

For More Study Material & Test Papers Visit : www.mathsiit.com

MATRICES

MANOJ CHAUHAN SIR(IIT-DELHI) EX. SR. FACULTY (BANSAL CLASSES)

KEY CONCEPTS MATRICES

USEFUL IN STUDY OF SCIENCE, ECONOMICS AND ENGINEERING

1. **Definition :** Rectangular array of mn numbers . Unlike determinants it has no value.

A =	a ₁₁ a ₂₁ :	a ₁₂ a ₂₂ :	 :	a _{1n} a _{2n} :	or	$ \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \end{pmatrix} $	a ₁₂ a ₂₂ :	 :	a_{1n} a_{2n} :	
	a _{m1}	a _{m2}		a _{mn}		a _{m1}	a _{m2}		· a _{mn})	

Abbreviated as : $A = [a_{ij}] 1 \le i \le m$; $1 \le j \le n$, i denotes the row and j denotes the column is called a matrix of order $m \times n$.

2. **Special Type Of Matrices :**

- **Row Matrix** : $A = [a_{11}, a_{12}, ..., a_{1n}]$ having one row $(1 \times n)$ matrix. **(a)** (or row vectors) (or row vectors) **Column Matrix :** $A = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}$ having one column. (m × 1) matrix
- **(b)**

Zero or Null Matrix : $(A = O_{m \times n})$ (c) An $m \times n$ matrix all whose entries are zero.

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \text{ is a } 3 \times 2 \text{ null matrix } \& B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ is } 3 \times 3 \text{ null matrix}$$

(d) Horizontal Matrix : A matrix of order $m \times n$ is a horizontal matrix if n > m.

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 1 & 1 \end{bmatrix}$$
Verical Matrix : A matrix of order m × n is a vertical matrix if m > n.
$$\begin{bmatrix} 2 & 5 \\ 1 & 1 \\ 3 & 6 \\ 2 & 4 \end{bmatrix}$$
Square Matrix : (Order n)

If number of row = number of column \Rightarrow a square matrix.

In a square matrix the pair of elements $a_{ii} \& a_{ii}$ are called **Conjugate Elements**. Note (i)

e.g.
$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

(e)

(f)

The elements a_{11} , a_{22} , a_{33} , a_{nn} are called **Diagonal Elements**. The line along which the diagonal elements lie is called "**Principal or Leading**" diagonal. (ii) The qty $\sum a_{ij}$ = trace of the matrice written as , i.e. t A

Square Matrix

Properties Of Matrix Multiplication :

1. Matrix multiplication is not commutative.

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} ; \qquad B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} ; AB = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} ; \qquad BA = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
$$\Rightarrow AB \neq BA \text{ (in general)}$$
$$AB = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \Rightarrow AB = \mathbf{O} \Rightarrow A = \mathbf{O} \text{ or } B = \mathbf{O}$$

Note: If A and B are two non-zero matrices such that AB = O then A and B are called the divisors of zero. Also if $[AB] = O \Rightarrow |AB| \Rightarrow |A| | B | = 0 \Rightarrow |A| = 0$ or |B| = 0 but not the converse. If A and B are two matrices such that

- (i) $AB = BA \implies A \text{ and } B \text{ commute each other}$
- (ii) $AB = -BA \Rightarrow A \text{ and } B \text{ anti commute each other}$

3. Matrix Multiplication Is Associative :

If A, B & C are conformable for the product AB & BC, then

(A . B) . C = A . (B . C)

4. Distributivity :

 $\begin{array}{l} A (B + C) = AB + AC \\ (A + B) C = AC + BC \end{array} \end{array} Provided A, B \& C are conformable for respective products$

5. Positive Integral Powers OF A Square Matrix :

For a square matrix A, $A^2 A = (AA)A = A(AA) = A^3$. Note that for a unit matrix I of any order, $I^m = I$ for all $m \in N$.

6. MATRIX POLYNOMIAL:

If $f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n x^0$ then we define a matrix polynomial $f(A) = a_0 A^n + a_1 A^{n-1} + a_2 A^{n-2} + \dots + a_n I^n$

where A is the given square matrix. If f(A) is the null matrix then A is called the zero or root of the polynomial f(x).

DEFINITIONS:

- (a) Idempotent Matrix : A square matrix is idempotent provided $A^2 = A$. Note that $A^n = A \forall n \ge 2$, $n \in N$.
- (b) Nilpotent Matrix: A square matrix is said to be nilpotent matrix of order m, $m \in N$, if $A^m = \mathbf{O}, A^{m-1} \neq \mathbf{O}$.
- (c) **Periodic Matrix :** A square matrix is which satisfies the relation $A^{K+1} = A$, for some positive integer K, is a periodic matrix. The period of the matrix is the least value of K for which this holds true. Note that period of an idempotent matrix is 1.
- (d) **Involutary Matrix :** If $A^2 = I$, the matrix is said to be an involutary matrix. **Note that** $A = A^{-1}$ **for an involutary matrix.**

7. The Transpose Of A Matrix : (Changing rows & columns) Let A be any matrix . Then, $A = a_{ij}$ of order $m \times n$ $\Rightarrow A^{T}$ or $A' = [a_{ji}]$ for $1 \le i \le n$ & $1 \le j \le m$ of order $n \times m$

Properties of Transpose : If $A^T \& B^T$ denote the transpose of A and B,

- (a) $(A \pm B)^T = A^T \pm B^T$; note that A & B have the same order.
- **IMP.** (b) $(AB)^{T} = B^{T} A^{T}$ A & B are conformable for matrix product AB.
 - (c) $(A^{T})^{T} = A$
 - (d) $(kA)^T = kA^T$ k is a scalar.

General :
$$(A_1, A_2, \dots, A_n)^T = A_n^T, \dots, A_2^T, A_1^T$$
 (reversal law for transpose)

8. Symmetric & Skew Symmetric Matrix :

A square matrix $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ is said to be, symmetric if,

 $\mathbf{a}_{ii} = \mathbf{a}_{ii} \quad \forall i \& j$ (conjugate elements are equal) (Note $A = A^{T}$)

Note: Max. number of distinct entries in a symmetric matrix of order n is $\frac{n(n+1)}{2}$. and skew symmetric if,

 $a_{ij} = -a_{ji}$ \forall i & j (the pair of conjugate elements are additive inverse of each other) (Note $A = -A^T$)

Hence If A is skew symmetric, then

 $a_{ii} = -a_{ii} \implies a_{ii} = 0 \quad \forall i$ Thus the digaonal elements of a skew symmetric matrix are all zero, but not the converse.

Properties Of Symmetric & Skew Matrix :

- P-1 A is symmetric if $A^{T} = A$
- A is skew symmetric if $A^{T} = -A$ **P**-2 $A + A^{T}$ is a symmetric matrix
- $A A^{T}$ is a skew symmetric matrix. Consider $(A + A^{T})^{T} = A^{T} + (A^{T})^{T} = A^{T} + A = A + A^{T}$ $A + A^{T}$ is symmetric. Similarly we can prove that $A - A^T$ is skew symmetric.
- P-3 The sum of two symmetric matrix is a symmetric matrix and the sum of two skew symmetric matrix is a skew symmetric matrix. $A^{T} = A$; $B^{T} = B$ where A & B have the same order. Let
 - $(\mathbf{A} + \mathbf{B})^{\mathrm{T}} = \mathbf{A} + \mathbf{B}$

Similarly we can prove the other

- P-4 If A & B are symmetric matrices then,
 - AB + BA is a symmetric matrix **(a)**
 - **(b)** AB-BA is a skew symmetric matrix.
- P-5 Every square matrix can be uniquely expressed as a sum of a symmetric and a skew symmetric matrix.

$$A = \frac{1}{2} (A + A^{T}) + \frac{1}{2} (A - A^{T})$$

$$P \qquad Q$$
Symmetric Skew Symmetric

9. **Adjoint Of A Square Matrix :**

> Let $A = \begin{bmatrix} a_{ij} \end{bmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$ be a square matrix and let the matrix formed by the cofactors of $[a_{ij}]$ in determinant |A| is = $\begin{pmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{pmatrix}$. Then (adj A) = $\begin{pmatrix} C_{11} & C_{21} & C_{31} \\ C_{11} & C_{21} & C_{31} \end{pmatrix}$

Then (adj A) = $\begin{pmatrix} C_{11} & C_{21} & C_{31} \\ C_{12} & C_{22} & C_{32} \\ C_{12} & C_{12} & C_{12} \end{pmatrix}$

V. Imp. Theorem : $A(adj, A) = (adj, A) \cdot A = |A| I_n$, If A be a square matrix of order n.

Note: If A and B are non singular square matrices of same order, then

(i)
$$| adj A | = |A|^{n-1}$$

- (ii) adj(AB) = (adj B)(adj A)
- (iii) $adj(KA) = K^{n-1}(adj A), K \text{ is a scalar}$

Inverse Of A Matrix (Reciprocal Matrix) :

A square matrix A said to be invertible (non singular) if there exists a matrix B such that,

$$AB = I = BA$$

B is called the inverse (reciprocal) of A and is denoted by A⁻¹. Thus

$$A^{-1} = B \iff AB = I = BA.$$

We have,
$$A \cdot (adj A) = |A| I_n$$
$$A^{-1} A (adj A) = A^{-1} I_n |A|$$
$$I_n (adj A) = A^{-1} |A| I_n$$
$$\therefore A^{-1} = \frac{(adj A)}{|A|}$$

Note : The necessary and sufficient condition for a square matrix A to be invertible is that $|A| \neq 0$.

Imp. Theorem : If A & B are invertible matrices of the same order, then $(AB)^{-1} = B^{-1} A^{-1}$. This is reversal law for inverse.

Note :

- (i) If A be an invertible matrix, then A^T is also invertible & $(A^T)^{-1} = (A^{-1})^T$.
- (ii) If A is invertible, (a) $(A^{-1})^{-1} = A$; (b) $(A^{k})^{-1} = (A^{-1})^{k} = A^{-k}, k \in N$
- (iii) If A is an Orthogonal Matrix. $AA^{T} = I = A^{T}A$
- (iv) A square matrix is said to be orthogonal if, $A^{-1} = A^{T}$.

(v)
$$|A^{-1}| = \frac{1}{|A|}$$

SYSTEM OF EQUATION & CRITERIAN FOR CONSISTENCY

GAUSS - JORDAN METHOD

$$x + y + z = 6$$

$$x - y + z = 2$$

$$2x + y - z = 1$$
or
$$\begin{pmatrix} x + y + z \\ x - y + z \\ 2x + y - z \end{pmatrix} = \begin{pmatrix} 6 \\ 2 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 2 & 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 6 \\ 2 \\ 1 \end{pmatrix}$$

$$AX = B \implies A^{-1} A X = A^{-1} B$$

$$X = A^{-1} B = \frac{(adj. A).B}{|A|}.$$

EXERCISE-I

Q.1 If, $E = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ and $F = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ calculate the matrix product EF & FE and show that $E^{2}F + FE^{2} = E$.

- Q.2 Find the number of 2×2 matrix satisfying (i) a_{ij} is 1 or -1 ; (ii) $a_{11}^2 + a_{12}^2 = a_{21}^2 + a_{22}^2 = 2$; (iii) $a_{11}a_{21} + a_{12}a_{22} = 0$
- Q.3 Find the value of x and y that satisfy the equations.

$$\begin{bmatrix} 3 & -2 \\ 3 & 0 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} y & y \\ x & x \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 3y & 3y \\ 10 & 10 \end{bmatrix}$$

Q.4 Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $B = \begin{bmatrix} p \\ q \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Such that AB = B and a + d = 5050. Find the value of (ad - bc).

Q.5 Define $A = \begin{bmatrix} 0 & 1 \\ 3 & 0 \end{bmatrix}$. Find a vertical vector V such that $(A^8 + A^6 + A^4 + A^2 + I)V = \begin{bmatrix} 0 \\ 11 \end{bmatrix}$ (where I is the 2 × 2 identity matrix).

Q.6 If, $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$, then show that the maxtrix A is a root of the polynomial $f(x) = x^3 - 6x^2 + 7x + 2$.

Q.7 For a non zero λ , use induction to prove that : (Only for XII CBSE)

(a)
$$\begin{bmatrix} \lambda & 1 & 0\\ 0 & \lambda & 1\\ 0 & 0 & \lambda \end{bmatrix}^{n} = \begin{bmatrix} \lambda^{n} & n\lambda^{n-1} & \frac{n(n-1)}{2}\lambda^{n-2}\\ 0 & \lambda^{n} & n\lambda^{n-1}\\ 0 & 0 & \lambda^{n} \end{bmatrix}, \text{ for every } n \in \mathbb{N}$$

(b) If, $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, then $(aI+bA)^n = a^nI + na^{n-1}bA$, where I is a unit matrix of order 2, $\forall n \in N$.

Q.8 If the matrices $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ (a, b, c, d not all simultaneously zero) commute, find the value of $\frac{d-b}{a+c-b}$. Also show that the matrix which commutes with A is of the form $\begin{bmatrix} \alpha - \beta & 2\beta/3 \\ \beta & \alpha \end{bmatrix}$

- Q.9 If $\begin{bmatrix} a & b \\ c & 1-a \end{bmatrix}$ is an idempotent matrix. Find the value of f(a), where f(x) = x-x², when bc = 1/4. Hence otherwise evaluate a.
- Q.10 If the matrix A is involutary, show that $\frac{1}{2}(I + A)$ and $\frac{1}{2}(I A)$ are idempotent and $\frac{1}{2}(I + A) \cdot \frac{1}{2}(I A) = 0$.
- Q.11 Show that the matrix $A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$ can be decomposed as a sum of a unit and a nilpotent marix. Hence evaluate the matrix $\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}^{2007}$.
- Q.12 Given matrices $A = \begin{bmatrix} 1 & x & 1 \\ x & 2 & y \\ 1 & y & 3 \end{bmatrix}$; $B = \begin{bmatrix} 3 & -3 & z \\ -3 & 2 & -3 \\ z & -3 & 1 \end{bmatrix}$ Obtain x, y and z if the matrix AB is symmetric.

Q.13 Let X be the solution set of the equation $A^{x} = I$, where $A = \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix}$ and I is the corresponding unit matrix and $x \subseteq N$ then find the minimum value of $\sum (\cos^{x} \theta + \sin^{x} \theta), \theta \in \mathbb{R}$.

Q.14
$$A = \begin{pmatrix} 3 & a & -1 \\ 2 & 5 & c \\ b & 8 & 2 \end{pmatrix}$$
 is Symmetric and $B = \begin{pmatrix} d & 3 & a \\ b-a & e & -2b-c \\ -2 & 6 & -f \end{pmatrix}$ is Skew Symmetric, then find AB.

Is AB a symmetric, Skew Symmetric or neither of them. Justify your answer.

- Q.15 Express the matrix $\begin{bmatrix} 1 & 2 & 5 \\ 2 & 3 & -6 \\ -1 & 0 & 4 \end{bmatrix}$ as a sum of a lower triangular matrix & an upper triangular matrix with zero in its leading diagonal. Also Express the matrix as a sum of a symmetric & a skew symmetric matrix.
- Q.16 A is a square matrix of order n. l = maximum number of distinct entries if A is a triangular matrix m = maximum number of distinct entries if A is a diagonal matrix p = minimum number of zeroes if A is a triangular matrix If l + 5 = p + 2m, find the order of the matrix.
- Q.17 If A is an idempotent non zero matrix and I is an identity matrix of the same order, find the value of $n, n \in N$, such that $(A + I)^n = I + 127 A$.

Q.18 Consider the two matrices A and B where $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$; $B = \begin{bmatrix} 5 \\ -3 \end{bmatrix}$. If n(A) denotes the number of elements in A such that n(XY)=0, when the two matrices X and Y are not conformable for multiplication.

If C = (AB)(B'A); D = (B'A)(AB) then, find the value of
$$\left(\frac{n(C)(|D|^2 + n(D))}{n(A) - n(B)}\right)$$

EXERCISE-II

- Q.1 If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then prove that value of f and g satisfying the maxtrix equation $A^2 + fA + gI = \mathbf{O}$ are equal to $-t_r$ (A) and determinant of A respectively. Given a, b, c, d are non zero reals and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$; $\mathbf{O} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.
- Q.2 $A_{3\times 3}$ is a matrix such that |A| = a, B = (adj A) such that |B| = b. Find the value of $(ab^2 + a^2b + 1)S$ where $\frac{1}{2}S = \frac{a}{b} + \frac{a^2}{b^3} + \frac{a^3}{b^5} + \dots$ up to ∞ , and a = 3.

Q.3 For the matrix
$$A = \begin{bmatrix} 4 & -4 & 5 \\ -2 & 3 & -3 \\ 3 & -3 & 4 \end{bmatrix}$$
 find A^{-2} .

Q.4 Given A =
$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 4 & 1 \\ 2 & 3 & 1 \end{bmatrix}$$
, B = $\begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix}$. Find P such that BPA = $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$

Q.5 Given the matrix $A = \begin{bmatrix} -1 & 3 & 5 \\ 1 & -3 & -5 \\ -1 & 3 & 5 \end{bmatrix}$ and X be the solution set of the equation $A^x = A$,

where
$$x \in N - \{1\}$$
. Evaluate $\prod \left(\frac{x^3 + 1}{x^3 - 1}\right)$ where the continued product extends $\forall x \in X$

Q.6 If
$$F(x) = \begin{bmatrix} \cos x & -\sin x & 0\\ \sin x & \cos x & 0\\ 0 & 0 & 1 \end{bmatrix}$$
 then show that $F(x)$. $F(y) = F(x+y)$
Hence prove that $[F(x)]^{-1} = F(-x)$.

- Q.7 If A is a skew symmetric matrix and I + A is non singular, then prove that the matrix $B = (I-A)(I+A)^{-1}$ is an orthogonal matrix. Use this to find a matrix B given $A = \begin{bmatrix} 0 & 5 \\ -5 & 0 \end{bmatrix}$.
- Q.8 Use matrix to solve the following system of equations.
- Q.9 Let A be a 3×3 matrix such that $a_{11} = a_{33} = 2$ and all the other $a_{ij} = 1$. Let $A^{-1} = xA^2 + yA + zI$ then find the value of (x + y + z) where I is a unit matrix of order 3.
- Q.10 Given that $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 & 3 \\ 1 & -1 & 3 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 10 \\ 13 \\ 9 \end{bmatrix}$ and that Cb=D. Solve the matrix equation Ax=b.

- Q.11 Find the matrix A satisfying the matrix equation, $\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} \cdot A \cdot \begin{bmatrix} 3 & 2 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 3 & -1 \end{bmatrix}$.
- Q.12 If $A = \begin{bmatrix} k & m \\ l & n \end{bmatrix}$ and $kn \neq lm$; then show that $A^2 (k+n)A + (kn lm)I = \mathbf{O}$. Hence find A^{-1} .
- Q.13 Given $A = \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix}$; $B = \begin{bmatrix} 9 & 3 \\ 3 & 1 \end{bmatrix}$. I is a unit matrix of order 2. Find all possible matrix X in the following cases. (i) AX = A (ii) XA = I (iii) XB = O but $BX \neq O$.
- Q.14 Find the product of two matrices A & B, where A = $\begin{bmatrix} -5 & 1 & 3 \\ 7 & 1 & -5 \\ 1 & -1 & 1 \end{bmatrix}$ & B = $\begin{bmatrix} 1 & 1 & 2 \\ 3 & 2 & 1 \\ 2 & 1 & 3 \end{bmatrix}$ and use it to

solve the following system of linear equations,

x + y + 2z = 1; 3x + 2y + z = 7; 2x + y + 3z = 2.

Q.15 If $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ then, find a non-zero square matrix X of order 2 such that $AX = \mathbf{O}$. Is $XA = \mathbf{O}$. If $A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$, is it possible to find a square matrix X such that $AX = \mathbf{O}$. Give reasons for it.

Q.16 Determine the values of a and b for which the system $\begin{bmatrix} 3 & -2 & 1 \\ 5 & -8 & 9 \\ 2 & 1 & a \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} b \\ 3 \\ -1 \end{bmatrix}$

(i) has a unique solution ; (ii) has no solution and (iii) has infinitely many solutions

- Q.17 If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$; $B = \begin{bmatrix} 3 & 1 \\ 1 & 0 \end{bmatrix}$; $C = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ and $X = \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}$ then solve the following matrix equation. (a) AX = B - I (b) (B - I)X = IC (c) CX = A
- Q.18 If A is an orthogonal matrix and B = AP where P is a non singular matrix then show that the matrix PB^{-1} is also orthogonal.

Q.19	Consid	der the matrices $A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}$ and let P	be any orthogonal matrix and $Q = PAP^T$
	and R	= $P^{T}Q^{K}P$ also $S = PBP^{T}$ and $T = P^{T}S^{K}P$	
		Column I	Column II
	(A)	If we vary K from 1 to n then the first row	(P) G.P. with common ratio a
	(B)	If we vary K from 1 to n then the 2^{nd} row 2^{nd} column elements at R will form	(Q) A.P. with common difference 2
	(C)	If we vary K from 1 to n then the first row first column elements of T will form	(R) G.P. with common ratio b
	(D)	If we vary K from 3 to n then the first row 2 nd column elements of T will represent the sum of	(S) A.P. with common difference -2 .

EXERCISE-III

Q.1 If matrix
$$A = \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}$$
 where a, b, c are real positive numbers, $abc = 1$ and $A^{T}A = I$, then find the value of $a^{3} + b^{3} + c^{3}$. [JEE 2003, Mains-2 out of 60]

Q.2 If
$$A = \begin{bmatrix} \alpha & 2 \\ 2 & \alpha \end{bmatrix}$$
 and $|A^3| = 125$, then $\alpha =$
(A) ± 3 (B) ± 2 (C) ± 5 (D) 0 [JEE 2004(Scr)]

Q.3 If M is a 3×3 matrix, where $M^T M = I$ and det (M) = 1, then prove that det (M - I) = 0. [JEE 2004, 2 out of 60]

Q.4
$$A = \begin{bmatrix} a & 1 & 0 \\ 1 & b & d \\ 1 & b & c \end{bmatrix}, B = \begin{bmatrix} a & 1 & 1 \\ 0 & d & c \\ f & g & h \end{bmatrix}, U = \begin{bmatrix} f \\ g \\ h \end{bmatrix}, V = \begin{bmatrix} a^2 \\ 0 \\ 0 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}.$$

If AX = U has infinitely many solution, then prove that BX = V cannot have a unique solution. If further a fd $\neq 0$, then prove that BX = V has no solution. [JEE 2004, 4 out of 60]

Q.5
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4 \end{bmatrix}, I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ and } A^{-1} = \frac{1}{6}(A^2 + cA + dI), \text{ then the value of c and d are}$$

(A) -6, -11 (B) 6, 11 (C) -6, 11 (D) 6, -11 [JEE 2005(Scr)]

Q.6 If
$$P = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$
, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $Q = PAP^{T}$ and $x = P^{T}Q^{2005}P$, then x is equal to
(A) $\begin{bmatrix} 1 & 2005 \\ 0 & 1 \end{bmatrix}$
(B) $\begin{bmatrix} 4+2005\sqrt{3} & 6015 \\ 2005 & 4-2005\sqrt{3} \end{bmatrix}$
(C) $\frac{1}{4} \begin{bmatrix} 2+\sqrt{3} & 1 \\ -1 & 2-\sqrt{3} \end{bmatrix}$
(D) $\frac{1}{4} \begin{bmatrix} 2005 & 2-\sqrt{3} \\ 2+\sqrt{3} & 2005 \end{bmatrix}$ [JEE 2005 (Screening)]

Comprehension (3 questions)

Q.7
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$$
, U_1, U_2 and U_3 are columns matrices satisfying. $AU_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$; $AU_2 = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}$, $AU_3 = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$

and U is 3×3 matrix whose columns are U_1, U_2, U_3 then answer the following questions

(a)	The value of U is								
	(A) 3	(B) - 3	(C) 3/2	(D) 2					
(b)	The sum of elements of U^{-1} is								
	(A) - 1	(B) 0	(C) 1	(D) 3					
(c)	The value of [3	2 0]U $\begin{bmatrix} 3\\2\\0 \end{bmatrix}$ is							
	(A) 5	(B) 5/2	(C) 4	(D) 3/2 [JEE 2006, 5 marks each]					

Q.8 Match the statements / Expression in Column-I with the statements / Expressions in Column-II and indicate your answer by darkening the appropriate bubbles in the 4×4 matrix given in OMR.

	Column-I	Column-II		
(A)	The minimum value of $\frac{x^2 + 2x + 4}{x + 2}$ is	(P)	0	
(B)	Let A and B be 3×3 matrices of real numbers, where A is symmetric, B is skew-symmetric, and $(A+B)(A-B) = (A-B)(A+B)$. If $(AB)^t = (-1)^k AB$, where $(AB)^t$ is the transpose of the matrix AB, then the possible values of k are	(Q)	1	
(C)	Let a = $\log_3 \log_3 2$. An integer k satisfying $1 < 2^{(-k+3^{-a})} < 2$, must be less than	(R)	2	
(D)	If $\sin \theta = \cos \phi$, then the possible values of $\frac{1}{\pi} \left(\theta \pm \phi - \frac{\pi}{2} \right)$ are	(S)	3	
Comp	orehension (3 questions)		[JEE 2008, 0]	
Let A b are 1 a	be the set of all 3×3 symmetric matrices all of whose entries are either 0 o and four of them are 0.	r 1. Five	of these entries	

- (a) The number of matrices in A is (A) 12 (B) 6 (C) 9 (D) 3
- (b) The number of matrices A in A for which the system of linear equations

$$\mathbf{A}\begin{bmatrix}\mathbf{x}\\\mathbf{y}\\\mathbf{z}\end{bmatrix} = \begin{bmatrix}\mathbf{1}\\\mathbf{0}\\\mathbf{0}\end{bmatrix}$$

has a unique solution, is

Q.8

(A) less than 4	(B) at least 4 but less than 7
(C) at least 7 but less than 10	(D) at least 10

(c) The number of matrices A in A for which the system of linear equations

$$\mathbf{A}\begin{bmatrix}\mathbf{x}\\\mathbf{y}\\\mathbf{z}\end{bmatrix} = \begin{bmatrix}\mathbf{1}\\\mathbf{0}\\\mathbf{0}\end{bmatrix}$$

is inconsistent, is				
(A) 0	(B) more than 2	(C) 2	(D) 1	[JEE 2009, 4+4+4]

ANSWER KEY

MATRICES

EXERCISE-I

Q.1
$$EF = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, FE = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- Q.2 8
- Q.3 $x = \frac{3}{2}, y = 2$
- Q.4 5049

Q.5
$$V = \begin{bmatrix} 0\\ \frac{1}{11} \end{bmatrix}$$

Q.8 1

Q.9 f (a) =
$$1/4$$
, a = $1/2$

Q.11
$$\begin{bmatrix} 1 & 0 \\ 4014 & 1 \end{bmatrix}$$

Q.12
$$\left(-\frac{4\sqrt{2}}{3}, \frac{2}{3}, 2\sqrt{2}\right), \left(\frac{4\sqrt{2}}{3}, \frac{2}{3}, -2\sqrt{2}\right), (3,3,-1)$$

Q.13 2

Q.14 AB is neither symmetric nor skew symmetric

Q.15
$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ -1 & 0 & 4 \end{bmatrix} + \begin{bmatrix} 0 & 2 & 5 \\ 0 & 0 & -6 \\ 0 & 0 & 0 \end{bmatrix}; \begin{bmatrix} 1 & 2 & 2 \\ 2 & 3 & -3 \\ 2 & -3 & 4 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 3 \\ 0 & 0 & -3 \\ -3 & 3 & 0 \end{bmatrix}$$

- Q.16 4
- Q.17 n = 7
- Q.18 650

EXERCISE-II

Q.1 f = -(a + d); g = ad - bc Q.2 225 Q.3 $\begin{bmatrix} 17 & 4 & -19 \\ -10 & 0 & 13 \\ -21 & -3 & 25 \end{bmatrix}$ Q.4 $\begin{bmatrix} -4 & 7 & -7 \\ 3 & -5 & 5 \end{bmatrix}$ Q.5 $\frac{3}{2}$ Q.7 $\frac{1}{13}\begin{bmatrix} -12 & -5 \\ 5 & -12 \end{bmatrix}$

Q.8 (i) x = 2, y = 1, z = 0; (ii) x = 1, y = 2, z = 3; (iii) x = 2 + k, y = 1 - 2k, z = k where $k \in R$; (iv) inconsistent, hence no solution

- Q.10 $x_1 = 1, x_2 = -1, x_3 = 1$ Q.11 $\frac{1}{19} \begin{bmatrix} 48 & -25 \\ -70 & 42 \end{bmatrix}$
- Q.12 $\frac{1}{kn-lm} \begin{bmatrix} n & -m \\ -l & k \end{bmatrix}$
- Q.13 (i) $X = \begin{bmatrix} a & b \\ 2-2a & 1-2b \end{bmatrix}$ for $a, b \in \mathbb{R}$; (ii) X does not exist;

(iii)
$$X = \begin{bmatrix} a & -3a \\ c & -3c \end{bmatrix} a, c \in R \text{ and } 3a + c \neq 0; 3b + d \neq 0$$

Q.14 x = 2, y = 1, z = -1 Q.15 $X = \begin{bmatrix} -2c & -2d \\ c & d \end{bmatrix}$, where $c, d \in R - \{0\}$, NO

Q.16 (i) $a \neq -3$, $b \in R$; (ii) a = -3 and $b \neq 1/3$; (iii) a = -3, b = 1/3

- Q.17 (a) $X = \begin{bmatrix} -3 & -3 \\ \frac{5}{2} & 2 \end{bmatrix}$, (b) $X = \begin{bmatrix} 1 & 2 \\ -1 & -2 \end{bmatrix}$, (c) no solution
- Q.19 (A) Q; (B) S; (C) P; (D) P

EXERCISE-III

Q.1	4	Q.2	А	Q.5	С	Q.6	А	Q.7	(a) A, (b) B, (c) A	4
Q.8	(A) I	R (B) Q,S	5 (C) R	,S (D) P,	R	Q.9	(a) A	A, (b) B, (b) B	