$\log_{x+1} (x^2 + x - 6)^2 = 4$$

Q.3 $x + \log_{10}(1 + 2^x) = x \cdot \log_{10} 5 + \log_{10} 6.$

Q.4 $5^{\log x} - 3^{\log x-1} = 3^{\log x+1} - 5^{\log x-1}$, where the base of logarithm is 10.

Q.5
$$\frac{1 + \log_2(x-4)}{\log_{\sqrt{2}}(\sqrt{x+3} - \sqrt{x-3})} = 1$$

Q.6
$$\log_5 120 + (x-3) - 2 \cdot \log_5 (1-5^{x-3}) = -\log_5(0.2-5^{x-4})$$

Q.7
$$\log 4 + \left(1 + \frac{1}{2x}\right)\log 3 = \log(\sqrt[x]{3} + 27)$$

Q.8 If 'x' and 'y' are real numbers such that, $2\log(2y-3x) = \log x + \log y$, find $\frac{x}{y}$.

Q.9 The real x and y satisfy
$$\log_8 x + \log_4 y^2 = 5$$
 and $\log_8 y + \log_4 x^2 = 7$, find xy.

Q.10 If $a = \log_{12} 18$ & $b = \log_{24} 54$ then find the value of ab + 5(a-b).

- Q.11 If $x = 1 + \log_a bc$, $y = 1 + \log_b ca$, $z = 1 + \log_c ab$, then prove that xyz = xy + yz + zx.
- Q.12 If $p = \log_a bc$, $q = \log_b ca$, $r = \log_c ab$, then prove that pqr = p + q + r + 2.
- Q.13 If $\log_b a \cdot \log_c a + \log_a b \cdot \log_c b + \log_a c \cdot \log_b c = 3$ (Where a, b, c are different positive real numbers $\neq 1$), then find the value of abc.

Q.14 Let
$$y = \sqrt{\log_2 3 \cdot \log_2 12 \cdot \log_2 48 \cdot \log_2 192 + 16} - \log_2 12 \cdot \log_2 48 + 10$$
. Find $y \in N$.

Q.15 Solve the equation $\frac{3}{2}\log_4(x+2)^2 + 3 = \log_4(4-x)^3 + \log_4(6+x)^3$.

Q.16 Find the product of the positive roots of the equation $\sqrt{(2008)}(x)^{\log_{2008} x} = x^2$.

Q.17 Find x satisfying the equation
$$\log^2\left(1+\frac{4}{x}\right) + \log^2\left(1-\frac{4}{x+4}\right) = 2\log^2\left(\frac{2}{x-1}-1\right)$$
.

Q.18 Solve :
$$\log_3 \left(\sqrt{x} + \left| \sqrt{x} - 1 \right| \right) = \log_9 \left(4\sqrt{x} - 3 + 4 \left| \sqrt{x} - 1 \right| \right)$$

Q.19 Prove that :
$$2^{\left(\sqrt{\log_a \sqrt[4]{ab} + \log_b \sqrt[4]{ab}} - \sqrt{\log_a \sqrt[4]{b} + \log_b \sqrt[4]{a}}\right) \cdot \sqrt{\log_a b}} = \begin{bmatrix} 2 & \text{if } b \ge a > 1\\ 2^{\log_a b} & \text{if } 1 < b < a \end{bmatrix}}$$

Q.20 Solve for x:
$$\log^2(4-x) + \log(4-x) \cdot \log\left(x+\frac{1}{2}\right) - 2\log^2\left(x+\frac{1}{2}\right) = 0.$$

EXERCISE-III

Q.1	$\log_{3/4}\log_8(x^2+7) + \log_{1/2}\log_{1/4}(x^2+7)^{-1} = -2.$				[REE 2000, 5 out of 100]
Q.2	Number of (A) 3	solutions of log (B) 1	$g_4(x-1) = \log_2(x-1)$ (C) 2	x – 3) is (D) 0	[JEE 2001 (Screening)]

ANSWER SHEET

LOGARITHM

EXERCISE-I

Q.1 12 Q.2 (a) $\frac{xy+2}{2y}$, $\frac{xy+2y-2}{2y}$; (b) 625 Q.3 (a) x = 16 or x = -4 (b) x = 5Q.4 (a) -1 (b) $\log_{b}N$ Q.5 (a) 8 (b) x = 3 Q.6 (a) 2 Q.7 2 Q.8 3721 Q.9 1/6 Q.10 9 Q.11 1 Q.12 6 Q.13 $x = \frac{1}{100}$ Q.14 $2s + 10s^2 - 3(s^3 + 1)$ Q.15 $\frac{25}{2}$ Q.16 $\frac{1+2ac}{2c+abc+1}$ Q.19 469 Q.20 (a) x=5 (b) x=10 (c) $x = 2^{\sqrt{2}}$ or $2^{-\sqrt{2}}$ (d) $x = 2^{-\log a}$ where base of log is 5. Q.21 507 Q.22 (a⁴, a, a⁷) or $(\frac{1}{a^4}, \frac{1}{a}, \frac{1}{a^7})$ Q.23 (a) 0.5386; $\overline{1}.5386$; $\overline{3}.5386$ (b) 2058 (c) 0.3522 (d) 343 Q.24 (a) 140 (b) 12 (c) 47 Q.25 23040 EXERCISE-IIQ.1 x = 2 or $\frac{1}{32}$ Q.2 x = 1 Q.3 x = 1 Q.4 x = 100 Q.5 x = 5 Q.6 x = 1 Q.7 $x \in \phi$ Q.8 4/9 Q.9 $xy = 2^9$ Q.10 1 Q.13 abc = 1 Q.14 y = 6 Q.15 x = 2 or $1 - \sqrt{33}$ Q.16 (2008)² Q.17 $x = \sqrt{2}$ or $\sqrt{6}$ Q.18 [0, 1] $\cup \{4\}$ Q.20 $\left\{0, \frac{7}{4}, \frac{3+\sqrt{24}}{2}\right\}$ EXERCISE-III

Q.1 x = 3 or -3 **Q.2** B