At present I am Maths Faculty at ETOOS
 ACADEMY

- At present I am Maths Faculty at ETOOS
 ACADEMY
- Ex. Sr. Faculty of BANSAL CLASSES (KOTA)

- At present I am Maths Faculty at ETOOS
 ACADEMY
- Ex. Sr. Faculty of BANSAL CLASSES (KOTA)
- o IIT- Delhi

- At present I am Maths Faculty at ETOOS
 ACADEMY
- Ex. Sr. Faculty of BANSAL CLASSES (KOTA)
- IIT- Delhi
- Teaching Exp. 8 Yrs.

Rank Produced by Etoos

AIR-24

SURAJ SANJAY JOG And Many Others

How to Study Maths For IIT-JEE

(i) Write and not read maths

How to Study Maths For IIT-JEE

(i) Write and not read maths

(ii) Try to apply using formulas /tricks given

How to Study Maths For IIT-JEE

(i) Write and not read maths

(ii) Try to apply using formulas /tricks given

(iii) Practice Practice Practice

How to Make Best use of the Course

Important points / formulas are highlighted

How to Make Best use of the Course

Important points / formulas are highlighted

Complete Assignment before moving to next lecture

Etoosindia.com

Etoosindia.com

monul137@gmail.com

Etoosindia.com

monul137@gmail.com

Facebook.com/manojchauhaniitd

Logrithms **Trigonometry Identities (Trigo – Ph1) Quadratic Equation** Sequence & Series **Trigonometry Ph-2** (Trigonometry Equation)

Solutions Of Triangle (Trigo Ph-3) Straight Lines and Pair of Straight Lines Circles Permutation & Combination

Binomial Theorem

Functions

Limit

Continuity

Derivability Method Of Derivative **Indefinite Integration Definite Integration Application Of Derivatives**

Vectors

3D Geometry

Determinant

Matrics

Probability

Complex No. Differential Equation Area Under Curve Parabola Ellipse Hyperbola

- \neq (not equal)
- < (less than)
- > (greater than)
- \leq (less than or equal to)
- \geq (greater than or equal to)
- () (parentheses)
- & (and)
 - .. [ellipsis (and so on)]
 - : (therefore)
- % (percent)

 $\begin{array}{ll} \pi & (pi) \\ \angle & (angle) \end{array}$

0

Æ

- (degree)
 - (perpendicular)
 - (parallel)
- ~ (is similar to)
 - J (union)
- \cap (intersection)
- \in (is a member of)
 - (is not a member of)

- (is proper subset of)
- \exists (there exists)
- ∀ [(for all (universal quantifier)]
 - (is equal to or)
 - (is equivalent)
- \wedge (and)

2

 \bigvee

- (or)
- \subseteq (is subset of)
- \supseteq (is super set of)
- \Leftrightarrow (iff or implies and is implied by)

- \approx ∞ Σ ω θ Э
- (is approxima)
- (infinity)
- (factorial)
 - (sigma)
- (square root)
- ω (omega)
- **(gamma)**
- θ (theta)
- **Example 1 (such that)**
- Φ (phi)

- Ω (omega)
- $\Delta \qquad (delta)$
- **∏** (pi)
- \rightarrow (arrow)
- ∂ (derivative partial)
 - (integral)
- ∞ (proportional)
- **±** (plus or minus)
- **R** (set of real number)

• Remember Tables 1-19

- Remember Tables 1-19
- Remember Squares 1-32

- Remember Tables 1-19
- Remember Squares 1-32
- Remember Cubes 1-12

Componendo & Dividendo

$\frac{N-D}{N+D}$

To be applied both sides of the equation.

•
$$\left(a^{x}\right)^{y} = a^{xy}$$

 $\cdot \frac{a^x}{a^y} = a^{x-y}$ • $(a^x)^y = a^{xy}$

•
$$(a^x)^y = a^{xy}$$
 • $\frac{a^x}{a^y} = a^{x-y}$

• $\mathbf{a}^{\mathbf{x}} \cdot \mathbf{a}^{\mathbf{y}} = \mathbf{a}^{\mathbf{x}+\mathbf{y}}$

•
$$(a^x)^y = a^{xy}$$
 • $\frac{a^x}{a^y} = a^{x-y}$
• $a^x \cdot a^y = a^{x+y}$ • $x^a \cdot y^a = (xy)^a$

Additive Inverse,

Additive Inverse,

Additive Identity,

Additive Inverse,

Additive Identity,

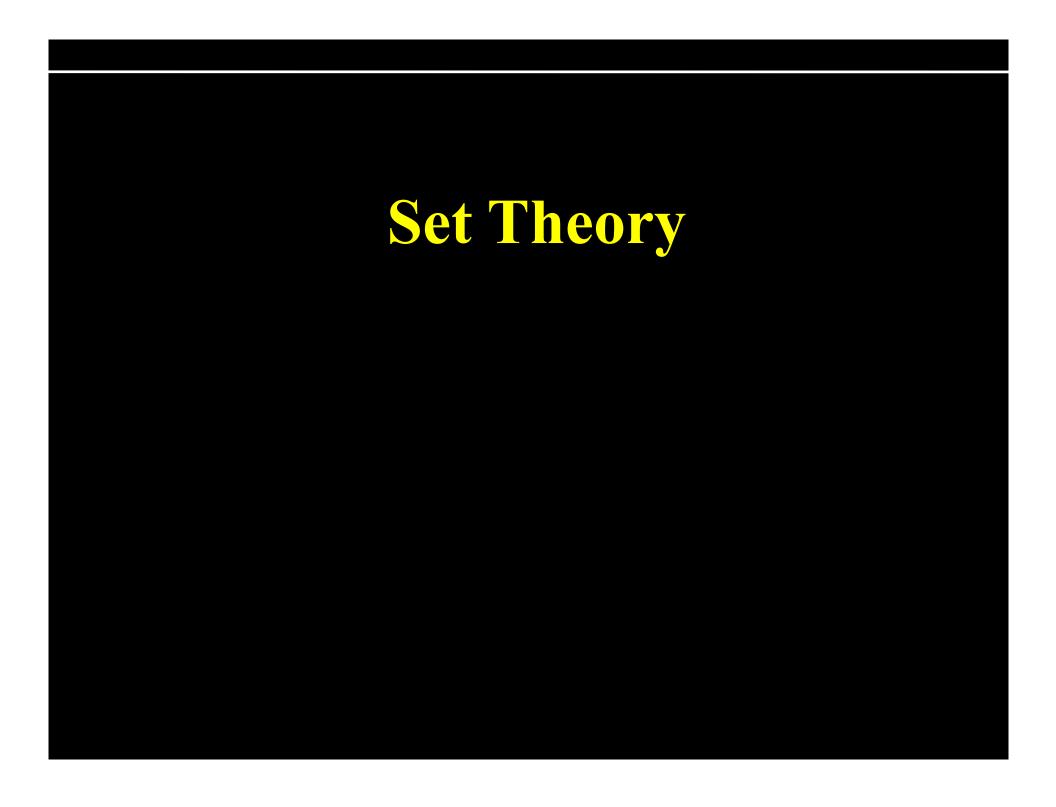
Multiplicative Inverse,

Additive Inverse,

Additive Identity,

Multiplicative Inverse,

Multiplicative Identity



Classification of Sets

Classification of Sets

• Roster or Tabular Form

Classification of Sets

• Roster or Tabular Form

• Set – Builder Form

Quadratic Equation

Inequalities

•
$$a^2 - b^2 = (a - b) (a + b)$$

•
$$a^2 - b^2 = (a - b) (a + b)$$

• $(a+b)^3 = a^3 + b^3 + 3a^2b + 3ab^2$

•
$$a^2 - b^2 = (a - b) (a + b)$$

•
$$(a+b)^3 = a^3 + b^3 + 3a^2b + 3ab^2$$

•
$$(a-b)^3 = a^3 - b^3 + 3ab^2 - 3a^2b$$

•
$$a^2 - b^2 = (a - b) (a + b)$$

•
$$(a+b)^3 = a^3 + b^3 + 3a^2b + 3ab^2$$

•
$$(a-b)^3 = a^3 - b^3 + 3ab^2 - 3a^2b$$

 $a^{3}+b^{3}+c^{3}-3abc = (a + b + c) (\Sigma a^{2} - \Sigma ab)$

Number Theory

Number Theory

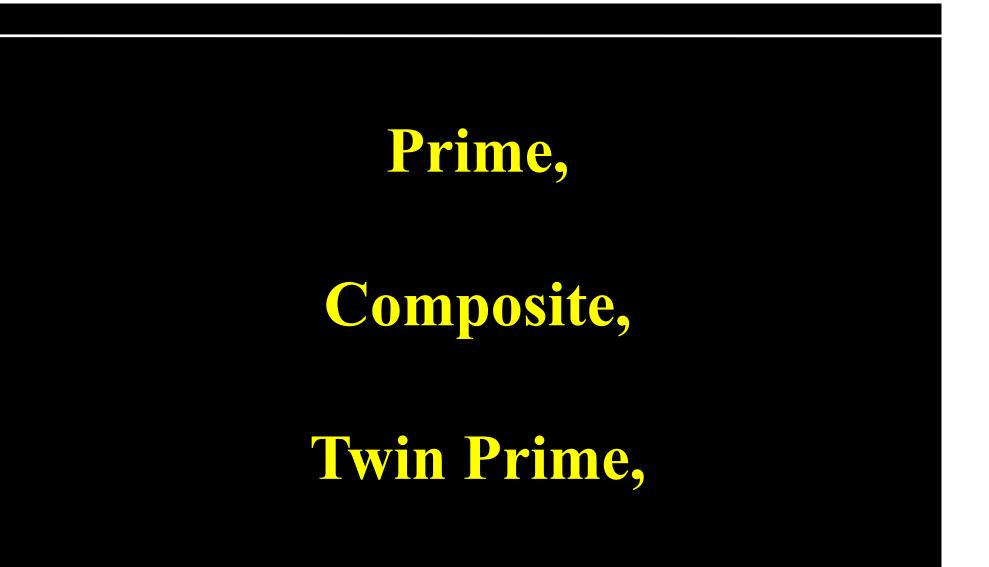
• Natural Number (N)

Number Theory

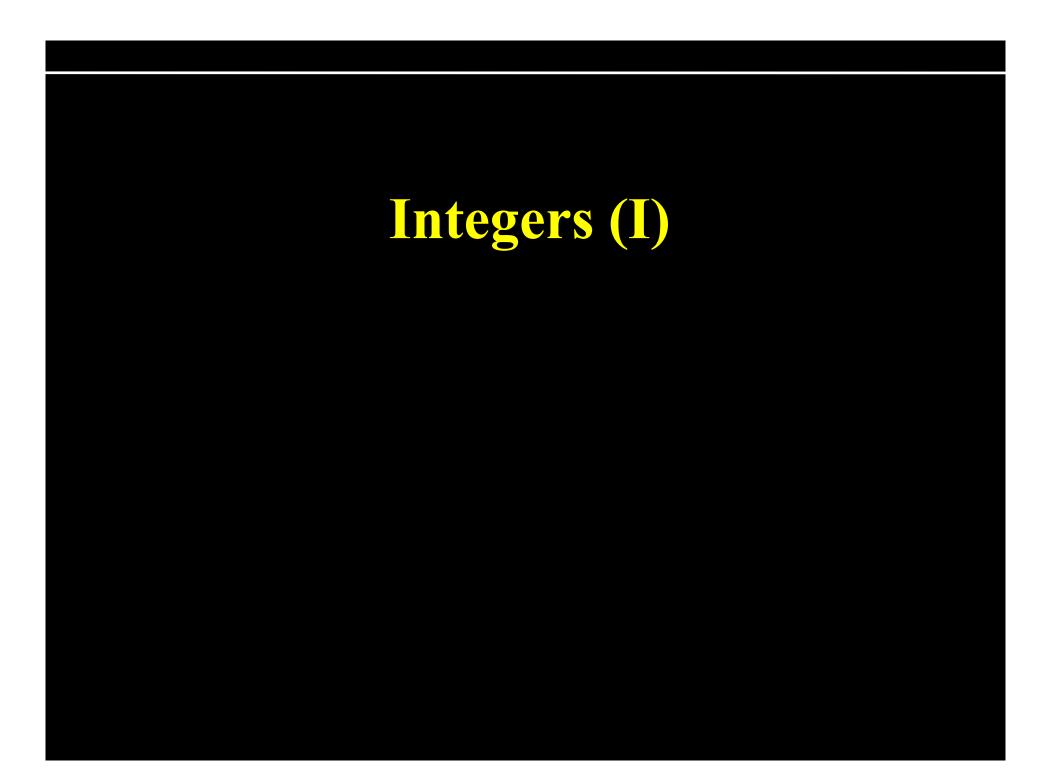
- Natural Number (N)
- Whole Number (W)

Composite,

Twin Prime,



Co- Prime



Rational Numbers (Q)

Rational Numbers (Q)

• Converting Decimal to p/q form

Rational Numbers (Q)

- Converting Decimal to p/q form
- Example
 - 2.5 = ?3.14 = ?

Irrational Numbers

Real Numbers (R)

Complex Number (Z)

$\overline{\mathbf{N} \subset \mathbf{W} \subset \mathbf{I} \subset \mathbf{Q} \subset \mathbf{R} \subset \mathbf{Z}}$

$$\sum_{x} \left(N = a^{x} \right)$$

• a>0 & a≠1

$$\sum_{x} \left(N = a^{x} \right)$$

a>0 & a≠1

a is called 'base' and
 x is called 'exponent'

Logarithmic form

 $\log_a N = x$

Logarithmic form

$\log_a N = x$

$Log_a N$ is defined when N > O, a > o, $a \neq 1$

Logarithm Form

Logarithm Form

1. Examples on value of Logarithm Find values :

Logarithm Form

1. Examples on value of Logarithm Find values :

• $\log_{81}27 = ?$

Logarithm Form

1. Examples on value of Logarithm Find values :

• $\log_{81} 27 = ?$ • $\log_2(\log_2 4) = ?$

Logarithm Form

1. Examples on value of Logarithm Find values :

• $\log_{81}27 = ?$ • $\log_2(\log_2 4) = ?$

• $\log_{625} 125 = ?$

Logarithm Form

1. Examples on value of Logarithm Find values :

• $\log_{81}27 = ?$ • $\log_2(\log_2 4) = ?$

• $\log_{625} 125 = ?$ • $\log_{1/3} 9\sqrt{3} = ?$

Fundamental Logarithm Identity

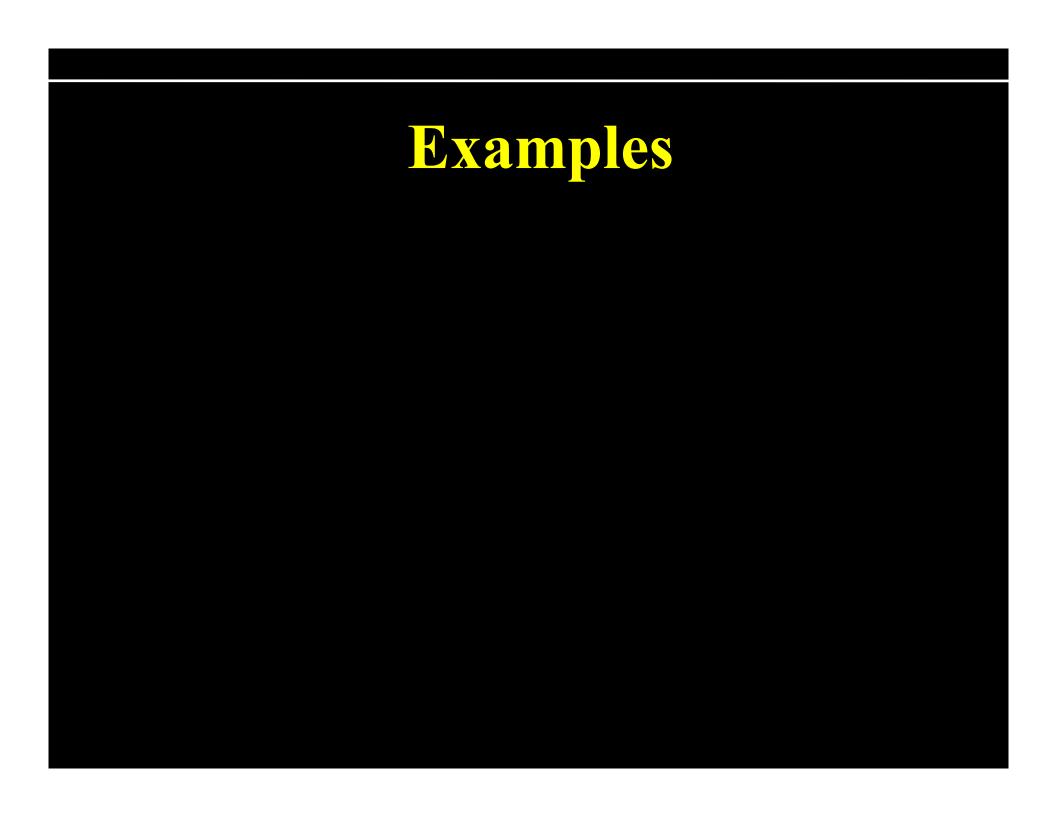
• $\log_N N = 1$

• $\log_N N = 1$

• $\log_{\frac{1}{N}} N = -1$

• $\log_N N = 1$

- $\log_{\frac{1}{N}} N = -1$
- $\log_a 1 = 0$



Find values :

• $\log_{tan 20^{\circ}} tan 70^{\circ} = ?$

Find values :

- $\log_{tan 20^\circ} tan 70^\circ = ?$
- $\log_{2-\sqrt{3}}(2+\sqrt{3}) = ?$

Find values :

• $\log_{tan 20^{\circ}} tan 70^{\circ} = ?$

•
$$\log_{2-\sqrt{3}}(2+\sqrt{3}) = ?$$

•
$$\log_{10}(0.\overline{9}) = ?$$

Find values :

• $\log_{tan 20^{\circ}} tan 70^{\circ} = ?$

•
$$\log_{2-\sqrt{3}}(2+\sqrt{3}) = ?$$

•
$$\log_{10}(0.\overline{9}) = ?$$

•
$$\log_5 \sqrt{5.\sqrt{5.\sqrt{5....\infty}}} = ?$$

(Integer Type)

• The value of :

$$6 + \log_3 \left(\frac{1}{3\sqrt{2}} \sqrt{4 - \frac{1}{3\sqrt{2}}} \sqrt{4 - \frac{1}{3\sqrt{2}}} \sqrt{4 - \frac{1}{3\sqrt{2}}} \sqrt{4 - \frac{1}{3\sqrt{2}}} \right)$$
 is

[JEE 2012, 4]

Solve :

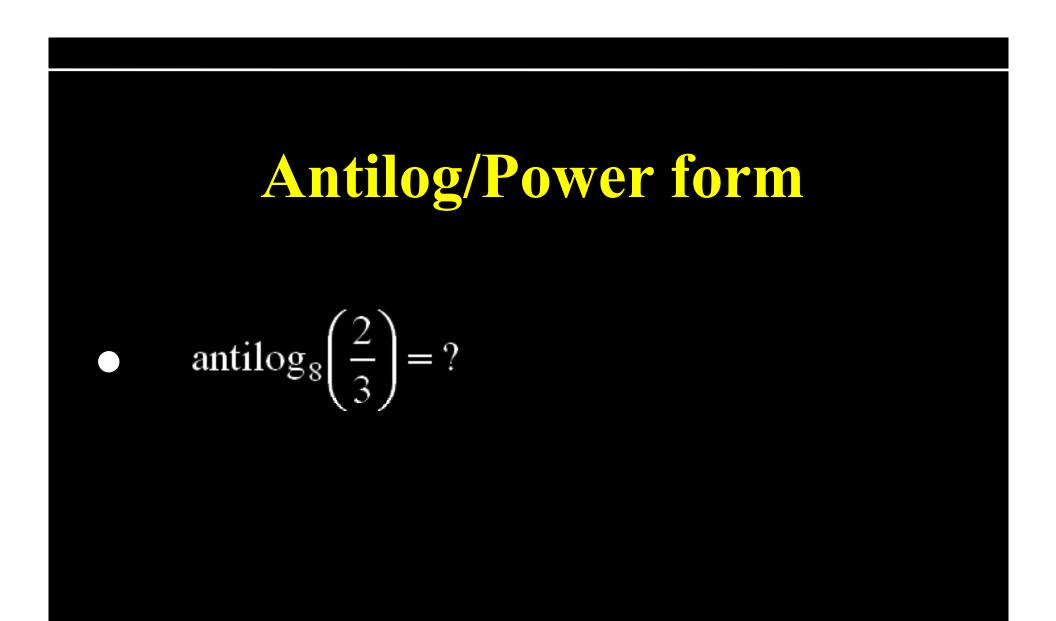
• $7^{\log_7 x} + 2x + 9 = 0$

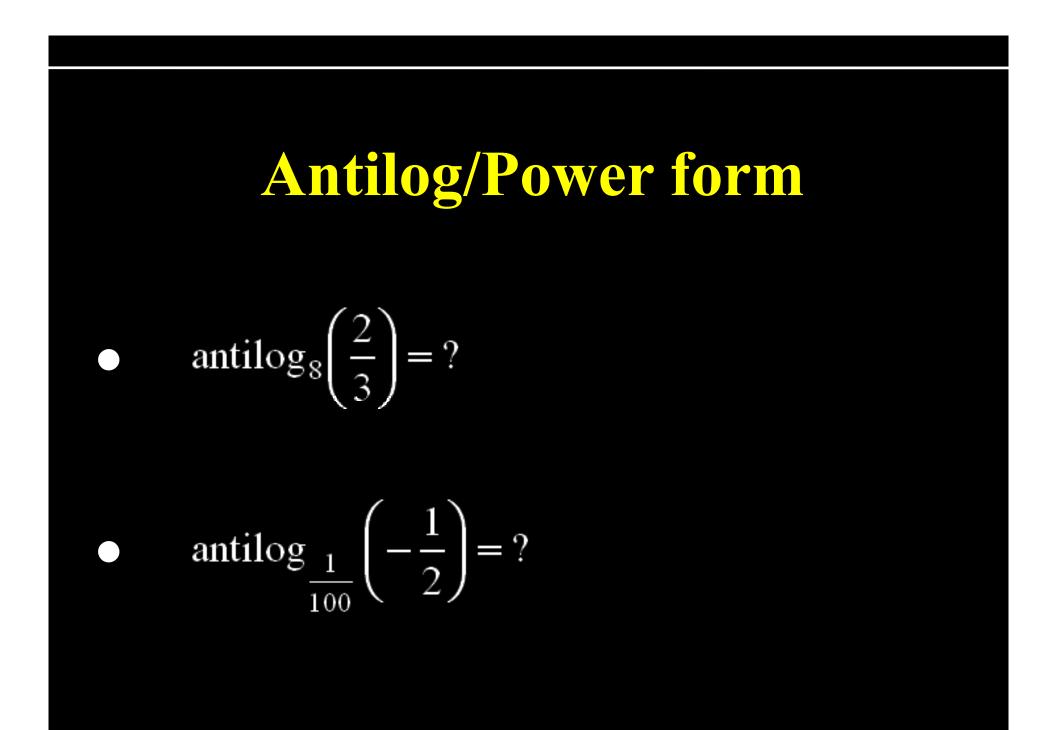
Solve :

• $7^{\log_7 x} + 2x + 9 = 0$

log(tan5)log(tan9)log(tan13).....log(tan61)=?

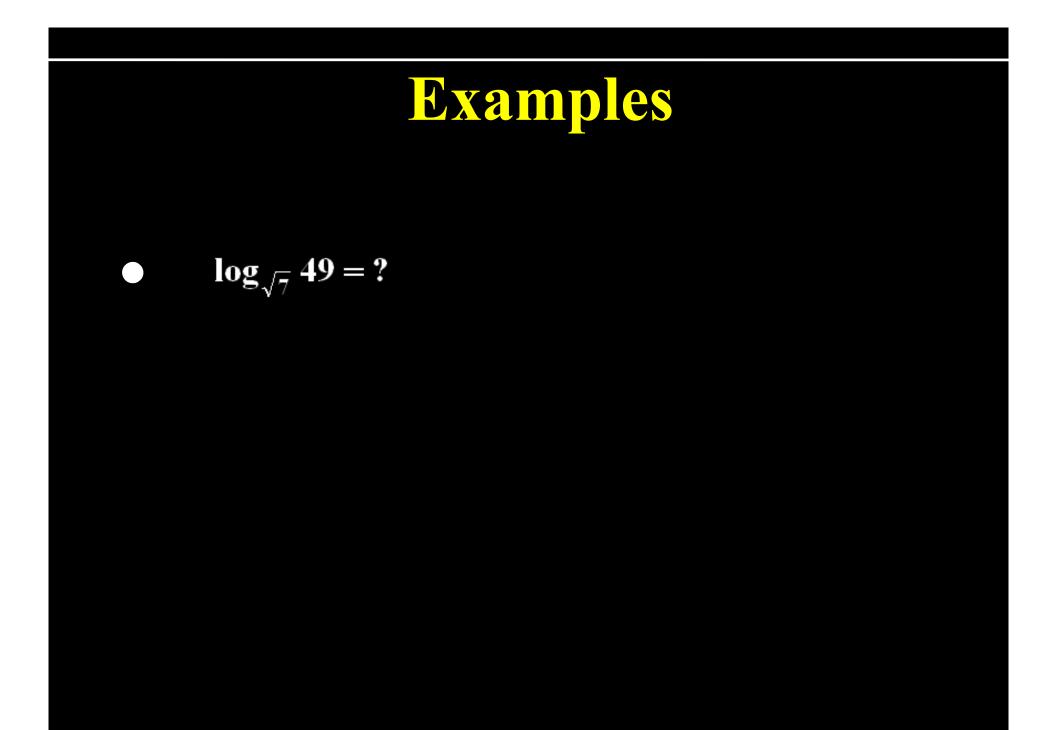
Antilog/Power form

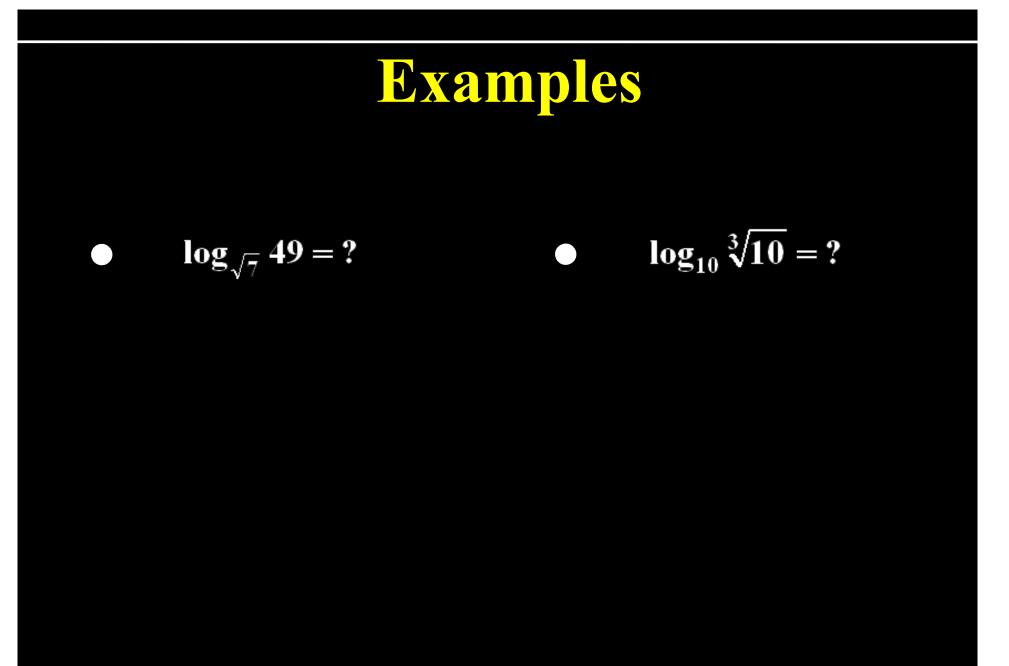


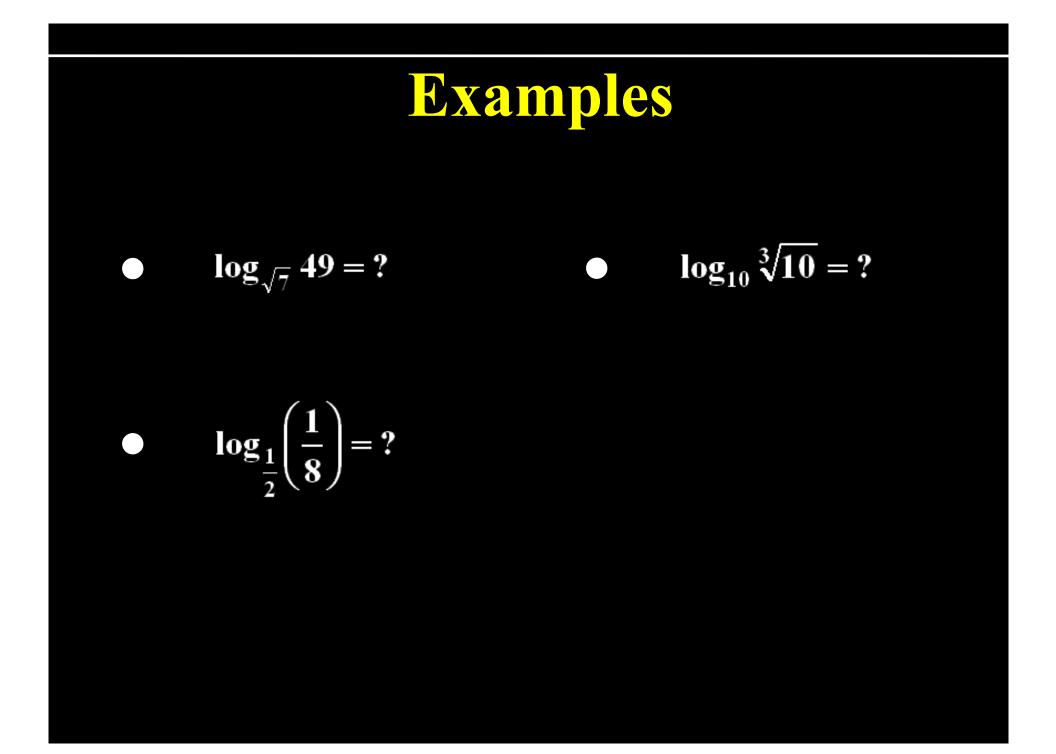


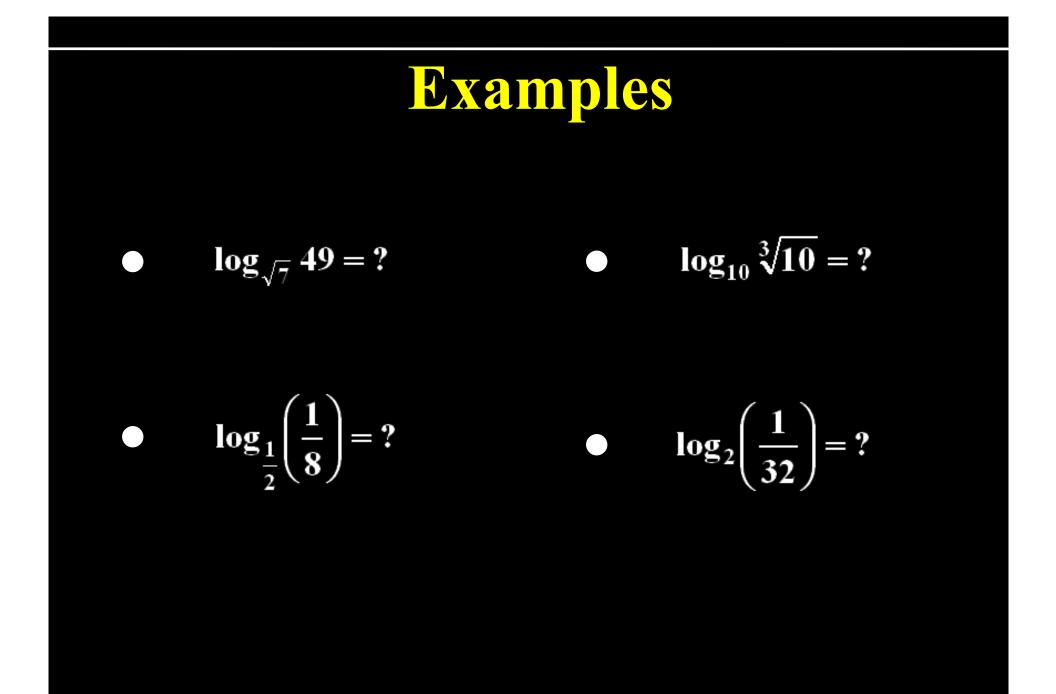
Note

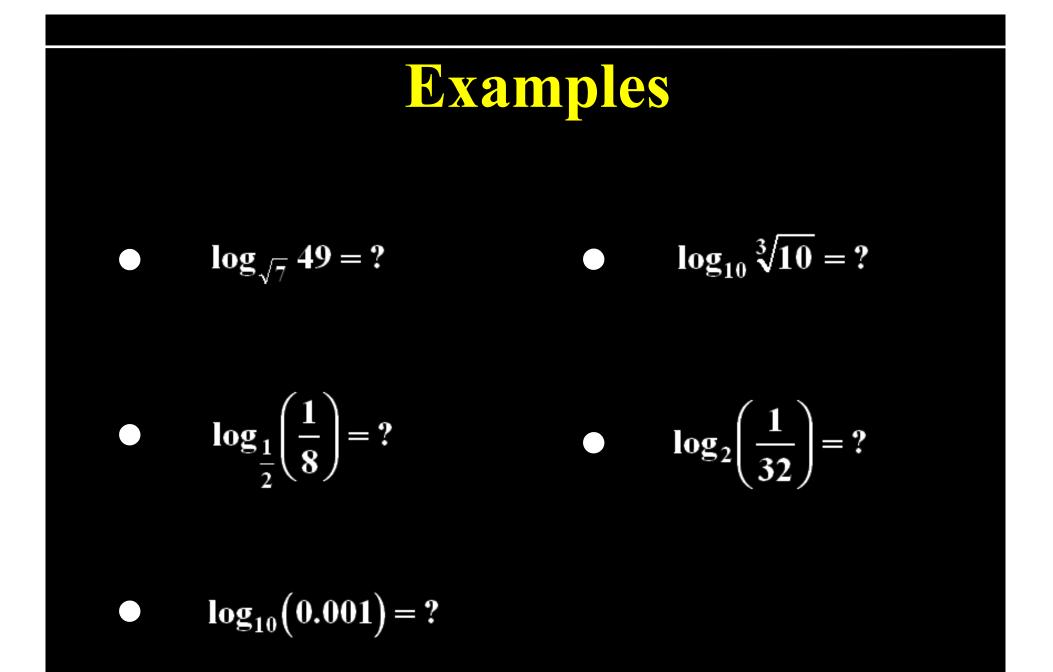
It must be noted that whenever the number and the base are on the same side of unity then logarithm of that number to that base is (+ve), however if the number and the base are located on different side of unity them logarithm of that number to that base is (-ve)











• $\log_a mn = \log_a m + \log_a n$

- $\log_a mn = \log_a m + \log_a n$
- $\log_a \frac{m}{n} = \log_a m \log_a n$

- $\log_a mn = \log_a m + \log_a n$
- $\log_a \frac{m}{n} = \log_a m \log_a n$
- $\log_a m^x = x \log_a m$

- $\log_a mn = \log_a m + \log_a n$
- $\log_a \frac{m}{n} = \log_a m \log_a n$
- $\log_a m^x = x \log_a m$

•
$$\log_{n^y} m = \frac{1}{y} \log_n m$$

Note

$\log_2 x^2 = 4$ and $2\log_2 x = 4$ will not have the same solution.

Example 1. Let $y = \sqrt{\log_2 3 \cdot \log_2 12 \cdot \log_2 48 \cdot \log_2 192 + 16}$ $-\frac{1}{2}\log_2 12.\log_2 48 + 10.$

Base Change Theorem

$$\int \log_b a = \frac{\log_c a}{\log_c b}$$

N

Base Change Theorem

$$\log_b a = \frac{\log_c a}{\log_c b}$$

$$a^{\log_b x} = x^{\log_b a}$$

1. If $(\log_2 3)(\log_3 4)(\log_4 5)...(\log_n(n+1))=10$, find n

1. If $(\log_2 3)(\log_3 4)(\log_4 5)...(\log_n(n+1))=10$, find n

2.
$$7^{\log_3 5} + 3^{\log_5 7} - 5^{\log_3 7} - 7^{\log_5 3} = ?$$

1. If $(\log_2 3)(\log_3 4)(\log_4 5)...(\log_n(n+1))=10$, find n

2.
$$7^{\log_3 5} + 3^{\log_5 7} - 5^{\log_3 7} - 7^{\log_5 3} = ?$$

3. Prove that $\log_2 7$ is irrational

If log_ax=b for permissible values of a and x then
which of the following may be correct :
(A) If a rational and b rational then x can be rational.

If $\log_a x = b$ for permissible values of a and x then which of the following may be correct :

- (A) If a rational and b rational then x can be rational.
- (B) If a irrational and b rational then x can be rational.

If $\log_a x = b$ for permissible values of a and x then which of the following may be correct :

- (A) If a rational and b rational then x can be rational.
- (B) If a irrational and b rational then x can be rational.
- (C) If a rational and b irrational then x can be rational.

If $\log_a x = b$ for permissible values of a and x then which of the following may be correct :

- (A) If a rational and b rational then x can be rational.
- (B) If a irrational and b rational then x can be rational.
- (C) If a rational and b irrational then x can be rational.
- (D) If a and b are two irrational numbers then x can be rational.

Number of solutions of $\log_4(x-1) = \log_2(x-3)$ is

(a) 3 (b) 1

(c) 2 (d) 0

[JEE 2001, (Screening)]

Trichotomy

True / False

• $\log_3 5 > \log_{17} 25$

For A Non Negative Number

$$\sqrt[n]{a} = a^{1/n}$$

For A Non Negative Number

'a' & $N \ge 2, n \in N$

Logrithmic Equations

• Solve for 'x'
$$2\log_2 \frac{x-7}{x-1} + \log_2 \frac{x-1}{x+1} = 1$$

Logrithmic Equations

• Solve for 'x'
$$2\log_2 \frac{x-7}{x-1} + \log_2 \frac{x-1}{x+1} = 1$$

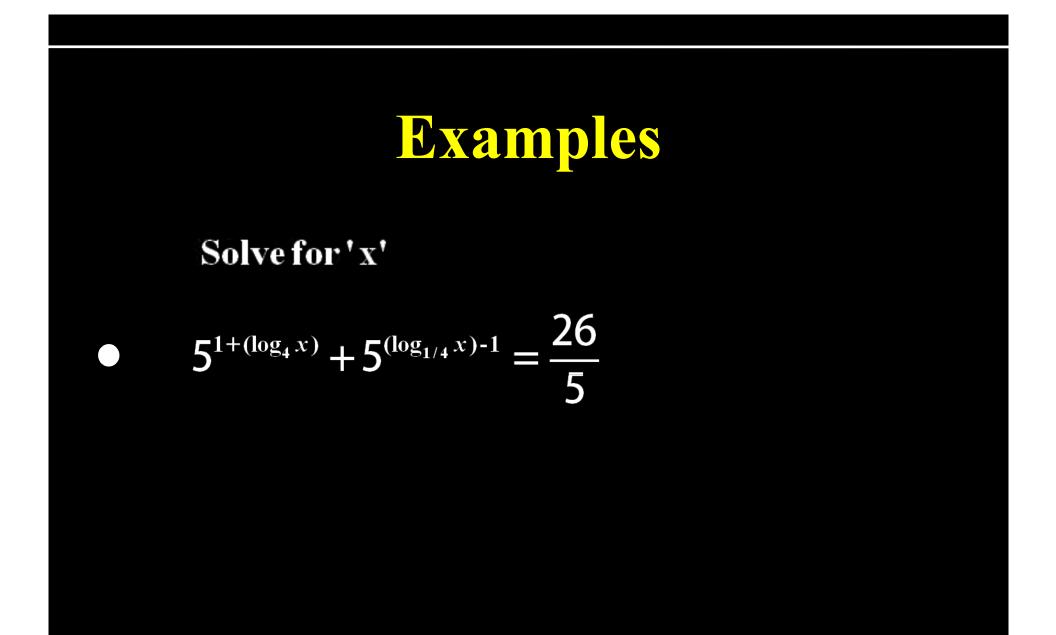
• Solve for'x' $\log_5(5^{1/x} + 125) - \log_5(6) = 1 + \frac{1}{2x}$

Logrithmic Equations

• Solve for 'x'
$$2\log_2 \frac{x-7}{x-1} + \log_2 \frac{x-1}{x+1} = 1$$

• Solve for'x'
$$\log_5(5^{1/x} + 125) - \log_5(6) = 1 + \frac{1}{2x}$$

• Solve for 'x' $\log_5(\sqrt[x]{5}+125) - \log_5(6) = 1 + \frac{1}{2x}$



$$3^{\log_3^2 x} + x^{\log_3 x} = 162$$

• Solve for x

$$3^{\log_3^2 x} + x^{\log_3 x} = 162$$

• Solve for x

 $(x+1)^{\log_{10}(x+1)} = 100(x+1)$

Let (x_0, y_0) the solution of the following equations $(2x)^{ln2} = (3y)^{ln3}$ $3^{ln}x = 2^{lny}$. Then x_0 is (A) $\frac{1}{6}$ (B) $\frac{1}{3}$ (C) $\frac{1}{2}$ (D) 6 [JEE 2011,3] Common and Natural Logarithm

Characteristic & Mantissa

• Standard form of a positive number

Using log 2 = 0.3010 and log 3 = 0.4771, and log 7 = 0.8451

(1) Find the number of digits (A) 6^{50} (B) 5^{25}

Using log 2 = 0.3010 and log 3 = 0.4771, and log 7 = 0.8451

- (1) Find the number of digits (A) 6^{50} (B) 5^{25}
- (2) Find the number of zeros after decimal before a significant figure start in

(A)
$$\left(\frac{9}{8}\right)^{-100}$$
 (B) 3^{-50}

Let $\log_3 N = \alpha_1 + \beta_1$; $\log_5 N = \alpha_2 + \beta_2$; $\log_7 N = \alpha_3 + \beta_3$ where $\alpha_1, \alpha_2, \alpha_3$ are integers and $\beta_1, \beta_2, \beta_3 \in [0, 1)$

Let $\log_3 N = \alpha_1 + \beta_1$; $\log_5 N = \alpha_2 + \beta_2$; $\log_7 N = \alpha_3 + \beta_3$ where $\alpha_1, \alpha_2, \alpha_3$ are integers and $\beta_1, \beta_2, \beta_3 \in [0, 1)$

(i) Find the number of integral and $\alpha_1 = 4$ and $\alpha_2 = 2$

Let $\log_3 N = \alpha_1 + \beta_1$; $\log_5 N = \alpha_2 + \beta_2$; $\log_7 N = \alpha_3 + \beta_3$ where $\alpha_1, \alpha_2, \alpha_3$ are integers and $\beta_1, \beta_2, \beta_3 \in [0, 1)$

(i) Find the number of integral and $\alpha_1 = 4$ and $\alpha_2 = 2$

(ii) Find the largest integral value of N if $\alpha_1 = 5$, $\alpha_2 = 3$ and $\alpha_3 = 2$

Let $\log_3 N = \alpha_1 + \beta_1$; $\log_5 N = \alpha_2 + \beta_2$; $\log_7 N = \alpha_3 + \beta_3$ where $\alpha_1, \alpha_2, \alpha_3$ are integers and $\beta_1, \beta_2, \beta_3 \in [0, 1)$

(i) Find the number of integral and $\alpha_1 = 4$ and $\alpha_2 = 2$

(ii) Find the largest integral value of N if $\alpha_1 = 5$, $\alpha_2 = 3$ and $\alpha_3 = 2$

(iii) Find the difference of largest and smallest integral values of N if

 $\alpha_1 = 5, \ \alpha_2 = 3 \text{ and } \alpha_3 = 2$

Modulus (Absolute Value Function)

Solve for *x*

(a) |x-1|+|x-3|=5

- (a) |x-1|+|x-3|=5
- (b) |x| |x 2| = 2

- (a) |x-1|+|x-3|=5
- (b) |x| |x 2| = 2
- (c) |x+1|+|x+2|=2

- (a) |x-1|+|x-3|=5
- (b) |x| |x-2| = 2
- (c) |x+1|+|x+2|=2
- (d) |3x-2|+x=11

Solve for *x*

- (a) |x-1|+|x-3|=5
- (b) |x| |x 2| = 2
- (c) |x+1|+|x+2|=2

(d) |3x-2|+x=11

(e)
$$|x-2|^{10x^2-1} = |x-2|^{3x}$$

• Least value of x satisfying |x-3|+2|x+1|=4

• Least value of x satisfying |x-3|+2|x+1|=4

• If the sum of all solutions of the equation

$$(x^{\log_{10} 3}) - (3^{\log_{10} x}) - 2 = 0$$
 is $(a^{\log_{b} c})$

where *b* and *c* are relatively prime and a, b, $c \in N$. Find the value of (a + b + c)

•
$$\log_4(x^2 - 1) - \log_4(x - 1)^2 = \log_4\sqrt{(4 - x)^2}$$

$$\log_4 (x^2 - 1) - \log_4 (x - 1)^2 = \log_4 \sqrt{(4 - x)^2}$$

$$2\log_8(2x) + \log_8(x^2 + 1 - 2x) = \frac{4}{3}$$

Solve for 'x'

$$\log_4 (x^2 - 1) - \log_4 (x - 1)^2 = \log_4 \sqrt{(4 - x)^2}$$

$$2\log_8(2x) + \log_8(x^2 + 1 - 2x) = \frac{4}{3}$$

• $\frac{3}{2}\log_4(x+2)^2 + 3 = \log_4(4-x)^3 + \log_4(6+x)^3$.

•
$$|x-3|^{3x^2-10x+3} = 1$$

- $|x-3|^{3x^2-10x+3} = 1$
- $2\log_3(x-2) + \log_3(x-4)^2 = 0$

•
$$|x-3|^{3x^2-10x+3} = 1$$

•
$$2\log_3(x-2) + \log_3(x-4)^2 = 0$$

•
$$|x-1|^{\log_3 x^2 - 2\log_x 9} = (x-1)^7$$

•
$$|x-3|^{3x^2-10x+3} = 1$$

•
$$2\log_3(x-2) + \log_3(x-4)^2 = 0$$

•
$$|x-1|^{\log_3 x^2 - 2\log_x 9} = (x-1)^7$$

• $x^{(3/4)(\log_2 x)^2 + \log_2 x - (5/4)} = \sqrt{2}$

Log. Inequalities

Log. Inequalities

● For a >1 the inequality 0 < x < y & log, x < log, y are equivalent

Log. Inequalities

● For a >1 the inequality 0 < x < y & log_a x < log_a y are equivalent

• For 0 < a < 1 the inequality $0 < x < y \& \log_a x > \log_a y$ are equivalent

Assignment

Prilepko (Page No.92-93)

Solve the following equations :

$\log_{x-1} 3 = 2$

Solve the following equations :

• $\log_{x-1} 3 = 2$

$$\log_4 \left(2 \log_3 \left(1 + \log_2 \left(1 + 3 \log_3 x \right) \right) \right) = \frac{1}{2}$$

Solve the following equations :

• $\log_{x-1} 3 = 2$

$$\log_4 \left(2 \log_3 \left(1 + \log_2 \left(1 + 3 \log_3 x \right) \right) \right) = \frac{1}{2}$$

•
$$\log_3(1 + \log_3(2^x - 7)) = 1$$

Solve the following equations :

• $\log_{x-1} 3 = 2$

$$\log_4 \left(2 \log_3 \left(1 + \log_2 \left(1 + 3 \log_3 x \right) \right) \right) = \frac{1}{2}$$

•
$$\log_3(1 + \log_3(2^x - 7)) = 1$$

$$\log_3\left(3^{\mathrm{x}}-8\right)=2-\mathrm{x}$$

$$\frac{\log_2(9-2^x)}{3-x} = 1$$

$$\frac{\log_2(9-2^x)}{3-x} = 1$$

•
$$\log_{5-x}(x^2 - 2x + 65) = 2$$

•
$$\frac{\log_2(9-2^x)}{3-x} = 1$$

• $\log_{5-x}(x^2-2x+65) = 2$
• $\log_{5-x}(\log_9x+\frac{1}{2}+9^x) = 2x$

•
$$\frac{\log_2(9-2^x)}{3-x} = 1$$

• $\log_{5-x}(x^2-2x+65) = 2$
• $\log_3\left(\log_9x+\frac{1}{2}+9^x\right) = 2x$
• $\log_3(x+1) + \log_3(x+3) = 1$

•
$$\log_7(2^x - 1) + \log_7(2^x - 7) = 1$$

•
$$\log_7(2^x - 1) + \log_7(2^x - 7) = 1$$

•
$$\log 5 + \log(x+10) - 1 = \log(21x-20) - \log(2x-1)$$

•
$$\log_7(2^x - 1) + \log_7(2^x - 7) = 1$$

$$\log 5 + \log(x+10) - 1 = \log(21x-20) - \log(2x-1)$$

•
$$1 - \log 5 = \frac{1}{3} \left(\log \frac{1}{2} + \log x + \frac{1}{3} \log 5 \right)$$

•
$$\log_7(2^x - 1) + \log_7(2^x - 7) = 1$$

$$\log 5 + \log(x+10) - 1 = \log(21x-20) - \log(2x-1)$$

•
$$1 - \log 5 = \frac{1}{3} \left(\log \frac{1}{2} + \log x + \frac{1}{3} \log 5 \right)$$

• $\log x - \frac{1}{2} \log \left(x - \frac{1}{2} \right) = \log \left(x + \frac{1}{2} \right) - \frac{1}{2} \log \left(x + \frac{1}{8} \right)$

•
$$9^{\log_3(1-2x)} = 5x^2 - 5$$

•
$$9^{\log_3(1-2x)} = 5x^2 - 5$$

•
$$x^{1+\log x} = 10 x$$

•
$$9^{\log_3(1-2x)} = 5x^2 - 5$$

$$x^{1+\log x} = 10 x$$

•
$$x^{2\log x} = 10 x^2$$

•
$$9^{\log_3(1-2x)} = 5x^2 - 5$$

$$x^{1+\log x} = 10 x$$

$$x^{2\log x} = 10 x^2$$

$$x^{\frac{\log x+5}{3}} = 10^{5+\log x}$$

•
$$x^{\log_3 x} = 9$$

•
$$x^{\log_3 x} = 9$$

• $(\sqrt{x})^{\log_5 x - 1} = 5$

•
$$x^{\log_3 x} = 9$$

• $(\sqrt{x})^{\log_5 x-1} = 5$
• $x^{\log_x +1} = 10^6$

•
$$x^{\log_3 x} = 9$$

• $(\sqrt{x})^{\log_5 x-1} = 5$
• $x^{\log x+1} = 10^6$
• $\frac{\log x+7}{4} = 10^{\log x+1}$

•
$$x^{\log_{\sqrt{x}}(x-2)} = 9$$

•
$$x^{\log_{\sqrt{x}}(x-2)} = 9$$

• $\left(\frac{\log x}{2}\right)^{\log^2 x + \log x^2 - 2} = \log \sqrt{x}$

•
$$x^{\log_{\sqrt{x}}(x-2)} = 9$$

• $\left(\frac{\log x}{2}\right)^{\log^2 x + \log x^2 - 2} = \log \sqrt{x}$
• $3\sqrt{\log_2 x} - \log_2 8x + 1 = 0$

•
$$x^{\log_{\sqrt{x}}(x-2)} = 9$$

• $\left(\frac{\log x}{2}\right)^{\log^2 x + \log x^2 - 2} = \log \sqrt{x}$
• $3\sqrt{\log_2 x} - \log_2 8x + 1 = 0$
• $\log^2 x - 3\log x = \log(x^2) - 4$

•
$$\log_{1/3} x - 3\sqrt{\log_{1/3} x} + 2 = 0$$

$$\log_{1/3} x - 3\sqrt{\log_{1/3} x} + 2 = 0$$

•
$$2\left(\log_x \sqrt{5}\right)^2 - 3\log_x \sqrt{5} + 1 = 0$$

$$\log_{1/3} x - 3\sqrt{\log_{1/3} x} + 2 = 0$$

•
$$\sqrt{2}(\log_x \sqrt{5})^2 - 3\log_x \sqrt{5} + 1 = 0$$

•
$$\log_2^2 x + 2 \log_2 \sqrt{x} - 2 = 0$$

0

•
$$\log_{1/3} x - 3\sqrt{\log_{1/3} x} + 2 = 0$$

• $(2(\log_x \sqrt{5})^2 - 3\log_x \sqrt{5} + 1 = 0)$
• $\log_2^2 x + 2\log_2 \sqrt{x} - 2 = 0$
• $(a^{\log_b x})^2 - 5x^{\log_b a} + 6 = 0$

•
$$\log^2(100 \text{ x}) + \log^2(10 \text{ x}) = 14 + \log\left(\frac{1}{\text{x}}\right)$$

•
$$\log^2(100 \text{ x}) + \log^2(10 \text{ x}) = 14 + \log\left(\frac{1}{\text{x}}\right)$$

•
$$\log_4(x+3) - \log_4(x-1) = 2 - \log_4 8$$

•
$$\log^2(100 \text{ x}) + \log^2(10 \text{ x}) = 14 + \log\left(\frac{1}{\text{x}}\right)$$

•
$$\log_4(x+3) - \log_4(x-1) = 2 - \log_4 8$$

•
$$2\log_4(4-x) = 4 - \log_2(-2-x)$$

Solve Sheet

To Attain IIT-Level