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Quadratic

y = ax2 + bx + c ; a ���� 0

a = leading coefficient

4

a = leading coefficient

b = coefficient of linear term

c = absolute term



y = f(x) = ax2 + bx + c

In case

a = 0 ���� y = bx + c is linear polynomial

a = c = 0 ���� y = bx is odd linear polynomial
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Cubic Polynomial

y = ax3 + bx2 + cx + d

a =  leading coefficienta =  leading coefficient

d = absolute term
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Roots of Quadratic Equation

y = ax2 + bx + c

Where D = b2 – 4ac is called discriminant.
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ax2 + bx + c = 0

Sum of roots = – b/a

Product of roots = c/a

D = b2 – 4 ac
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Different Graphs of

Quadratic ExpressionQuadratic Expression
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Example

Parabola

y

For x = – 1     y is minimum
2

y = x2 + 2x + 2 = (x + 1)2 + 1

D = 22 – 8 = – 4 < 0

Q.

x 0 1 2 3 4 – 1 – 2 – 3 – 4 – 5 ∞ – ∞

y 2 5 10 17 26 1 2 5 10 17 ∞ ∞

0   
x

Leading coefficient > 0

For x = – 1     y is minimum
-1
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In general graph of y = ax2 + bx + c ;

a > 0 Mouth facing upward

D < 0 Parabola don’t touch x axis (no real root)D < 0 Parabola don’t touch x axis (no real root)

y > 0 ���� x ���� R
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Example

y = x2 – 4x + 4 = (x – 2)2

D = 0

(0, 4)

(2, 0)

Y
a > 0

D = 0 

X

Q.

x   0  1  2  3  4  5  6 – 1 – 2    ∞ – ∞

y   4  1  0  1  4  9  16   9   16   ∞ ∞

y ���� 0 ���� x���� R

Leading Coefficient. > 0
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In general graph of y = ax2 + bx + c ;

a > 0 Mouth facing upward

D = 0 (One Real Root) Parabola touch the x AxisD = 0 (One Real Root) Parabola touch the x Axis

y = 0 for only one

value of x (root)

y > 0 ����x ���� R – {root}
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Example

y = x2 – 3x + 2

D = 32 – 4(2) = 1 > 0

x 0 1 2 3 4 3/2 ∞ – ∞

2

a > 0

yQ.

x 0 1 2 3 4 3/2 ∞ – ∞

y 2 0 0 2 6 – ¼    ∞ ∞

y > 0 ���� x (– ∞, 1)���� (2, ∞)

y < 0 ���� x ���� (1,2)

y = 0 ���� x ���� {1,2}

1 20
x
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In General

y = ax2 + bx + c

a > 0 ���� parabola mouth facing upward

Q.

a > 0 ���� parabola mouth facing upward

D > 0 ���� Two distinct real root (parabola

cuts the x axis at 2 distinct point)
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Example

y = – x2 – 2x – 2 = –(x + 1)2 – 1

- 2

- 2  -1
x

Q.

D < 0

x 0 1 2 3 – 1 – 2 – 3 ∞ – ∞

y – 2 – 5 – 10 – 17 – 1 – 2 – 5 – ∞ – ∞

Leading Coefficient < 0

y
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In General

y = ax2 + bx + c

Q.

a < 0 ���� mouth facing downward

D < 0 ���� no real root

y < 0 ���� x���� R
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Example

y = – x2 + 4x – 4= – (x – 2)2

D = 0

Q.

x 0 1 2 3 4 –1 ∞ – ∞

y –4 –1 0 –1 –4 0 – ∞ – ∞

- 4

21

Leading Coefficient < 0 0
x

y
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In General

y = ax2 + bx + c

a < 0 mouth facing downward

Q.

a < 0 mouth facing downward

D = 0 (one real root) parabola touch the x axis

y ���� 0 ���� x���� R
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Example

y = – x2 + 3x – 2 = – (x – 1)(x – 2)

D > 0

x 0 1 2 3 4 –1 –2 ∞ – ∞

Q.

x 0 1 2 3 4 –1 –2 ∞ – ∞

y – 2 0 0 –2 –9 –9 –12 – ∞ – ∞

210

-2

Leading Coefficient < 0

Y

X
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In General

y = ax2 + bx + c

a < 0 Parabola mouth facing downward

D > 0 Two distinct real root (Parabola cut

Q.

D > 0 Two distinct real root (Parabola cut

the x-axis at two distinct points.
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Co-ordinate of vertex

y = ax2 + bx + c

x =

y =
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Nature of Roots

D > 0 ���� roots are real & distinct (unequal)

D = 0 ���� roots are real & coincident (equal)

D < 0 ���� roots are imaginary.

23



Nature of Roots

Consider the quadratic equation ax2 + bx + c = 0

where a, b, c ���� Q & a ���� 0 then;

If D is a perfect square, then roots are rational.
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Note

If α = p + is one root in this case, (where p is

rational & is a surd) then other root will be

p -
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Note

If p + iq is one root of a quadratic equation,

then the other root must be the conjugate

p – iq & vice versa. (p, q ���� R & i = ).
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Example

Let a > 0, b > 0 and c > 0. Then, both the roots

of the equation ax2 + bx + c = 0

(a)are real and negative

Q.

(a)are real and negative

(b) have negative real parts

(c) have positive real parts

(d) None of the above [IIT-JEE 1979]
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Example

Both the roots of the equation

(x – b) (x – c) + (x – a) (x – c) + (x – a) (x – b) = 0

are always

Q.

are always

(a) positive (b) negative

(c ) real (d) None of these

[IIT-JEE 1980]
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Example

The number of real solutions of the equation

|x|2 - 3 |x| + 2 = 0 is

Q.

(a)4 (b) 1

(c) 3 (d) 2

[IIT-JEE 1982]
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Example

Let f(x) be a quadratic expression which is

positive for all real values of x.

If g(x) = f(x) + f′(x) + f′′(x), then for any real x

Q.

If g(x) = f(x) + f′(x) + f′′(x), then for any real x

(a)g(x) < 0 (b) g(x) > 0

(c) g(x) = 0 (d) g(x) ���� 0

[IIT-JEE 1990]
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Let 				,



 be the roots of the equation

(x – a) (x – b) = c, c ���� 0

Then the roots of the equation

Example

Q.

Then the roots of the equation

(x – 				) (x – 



 ) + c = 0 are

(a)a, c (b) b, c (c) a, b (d) a + c, b + c

[IIT-JEE 1992]
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True / False

If a < b < c < d, then the roots of the equation

(x – a) (x – c) + 2 (x – b) (x – d) = 0

Example

Q.

(x – a) (x – c) + 2 (x – b) (x – d) = 0

are real and distinct. [IIT-JEE 1984]
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The number of points of intersection of two

curves y = 2 sin x and y = 5x2 + 2x + 3 is

Example

Q.

curves y = 2 sin x and y = 5x2 + 2x + 3 is

(a)0 (b) 1 (c) 2 (d) ∞

[IIT-JEE 1994]
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Example

For all x, x2 + 2ax + 10 – 3a > 0,

then the interval in which a lies is

(a)a < – 5 (b) – 5 < a < 2

Q.

(a)a < – 5 (b) – 5 < a < 2

(c) a > 5 (d) 2 < a < 5

[IIT – JEE 2004]
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Example

If b > a, then the equation (x – a) (x – b) – 1 = 0

has

(a)Both roots in (a, b)

Q.

(a)Both roots in (a, b)

(b) both roots in (-∞, a)

(c) both roots in (b, +∞)

(d) one root in (-∞, a) and the other in (b, +∞) 

[IIT-JEE 2000] 35



Assignment 1Assignment 1
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If the equation

sin4 x – (k + 2) sin2 x – (k + 3) = 0

has a solution then k must lie in the interval

Q.1

has a solution then k must lie in the interval

(A) (– 4, – 2) (B) [– 3, 2)

(C) (– 4, – 3) (D) [– 3, – 2]
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If a, b ���� R, a ���� 0 and the quadratic equation

ax2 – bx + 1 = 0 has imaginary roots then

a + b + 1 is :

Q.2

a + b + 1 is :

(A) positive (B) negative

(C) zero (D) depends on the sign of b.
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[Multiple Objective Type]

The graph of the quadratic polynomial;

y = ax2 + bx + c is as shown in the figure . Then

Q.3

y = ax + bx + c is as shown in the figure . Then

(A) b2 – 4ac > 0 (B) b < 0

(C) a > 0 (D) c < 0

y

x
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If a, b, c ���� R such that a + b + c = 0 and a ���� c,

then prove that the roots of

(b + c – a) x2 + (c + a – b) x + (a + b – c) are

real and distinct.

Q.4

real and distinct.
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Find the value of a for which the roots of the

equation (2a – 5) x2 – 2 (a – 1) x + 3 = 0 are

equal.

Q.5
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For what values of m does the equation

x2 – x + m = 0 possess no real roots ?

Q.6
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For what values of m does the equation

x2 – x + m2 = 0 possess no real roots ?

Q.7
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Relation between root and 

Coefficient of Quadratic Equation

ax2 + bx + c = 0 ; a ���� 0 a,b,c ���� R





ax2 + bx + c = a (x – α) (x –



) = 0

	 + 



 = & 	 
	 
	 
	 
 =
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Formation of 

Quadratic Equation

x2 – (sum of roots) x + product of roots = 0 
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Example

Form a Quadratic Equation with rational

coefficients whose one root is tan75°

Q.
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Example

Form a Quadratic Equation with rational

coefficients whose one root is cos36°

Q.
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Example

Form a Quadratic Equation with rational

coefficients whose one root is tanπ/8

Q.
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Inequalities

Rules :

Adding positive number both-sides inequality

remains same.

Example :

2 > 1 ���� 3 > 22 > 1 ���� 3 > 2
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Inequalities

Rules :

Subtracting both sides by positive number

inequality remains same

Example :

2 > 1 ���� 1 > 02 > 1 ���� 1 > 0
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Inequalities

Rules :

Multiply & divide by positive number without

affecting inequality

Example :

4 > 2 ���� 1 > ½4 > 2 ���� 1 > ½

51



Inequalities

Rules :

Multiply & divide by negative number to

change sign of inequality

Example :

2 > 1 ���� – 2 < – 12 > 1 ���� – 2 < – 1
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Example :

Type – 1 

Expression which can not be 

factorized

x2 + x + 1 > 0
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Example :

Type – 1 

Expression which can not be 

factorized

x2 – 3x + 4 < 0
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Example :

Type – 1 

Expression which can not be 

factorized

3x2 – 7x + 6 > 0
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Example :

Type – 1 

Expression which can not be 

factorized

– x2 – 2x – 4 > 0
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Rules :

Factorize in linear as far as possible

Type – 2 

Expression which can be 

factorized

Factorize in linear as far as possible

Make coefficient of x, as 1 in all linear by

multiplying, dividing by appropriate number

Mark zeros of linear on number line

Give sign to respective area on number line
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(1 – x) (4 + 2x) (x – 2) (x – 7) > 0

Type – 2 

Expression which can be 

factorized

(1 – x) (4 + 2x) (x – 2) (x – 7) > 0
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(x2 – x – 6) (x2 + 6x) > 0

Type – 2 

Expression which can be 

factorized

(x2 – x – 6) (x2 + 6x) > 0
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(x + 1) (x – 3) (x – 2) (3x + 7) < 0

Type – 2 

Expression which can be 

factorized

(x + 1) (x – 3) (x – 2) (3x + 7) < 0
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(x2 – 5x + 6) (x2 – 6x + 5)���� 0

Type – 3
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2 – x – x2 ���� 0

Type – 3
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3x2 – 7x + 4 ���� 0

Type – 3

63



Rules :

Type – 4 

Repeated Linear Factor

Rules :

Get rid of even power

odd power treat as linear
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Type – 4 

Repeated Linear Factor

(x + 1) (x – 3) (x – 2)2 > 0

65

(x + 1) (x – 3) (x – 2) > 0



Type – 4 

Repeated Linear Factor

x (x + 6) (x + 2)2 (x – 3) > 0

66

x (x + 6) (x + 2) (x – 3) > 0



(x – 1)2 (x + 1)3 (x – 4) < 0

Type – 4 

Repeated Linear Factor

(x – 1) (x + 1) (x – 4) < 0
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Type – 5 

Rational Inequality
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Type – 5 

Rational Inequality
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Type – 5 

Rational Inequality
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Type – 5 

Rational Inequality
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Type – 5 

Rational Inequality
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Type – 5 

Rational Inequality
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Type – 5 

Rational Inequality
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Example

Q.
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Example

Q.
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Example

Q.
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Example

Let y =

Find all the real values of x for which y takes

Q.

real values. [IIT-JEE 1980]
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Example

Find the set of all x for which

[IIT-JEE 1987]

Q.
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Solve |x2 + 4x + 3| + 2x + 5 = 0 [IIT-JEE 1988]Q.

Example
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Let a and b be the roots of the equation

x2 – 10cx – 11d = 0 and those of

x2 – 10ax – 11b = 0 are c, d. Then find the

Q.

Example

value of a + b + c + d, when a ���� b ���� c ���� d.

[IIT-JEE 2006]
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Example

Let 				,



 be the roots of the equation

x2 – px + r = 0 and 				 /2, 2





be the roots of the equation x2 – qx + r = 0.

Q.

Then the value of r is

(a)2/9 (p – q) (2q – p) (b) 2/9 (q – p) (2p – q)

(c) 2/9 (q – 2p) (2q – p) (d) 2/9 (2p – q) (2q – p)

[IIT-JEE 2007]
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Example

Fill in the blank :

If 2 + i is a root of the equation

x2 + px + q = 0,

Q.

where p and q are real, then (p, q) = (……).

[IIT–JEE 1982 ]
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Example

Fill in the blank :

If the products of the roots of the equation

x2 – 3kx + 2e2 log k – 1 = 0 is 7,

Q.

then the roots are real for k = …..  .

[IIT-JEE 1984]
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Example

If x, y and z are real and different and

u = x2 + 4y2 + 9z2 – 6yz - 3zx – 2xy, then u 

is always

Q.

is always

(a)non-negative (b) zero

(c) non-positive (d) none of these

[IIT-JEE 1979]
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Example

If one root is square of the other root of the

equation x2 + px + q = 0, then the relation

between p and q is

Q.

between p and q is

(a)p3 – (3p – 1) q + q2 = 0

(b) p3 – q(3p + 1) + q2 = 0

(c) p3 + q(3p – 1) + q2 = 0

(d) p3 + q(3p + 1) + q2 = 0 [IIT-JEE 2004]
86



Assignment 2
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The sum of all the value of m for which the

roots x1 and x2 of the quadratic equation

x2 – 2mx + m = 0 satisfy the condition

, is

Q.1

, is

(A) (B) 1

(C) (D)
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If 				 and 



 are the roots of the equation

ax2 + bx + c = 0 then the sum of the roots of

the equation

a2x2 + (b2 – 2ac)x + b2 – 4ac = 0

Q.2

a x + (b – 2ac)x + b – 4ac = 0

in terms of 				 and 



 is given by

(A)– (				2 – 



2) (B) (				 + 



)2 – 2 	
	
	
	


(C) 				2



 + 



2				 – 4	
	
	
	
 (D) – (				 2 + 



2)
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The set of values of 'a' for which the

inequality, (x - 3a) (x - a - 3) < 0 is satisfied

for all x���� [1, 3] is :

(A) (1/3, 3) (B) (0, 1/3)

Q.3

(A) (1/3, 3) (B) (0, 1/3)

(C) (- 2, 0) (D) (- 2, 3)
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If 				 and 



 are the roots of a(x2 – 1) + 2bx = 0

then, which one of the following are the roots

of the same equation?

(A) 				 + 



, 				 – 



 (B)

Q.4

(A) 				 + 



, 				 – 



 (B)

(C) (D)
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Solve the following InequalityQ.5
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Solve the following InequalityQ.5
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Solve the following Inequality

(x – 1) (3 – x) (x – 2)2 > 0

Q.5
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Solve the following InequalityQ.5
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Double InequalityDouble Inequality
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Example

Solve the following Inequality

(i)

Q.

(i)
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Example

Solve the following Inequality

(ii)

Q.

(ii)
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Example

Solve the following Inequality

(iii)

Q.

(iii)
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Example

Solve the following Inequality

(iv)

Q.

(iv)
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Example
True / False :

y = ax2 + bx + c

Q. a > 0

Y

Q. a > 0

X
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Example
True / False :

y = ax2 + bx + c

Q. c > 0

Y

Q. c > 0

X
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Example
True / False :

y = ax2 + bx + c

Q. D > 0

Y

Q. D > 0

X
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Example
True / False :

y = ax2 + bx + c

Q. – b/a > 0

Y

Q. – b/a > 0

X
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Example
True / False :

y = ax2 + bx + c

Q. c/a > 0

Y

Q. c/a > 0

X
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Example
True / False :

y = ax2 + bx + c

Q. b > 0

Y

Q. b > 0

X
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Example
True / False :

y = ax2 + bx + c

Q. – D/4a > 0

Y

Q. – D/4a > 0

X
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Example

Q. Quadratic Equation ax2 + bx + c = 0 has no

real roots then show that c (a + b + c) > 0
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Example

Q. Find a,

(a – 1) x2 – (a + 1) x + a + 1 > 0 ����x����R
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Example

Q. Find a, if (a + 4) x2 – 2a x + 2a – 6 < 0

����x����R
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Example

Q. If 				 is root of x2 – 2x + 5 = 0

Find the value of 				3 + 				2 - 				 + 21
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Example

Q. If 



 is root of x2 – 2x + 5 = 0

Find the value of 




3

+ 4




2

- 7



 + 37
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Example

Q. If x = 3 +

Find the value of x4 + 12x3 + 44x2 – 48x + 17
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Example

Q. If p (q – r) x2 + q (r – p) x + r (p – q) = 0 has

equal root.

Show that :
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Example

Q. If x2 + = 14 ; x > 0 then (MCQ)

(a) x3 + x-3 = 62 (b) x3 + x-3 = 52

5 -5 5 -5(c) x5 + x-5 = 624 (d) x5 + x-5 = 724
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Example

Q. Find the integral solutions of the following

system of inequalities

2(a) 5x – 1 < (x + 1)2 < 7x – 3

(b)

[IIT-JEE 1978]
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Example

Q. If l, m, n are real l ���� m, then the roots of the

equation (l – m) x2 – 5 (l + m) x – 2(l – m) = 0

areare

(a) real and equal (b) complex

(c) real and unequal (d) none of these

[IIT-JEE 1979]
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Example

Q. For what value of m, does the system of

equations 3x + my = m, 2x – 5y = 20 has

solution satisfying the conditions x > 0, y > 0

[IIT-JEE 1980]
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Example

Q. Find all real values of which satisfy

x2 – 3x + 2 > 0 and x2 – 3x – 4 ���� 0.

[IIT-JEE 1983]
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Example

Q. Let a, b, c be real numbers with a ���� 0 and let

				, 



 be the roots of the equations

2ax2 + bx + c = 0.

Express the roots of a3x2 + abc x + c3 = 0

in terms of 				, 



 . [IIT-JEE 2001]
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Example

Q. If 				 and 



 are the roots of x2 + px + q = 0 and

����, ���� are the roots of x2 + rx + s = 0, then

				 ���� 



 ���� 				 ���� 



 ����evaluate (				 - ����) (



 - ����) (				 - ����) (



 - ����) in terms

of p, q, r and s.

[IIT-JEE 1979]
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Assignment 3Assignment 3
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Q.1

Solve the following inequalities
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Q.2

Solve the following inequalities
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Q.3

Solve the following inequalities
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Q.4

Solve the following inequalities
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Q.5

Solve the following inequalities
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Q.6

Solve the following inequalities
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Q.7 For what values of c does the equation

(c – 2) x2 + 2 (c – 2) x + 2 = 0

possess no real roots ?

Solve the following inequalities

129

possess no real roots ?



Q.8 For what values of a does the equation

possess equal roots ?

Solve the following inequalities

130

possess equal roots ?



Q.9 Find the value of k for which the curve

y = x2 + kx + 4 touches the Ox axis.

Solve the following inequalities
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Q.10 Find the least integral value of k for which

the equation x2 – 2 (k + 2) x + 12 + k2 = 0 has

two different real roots.

Solve the following inequalities

132

two different real roots.



Q.11 If the equation 4x2 – 4(5x + 1) + p2 = 0 has

one root equals to two more than the other,

then the value of p is equal to

Solve the following inequalities

133

then the value of p is equal to

(a) (b)  5

(c) 5 or -1 (d) 4 or -3



Q.12 Possible values of x simultaneously satisfying

the system of inequalities

Solve the following inequalities

134

(A) (-1, 3] ���� [6, ∞) (B) (-2, 3] ���� [6, ∞)

(C) (-2, -1) ���� (4, ∞) (D) [3, 6]



Identity

ax2 + bx + c = 0

Number of roots are infinite

When a = b = c = 0
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Note

����3 distinct real root of quadratic ���� infinite root
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Example

Find the value of p for which the equation

(p + 2) (p – 1) x2 + (p – 1) (2p + 1) x + p2 – 1 = 0

has infinite roots

Q.

has infinite roots
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Prove that above is an identity

Q.

Example

Prove that above is an identity
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Quadratic With One Root Zero

ax2 + bx + c = 0

Product of root =      = 0 

c = 0
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Quadratic With Both Root Zero

ax2 + bx + c = 0

Sum of root = Product of root = 0 

b = 0, c = 0
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Quadratic With One Root Infinite

ax2 + bx + c = 0

a = 0

141



Quadratic With Both Root ∞

y = ax2 + bx + c

a = 0, b = 0, c ���� 0
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Example

Q. If (2p – q) x2 + (p – 1) x + 5 = 0 has both

roots infinite. Find p & qroots infinite. Find p & q

143



Symmetric Function

If f(				, 



) = f(



, 				) ����				, 





Then f(				, 



) is called symmetric function of 				, 



Then f(				, 



) is called symmetric function of 				, 





144



Example

Q. Check if f(				, 



) is symmetric or not

(i) f(				, 



) = 				2



 + 	
	
	
	
 2

(ii) f(				, 



) = cos (				 - 



)(ii) f(				, 



) = cos (				 - 



)

(iii) f (				, 



) = sin (				 - 



)

(iv) f (				, 



) = (				2 - 



)
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Condition of Common RootCondition of Common Root

146



Condition for both Roots Common

a
1
x2 + b

1
x2 + c

1
= 0

a
2
x2 + b

2
x2 + c

2
= 0
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Condition for One Root Common

148



Example

Q. Find k for which equations x2 – 3x + 2 = 0,

3x2 + 4kx + 2 = 0 have a common root
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Example

Q. Find p and q if px2 + 5x + 2 = 0

3x2 + 10x + q = 0 have both roots in common

150



Example

Q. Find the value of a & b if x2 – 4x + 5 = 0,

x2 + ax + b = 0 have a common root where a,

b����Rb����R

151



Example

Q. If 4x2sin2���� – (4sin����) x + 1 = 0 &

a2(b2 – c2) x2 + b2(c2 – a2) x2 + c2(a2 – b2) = 0

have a common root and the secondhave a common root and the second

equation has equal roots find possible value

of ���� where �������� (0,����)

152



Example

Q. If the quadratic equation

ax2 + bx + c = 0 & x2 + cx + b = 0

b ���� c have a common root then proveb ���� c have a common root then prove

that there uncommon roots are roots of

the equation x2 + x + bc = 0

153



Example

Q. x2 + ax + 12 = 0, x2 + bx + 15 = 0 &

x2 + (a + b) x + 36 = 0

have a common positive roothave a common positive root

Find a, b & common root of equation.
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Example

Q. If one root of quadratic equation

x2 – x + 3a = 0 is double the root of the

equation x2 – x + a = 0 find aequation x2 – x + a = 0 find a

155



Example

Q. If Q
1

(x) = x2 + (k – 29) x – k

Q
2

(x) = 2x2 + (2k – 43) x + k

both are factors of a cubic polynomial find kboth are factors of a cubic polynomial find k

156



Example

Q. If x2 + abx + c = 0 & x2 + acx + b = 0

have only one root common then show

that quadratic equation containing theirthat quadratic equation containing their

other common roots is

a(b + c) x2 + (b + c) x – abc = 0

157



Example

Q. A value of b for which the equations

x2 + bx – 1 = 0, x2 + x + b = 0

have one root in common ishave one root in common is

(a) (b) (c) (d)

[IIT-JEE 2011]
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Example

Fill in the blank :

Q. If the quadratic equations x2 + ax + b = 0

and x2 + bx + a = 0 (a ���� b) have a

common root, then the numerical valuecommon root, then the numerical value

of a + b is … .

[IIT-JEE 1986]
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Assignment 4Assignment 4

160



Q.1 Find value of k for which the equation

(x – 1) (x – 2) = 0 & 2x2 + kx – 8 = 0

have a common root

161



Q.2 If x be the real number such that x3 + 4x + 8.

then the value of the expression x7 + 64x2 is

(A) 124 (B) 125 (C) 128 (D) 132
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Q.3 If every solution of the equation

3 cos2x – cosx – 1 = 0 is a solution of the

equation a cos22x + bcos2x – 1 = 0. Then the

value of (a + b) is equal to

(A) 5 (B) 9 (C) 13 (D) 14
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Q.4 If x2 + 3x + 5 = 0 & ax2 + bx + c = 0 have

common root/roots and a : b, c ���� N then find

minimum value of a + b + c
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Q.5 Determine the values of m for which the

equation 3x2 + 4mx + 2 = 0 and 2x2 + 3x – 2

may have a common root.
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Q.6 Q.7 For what value of a is the difference 

between the roots of the equation (a – 2) x2 –

(a – 4) x – 2 = 0 equal to 3 ?
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Q.7 Find all values of a for which the sum of the

roots of the equation x2 – 2a (x – 1) -1 = 0 is

equal to the sum of the squares of its roots.

167



Q.8 For what values of a do the equations

x2 + ax + 1 = 0 and x2 + x + a = 0

have a root in common ?
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Maximum & Minimum

Value of Quadratic Equation

y = ax2 + bx + c attain its maximum or

minimum at point where x =minimum at point where x =

according as a < 0 or a > 0.

Maximum and Minimum value can be

obtained by making a perfect square.

169



Example

p(x) = ax2 + bx + 8 is quadratic polynomial.

Minimum value of p(x) is 6 when x = 2

Find a & b

Q.

Find a & b
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Example

y = 2x2 – 3x + 1, find minimum value of yQ.

171



Example

y = 7 + 5x – 2x2 find maximum value of yQ.
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Example

For x ���� 2 smallest possible value of

log
10

(x3 – 4x2 + x + 26) – log
10

(x + 2)

Q.
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Range of Linear

y = ax + b    ;a ���� 0

y����Ry����R
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Q. y = f(x) = x + 1

Example
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Range of

y =

y ���� R –

176



Q.

Example

, Find range of y
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Q.

Example

, Find range of y
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Q.

Example

, Find range of y
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Q.

Example

, Find range of y

180



Range of 

Assume y

Check for common roots in numerator &Check for common roots in numerator &

denominator

Form Quadratic Equation

Apply D ���� 0 (since x is real)

Solve inequality in y and hence the range
181



Note

Always check for coefficient of x2 not equal

to zero

182



Example

Find range of following

Q.
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Example

Find range of following

Q.
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Example

Find range of following

Q.
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Example

Find range of following

Q.
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Example

Find range of following

Q.
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Example

Find range of following

Q.
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Assignment 5Assignment 5

189



Q.1 Find the range of the function f(x) = x2 – 2x – 4
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Q.2 Find the least value of

191



Q.3 Find Range

192



Q.4 Find the domain and Range of
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General 2° in x & y

f(x, y) = ax2 + 2h xy + by2 + 2gx + 2fy + c

194



Condition of General 2° in x & y

to be Resolved into two linear 

Factors

abc + 2fgh – af 2 – bg2 – ch2 = 0abc + 2fgh – af 2 – bg2 – ch2 = 0

195



Rule

Step 1 :

factorize purely 2°

Step 2 :Step 2 :

Add constant to both the linear

Step 3 :

Compare coefficient of x & coefficient of y & 

absolute term if needed

196



Example

Q. Prove that the Expression

2x2 + 3xy + y2 + 2y + 3x + 1

can be factorized into two linear factors &

find them

197



Example

Q. Prove that the Expression

x2 – 3xy + 2y2 – 2x – 3y – 35 = 0

can be factorized into two linear factors &

find them

198



Example

Q. If the equation x2 + 16y2 – 3x + 2 = 0 is

satisfied by real values of x & y then show

that x ���� [1, 2] & y���� [-1/8, 1/8]

199



Theory of Equation

ax2 + bx + c = a (x - 				) (x - 



)

ax3 + bx2 + cx + d = a(x - 				) (x - 



) (x -����)

200



Sum & Product of Root 

taken 1 at a time

	+ 



 + ���� = -b/a

	
�
�
�
� = -d/a	
�
�
�
� = -d/a
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Sum of root taken 2 at a time

	
	
	
	
 + 
�
�
�
� + �	�	�	�	 = c/a
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Bi Quadratic

ax4 + bx3 + cx2 + dx + e = a(x - 				) ……. (x – ����)

203



Sum of root taken 2 at a time

	
	
	
	
 + 	�	�	�	� + 	�	�	�	� + 
�
�
�
� + 
�
�
�
� + �������� =  c/a

204



Sum of root taken 3 at a time

	
�	
�	
�	
� + 	
�	
�	
�	
� + 	�
	�
	�
	�
 + 
��
��
��
�� =  -d/a
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Note

(a + b + c)2 = ����a2 + 2����ab

206



Example

Q. Find sum of square & sum of cubes of roots

of the cubic equation x3 – px2 + qx – r = 0

207



Example

Q. Solve the cubic

4x3 + 16x2 – 9x – 36 = 0

Where sum of 2 root is zeroWhere sum of 2 root is zero

208



Example

Q. If a, b, c are roots of cubic x3 – x2 + 1 = 0

Find

209



Example

Q. If 				, 



, ����, ���� are roots of the equation

tan = 3 tan3x

Find the value of tan				 + tan



 + tan���� + tan����Find the value of tan				 + tan



 + tan���� + tan����
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Example

Q. Find a cubic each of its roots is greater by

unity then a root of x3 – 5x2 + 6x – 3 = 0

211



Example

Q. Find the cubic whose roots are cubes of the

roots of x3 + 3x2 + 2 = 0

212



Example

Q. The length of side of a ���� are roots of the

equation x3 – 12x2 + 47x – 60 = 0

Find ����2Find ����
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Location of RootsLocation of Roots

214



Type -1

Both roots of a quadratic equation are greater 

than a specified number

				 



(				,



) > d

215



Condition

If y = ax2 + bx + c

(i) a > 0

(ii) D ���� 0

				 





d

(ii) D ���� 0

(iii)

(iv) f(d) > 0

216

d



Example

Q. Find the value of d for which both roots of

the equation x2 – 6dx + 2 – 2d + 9d2 = 0 are

greater than 3

217



Example

Q. Find all the values of ‘a’ for which both

roots of the equation x2 + x + a = 0 exceed

the quantity ‘a’.

218



Type - 2

Both roots lies on either side of a fixed number 

say (d)

				 < d < 



				 < d < 





219



Condition

a > 0

f(d) < 0 				 





d

220



Q. Find k for which 1 root of the equation is

greater than 2 and other is less than 2

x2 – (k + 1) x + k2 + k – 8 = 0

Example

x – (k + 1) x + k + k – 8 = 0

221



Q. Find the set of value of ‘a’ for which zeroes

of the quadratic polynomial

(a2 + a + 1) x2 + (a – 1)x + a2 are located on

Example

(a + a + 1) x + (a – 1)x + a are located on

either side of 3.

222



Q. Find a for which one root is positive, one is

negative –x2 – (3a – 2) x + a2 + 1 = 0

Example
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Q. Find a for which both root lie on either side

of -1 of quadratic

(a2 – 5a + 6) x2 – (a – 3) x + 7 = 0

Example

(a – 5a + 6) x – (a – 3) x + 7 = 0

224



Type - 3

Both roots lies between two fixed number

d < 				 < 



 < ed < 				 < 



 < e

225



Conditions

(i) D ���� 0

(ii) f (e) > 0

(iii) f (d) > 0
	 
	 
	 
	 


d e(iii) f (d) > 0

(iv) d < < e

d e

226



Example

If 				, 
�
�
�
� (-6, 1)

Find k for which

Q.

Find k for which

x2 + 2 (k – 3) x + 9 = 0

227



Type - 4

Both roots lies on either side of two fixed number

				 < d < e < 





228



Conditions

(i) f (d) < 0

(ii) f (e) < 0

				 





d e

				 





229



Example

Q. Find k for which one root of the equation

(k – 5) x2 – 2kx + k – 4 = 0 is smaller

than 1 and the other root is greater than 2than 1 and the other root is greater than 2

230



Type - 5

Exactly one root lies in the interval (d, e)

231

f(d) f(e) < 0
e

d



Example

Q. Find the set of values of m for which exactly

one root of the equation

x2 + mx + (m2 + 6m) = 0 lie in (–2, 0)x2 + mx + (m2 + 6m) = 0 lie in (–2, 0)

232



Example

Q. Find a for which exactly one root of the

quadratic equation x2 – (a + 1) x + 2a = 0

lies in (0,3)lies in (0,3)
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Type - 6

If f (p) f(q) < 0

���� Exactly one root q

p

lies between (p, q)

234



Example

Q. If a < b < c < d show that

Quadratic (x – a) (x – c) + ���� (x – b) (x – d) = 0

has real root for all real values of ����has real root for all real values of ����
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Example

Q. Find p for which the expression

x2 – 2px + 3p + 4 < 0 is satisfied for at least

one real xone real x
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Example

Q. Find a for which expression

(a2 + 3) x2 + < 0 is satisfied for at

least one real xleast one real x
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Example

Q. Find m if x2 – 4x + 3m + 1 > 0 is satisfied for

all positive x
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Example

Q. Show that for any real value of a

(a2 + 3) x2 + (a + 2) x – 5 < 0 is true for at least

one negative x.one negative x.
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Example

Q. If f(x) = 4x2 + ax + (a – 3) is negative for at

least one negative x, find all values of a
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Example

Q. Find a for which x2 + 2(a – 1) x + a + 5 = 0

has at least one positive root.
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Example

Q. Find p for which the least value of

4x2 – 4px + b2 – 2p + 2 in x���� [0,2] is equal to 3

242



Example

Q. Find k for which the equation

x4 + x2 (1 – 2k) + k2 – 1 = has

(i) No real solution(i) No real solution
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Example

Q. Find k for which the equation

x4 + x2 (1 – 2k) + k2 – 1 = has

(ii) one real solution(ii) one real solution
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Example

Q. Find k for which the equation

x4 + x2 (1 – 2k) + k2 – 1 = has

(iii) two real solution(iii) two real solution
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Example

Q. Find k for which the equation

x4 + x2 (1 – 2k) + k2 – 1 = has

(iv) three real solution(iv) three real solution
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Example

Q. Find k for which the equation

x4 + x2 (1 – 2k) + k2 – 1 = has

(v) Four real solution(v) Four real solution
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Modulas Inequality

248



Example

Q.
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Note

| x | < 	 �	�	�	� x���� (-				, 				)

| x | > 
 �
 �
 �
 � x���� (-����, -



) ���� (



,����)
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Example

Q. (| x – 1 | – 3) (| x + 2 | – 5) < 0
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Example

Q. | x – 5| > | x2 – 5x + 9 |

252



Example

Q.
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