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Quadratic

y = ax2 + bx + c ; a ≠≠≠≠ 0

a = leading coefficient

4

a = leading coefficient

b = coefficient of linear term

c = absolute term



y = f(x) = ax2 + bx + c

In case

a = 0 ⇒⇒⇒⇒ y = bx + c is linear polynomial

a = c = 0 ⇒⇒⇒⇒ y = bx is odd linear polynomial

5



Cubic Polynomial

y = ax3 + bx2 + cx + d

a =  leading coefficienta =  leading coefficient

d = absolute term
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Roots of Quadratic Equation

y = ax2 + bx + c

Where D = b2 – 4ac is called discriminant.
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ax2 + bx + c = 0

Sum of roots = – b/a

Product of roots = c/a

D = b2 – 4 ac
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Different Graphs of
Quadratic ExpressionQuadratic Expression
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Example

Parabola
y

For x = – 1     y is minimum
2

y = x2 + 2x + 2 = (x + 1)2 + 1

D = 22 – 8 = – 4 < 0

Q.

x 0 1 2 3 4 – 1 – 2 – 3 – 4 – 5∞ –∞

y 2 5 10 17 26 1 2 5 10 17∞ ∞

0   
x

Leading coefficient > 0

For x = – 1     y is minimum
-1
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In general graph of y = ax2 + bx + c ;

a > 0 Mouth facing upward

D < 0 Parabola don’t touch x axis (no real root)D < 0 Parabola don’t touch x axis (no real root)

y > 0 ∀∀∀∀ x ∈∈∈∈ R
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Example
y = x2 – 4x + 4 = (x – 2)2Q.
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Example
y = x2 – 4x + 4 = (x – 2)2

D = 0

(0, 4)

(2, 0)

Y a > 0
D = 0 

X

Q.

x   0  1  2  3  4  5  6 – 1 – 2    ∞ –∞
y   4  1  0  1  4  9  16   9   16   ∞ ∞

y ≥≥≥≥ 0 ∀∀∀∀ x∈∈∈∈ R

Leading Coefficient. > 0
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In general graph of y = ax2 + bx + c ;

a > 0 Mouth facing upward

D = 0 (One Real Root) Parabola touch the x AxisD = 0 (One Real Root) Parabola touch the x Axis

y = 0 for only one
value ofx (root)
y > 0 ∀∀∀∀x ∈∈∈∈ R – {root}
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Example

y = x2 – 3x + 2

D = 32 – 4(2) = 1 > 0

x 0 1 2 3 4 3/2 ∞ –∞

2

a > 0

yQ.

x 0 1 2 3 4 3/2 ∞ –∞

y 2 0 0 2 6 – ¼    ∞ ∞

y > 0 ⇒⇒⇒⇒ x (–∞, 1)∪∪∪∪ (2, ∞)

y < 0 ⇒⇒⇒⇒ x ∈∈∈∈ (1,2)

y = 0 ⇒⇒⇒⇒ x ∈∈∈∈ {1,2}

1 20
x
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In General

y = ax2 + bx + c

a > 0 ⇒⇒⇒⇒ parabolamouth facing upward

Q.

a > 0 ⇒⇒⇒⇒ parabolamouth facing upward

D > 0⇒⇒⇒⇒ Two distinct real root (parabola

cuts the x axis at 2 distinct point)
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Example

y = – x2 – 2x – 2 = –(x + 1)2 – 1Q.
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Example

y = – x2 – 2x – 2 = –(x + 1)2 – 1Q.

D < 0
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Example

y = – x2 – 2x – 2 = –(x + 1)2 – 1

- 2

- 2  -1
x

Q.

D < 0

x 0 1 2 3 – 1 – 2 – 3 ∞ –∞

y – 2 – 5 – 10 – 17 – 1 – 2 – 5 –∞ –∞

Leading Coefficient < 0

y
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In General

y = ax2 + bx + c

Q.

a < 0 ⇒⇒⇒⇒ mouth facing downward

D < 0 ⇒⇒⇒⇒ no real root

y < 0 ∀∀∀∀ x∈∈∈∈ R
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Example

y = – x2 + 4x – 4= – (x – 2)2

D = 0

Q.

x 0 1 2 3 4 –1 ∞ –∞
y –4 –1 0 –1 –4 0 –∞ –∞

- 4

21

Leading Coefficient < 0 0
x

y
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In General

y = ax2 + bx + c

a < 0 mouth facing downward

Q.

a < 0 mouth facing downward

D = 0 (one real root) parabola touchthe x axis

y ≤≤≤≤ 0 ∀∀∀∀ x∈∈∈∈ R
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Example

y = – x2 + 3x – 2 = – (x – 1)(x – 2)

D > 0

x 0 1 2 3 4 –1 –2 ∞ –∞

Q.

x 0 1 2 3 4 –1 –2 ∞ –∞

y – 2 0 0 –2 –9 –9 –12 –∞ –∞

210

-2

Leading Coefficient < 0

Y

X
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In General

y = ax2 + bx + c

a < 0 Parabola mouthfacing downward

D > 0 Two distinct real root (Parabolacut

Q.

D > 0 Two distinct real root (Parabolacut

the x-axis at two distinct points.
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Co-ordinate of vertex

y = ax2 + bx + c

x =

y =
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Nature of Roots

D > 0 ⇔⇔⇔⇔ roots are real & distinct (unequal)
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Nature of Roots

D > 0 ⇔⇔⇔⇔ roots are real & distinct (unequal)

D = 0 ⇔⇔⇔⇔ roots are real & coincident (equal)
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Nature of Roots

D > 0 ⇔⇔⇔⇔ roots are real & distinct (unequal)

D = 0 ⇔⇔⇔⇔ roots are real & coincident (equal)

D < 0 ⇔⇔⇔⇔ roots are imaginary.
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Nature of Roots

Consider the quadratic equationax2 + bx + c = 0

where a, b, c∈∈∈∈ Q & a ≠≠≠≠ 0 then;

If D is a perfect square, thenroots are rational.
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Note

If α = p + is one root inthis case, (where p is

rational & is a surd) thenother root will be

p -
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Note

If p + iq is one root of a quadratic equation,

then the other root must be the conjugate

p – iq & vice versa. (p, q∈∈∈∈ R & i = ).
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Example

Let a > 0, b > 0 and c > 0. Then, boththe roots

of the equationax2 + bx + c = 0

(a)are real and negative

Q.

(b) have negative real parts

(c) have positive real parts

(d) None of the above [IIT-JEE 1979]
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Example
Both the roots of the equation

(x – b) (x – c) + (x – a) (x – c) + (x – a) (x – b) = 0

are always

Q.

(a) positive (b) negative

(c ) real (d) None of these

[IIT -JEE 1980]
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Example
The number of real solutions of the equation

|x|2 - 3 |x| + 2 = 0 is

(a)4 (b) 1

Q.

(a)4 (b) 1

(c) 3 (d) 2

[IIT -JEE 1982]
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Example
Let f(x) be a quadratic expressionwhich is

positive for all real values of x.

If g(x) = f(x) + f ′(x) + f′′(x), thenfor any real x

Q.

(a)g(x) < 0 (b) g(x) > 0

(c) g(x) = 0 (d) g(x)≥≥≥≥ 0

[IIT -JEE 1990]
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Let αααα,ββββ be the roots of the equation

(x – a) (x – b) = c, c≠≠≠≠ 0

Then the roots of the equation

Example
Q.

(x – αααα) (x – ββββ ) + c = 0 are

(a)a, c (b) b, c (c) a, b (d) a + c, b + c

[IIT -JEE 1992]
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True / False

If a < b < c < d, thenthe roots of the equation

(x – a) (x – c) + 2 (x – b) (x – d) = 0

Example

Q.

are real and distinct. [IIT-JEE 1984]
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The number of points of intersectionof two

curves y = 2 sinx and y = 5x2 + 2x + 3 is

(a)0 (b) 1 (c) 2 (d)∞

Example
Q.

[IIT -JEE 1994]
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Example
For all x, x2 + 2ax + 10 – 3a > 0,

then the interval inwhich a lies is

(a)a <– 5 (b) – 5 < a < 2

Q.

(c) a > 5 (d) 2 < a < 5

[IIT – JEE 2004]
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Example
If b > a, then the equation(x – a) (x – b) – 1 = 0
has
(a)Both roots in (a, b)
(b) bothroots in (-∞, a)
(c) both rootsin (b, +∞)

Q.

(c) both rootsin (b, +∞)
(d) one root in (-∞, a) and the other in (b, +∞) 

[IIT -JEE 2000]
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Assignment 1Assignment 1
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If the equation

sin4 x – (k + 2) sin2 x – (k + 3) = 0

has a solutionthen k must lie in the interval

(A) (–4, –2) (B) [–3, 2)

Q.1

(C) (–4, –3) (D) [–3, –2]
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If a, b ∈∈∈∈ R, a≠≠≠≠ 0 and the quadratic equation

ax2 – bx + 1 = 0 has imaginary roots then

a + b + 1 is :

(A) positive (B) negative

Q.2

(C) zero (D) depends onthe signof b.
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[Multiple Objective Type]

The graphof the quadratic polynomial;

y = ax2 + bx + c is as shownin the figure . Then

(A) b2 –4ac > 0 (B) b < 0
y

Q.3

(C) a > 0 (D) c < 0
x
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If a, b, c ∈∈∈∈ R suchthat a + b + c = 0 and a≠≠≠≠ c,

thenprove that the roots of

(b + c – a) x2 + (c + a – b) x + (a + b – c) are

real and distinct.

Q.4
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Find the value of a for whichthe roots of the

equation (2a – 5) x2 – 2 (a – 1) x + 3 = 0 are

equal.

Q.5
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For what values of m does the equation

x2 – x + m = 0 possess no real roots ?

Q.6
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For what values of m does the equation

x2 – x + m2 = 0 possess no real roots ?

Q.7
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Relation between root and 
Coefficient of Quadratic Equation

ax2 + bx + c = 0 ; a ≠≠≠≠ 0 a,b,c∈∈∈∈ R
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Relation between root and 
Coefficient of Quadratic Equation

ax2 + bx + c = 0 ; a ≠≠≠≠ 0 a,b,c∈∈∈∈ R

ββββax2 + bx + c = a (x –α) (x –ββββ) = 0
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Relation between root and 
Coefficient of Quadratic Equation

ax2 + bx + c = 0 ; a ≠≠≠≠ 0 a,b,c∈∈∈∈ R

ββββax2 + bx + c = a (x –α) (x –ββββ) = 0

α + ββββ = & αααα ββββ =
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Relation between root and 
Coefficient of Quadratic Equation

ax2 + bx + c = 0 ; a ≠≠≠≠ 0 a,b,c∈∈∈∈ R

ββββax2 + bx + c = a (x –α) (x –ββββ) = 0

α + ββββ = & αααα ββββ =
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Formation of 
Quadratic Equation

x2 – (sum of roots) x + product of roots = 0 
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Example
Form a Quadratic Equation with rational

coefficients whose one root is tan75°

Q.

54



Example
Form a Quadratic Equation with rational

coefficients whose one root is cos36°

Q.
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Example
Form a Quadratic Equation with rational

coefficients whose one root is tanπ/8

Q.
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Inequalities
Rules :
Adding positive number both-sides inequality
remains same.
Example :
2 > 1⇒⇒⇒⇒ 3 > 22 > 1⇒⇒⇒⇒ 3 > 2
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Inequalities
Rules :
Subtracting both sides by positive number
inequality remains same
Example :
2 > 1⇒⇒⇒⇒ 1 > 02 > 1⇒⇒⇒⇒ 1 > 0

58



Inequalities
Rules :
Multiply & divide by positive number without
affecting inequality
Example :
4 > 2⇒⇒⇒⇒ 1 > ½4 > 2⇒⇒⇒⇒ 1 > ½
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Inequalities
Rules :
Multiply & divide by negative number to
change signof inequality
Example :
2 > 1⇒⇒⇒⇒ – 2 < – 12 > 1⇒⇒⇒⇒ – 2 < – 1
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Example :

Type – 1 
Expression which can not be 

factorized

x2 + x + 1 > 0
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Example :

Type – 1 
Expression which can not be 

factorized

x2 – 3x + 4 < 0
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Example :

Type – 1 
Expression which can not be 

factorized

3x2 – 7x + 6 > 0
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Example :

Type – 1 
Expression which can not be 

factorized

– x2 – 2x – 4 > 0
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Rules :

Factorizein linear asfar aspossible

Type – 2 
Expression which can be 

factorized

Factorizein linear asfar aspossible
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Rules :

Factorizein linear asfar aspossible

Type – 2 
Expression which can be 

factorized

Factorizein linear asfar aspossible

Make coefficient of x, as 1 inall linear by

multiplying, dividing by appropriate number
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Rules :

Factorizein linear asfar aspossible

Type – 2 
Expression which can be 

factorized

Factorizein linear asfar aspossible

Make coefficient of x, as 1 inall linear by

multiplying, dividing by appropriate number

Mark zeros of linear onnumber line
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Rules :

Factorizein linear asfar aspossible

Type – 2 
Expression which can be 

factorized

Factorizein linear asfar aspossible

Make coefficient of x, as 1 inall linear by

multiplying, dividing by appropriate number

Mark zeros of linear onnumber line

Give signto respective area onnumber line
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(1 – x) (4 + 2x) (x – 2) (x – 7) > 0

Type – 2 
Expression which can be 

factorized

(1 – x) (4 + 2x) (x – 2) (x – 7) > 0
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(x2 – x – 6) (x2 + 6x) > 0

Type – 2 
Expression which can be 

factorized

(x2 – x – 6) (x2 + 6x) > 0
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(x + 1) (x – 3) (x – 2) (3x + 7) < 0

Type – 2 
Expression which can be 

factorized

(x + 1) (x – 3) (x – 2) (3x + 7) < 0

71



(x2 – 5x + 6) (x2 – 6x + 5)≤≤≤≤ 0

Type – 3
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2 – x – x2 ≥≥≥≥ 0

Type – 3
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3x2 – 7x + 4≥≥≥≥ 0

Type – 3
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Rules:

Type – 4 
Repeated Linear Factor

Rules:

Get rid of evenpower
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Rules:

Type – 4 
Repeated Linear Factor

Rules:

Get rid of evenpower

odd power treat as linear
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Type – 4 
Repeated Linear Factor

(x + 1) (x – 3) (x – 2)2 > 0

77

(x + 1) (x – 3) (x – 2) > 0



Type – 4 
Repeated Linear Factor

x (x + 6) (x + 2)2 (x – 3) > 0

78

x (x + 6) (x + 2) (x – 3) > 0



(x – 1)2 (x + 1)3 (x – 4) < 0

Type – 4 
Repeated Linear Factor

(x – 1) (x + 1) (x – 4) < 0
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Type – 5 
Rational Inequality
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Type – 5 
Rational Inequality
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Type – 5 
Rational Inequality
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Type – 5 
Rational Inequality
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Type – 5 
Rational Inequality
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Type – 5 
Rational Inequality
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Type – 5 
Rational Inequality
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Example

Q.
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Example

Q.
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Example

Q.

89



Example

Let y =

Find all the real values of x for whichy takes

Q.

real values. [IIT-JEE 1980]
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Example
Find the set of all x for which

[IIT -JEE 1987]

Q.
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Solve |x2 + 4x + 3| + 2x + 5 = 0 [IIT-JEE 1988]Q.

Example
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Let a and b be the roots of the equation

x2 – 10cx – 11d = 0 and those of

x2 – 10ax – 11b = 0 are c, d. Thenfind the

Q.

Example

value of a + b + c + d, whena ≠≠≠≠ b ≠≠≠≠ c ≠≠≠≠ d.

[IIT -JEE 2006]
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Example
Let αααα,ββββ be the roots of the equation
x2 – px + r = 0 andαααα /2, 2ββββ
be the roots of the equationx2 – qx + r = 0.
Then the value of r is

Q.

(a)2/9 (p – q) (2q – p) (b) 2/9 (q – p) (2p – q)
(c) 2/9 (q – 2p) (2q – p) (d) 2/9 (2p – q) (2q – p)

[IIT -JEE 2007]
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Example
Fill in the blank :

If 2 + i is a root of the equation

x2 + px + q = 0,

Q.

where p and q are real, then(p, q) = (……).

[IIT –JEE 1982 ]
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Example
Fill in the blank :

If the products of the roots of the equation

x2 – 3kx + 2e2 log k – 1 = 0 is 7,

then the roots are real for k = …..  .

Q.

then the roots are real for k = …..  .

[IIT -JEE 1984]
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Example
If x, y and z are real and different and

u = x2 + 4y2 + 9z2 – 6yz - 3zx – 2xy, then u 

is always

(a)non-negative (b) zero

Q.

(a)non-negative (b) zero

(c) non-positive (d) none of these

[IIT -JEE 1979]
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Example
If one root is square of the other root of the
equation x2 + px + q = 0, thenthe relation
betweenp and q is

(a)p3 – (3p – 1) q + q2 = 0

(b) p3 – q(3p + 1) + q2 = 0

Q.

(b) p3 – q(3p + 1) + q2 = 0

(c) p3 + q(3p – 1) + q2 = 0

(d) p3 + q(3p + 1) + q2 = 0 [IIT-JEE 2004]
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Assignment 2

99



The sumof all the value of m for whichthe

roots x1 and x2 of the quadratic equation

x2 – 2mx + m = 0 satisfy the condition

, is

Q.1

, is

(A) (B) 1

(C) (D)
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If αααα and ββββ are the roots of the equation

ax2 + bx + c = 0 thenthe sumof the roots of

the equation

a2x2 + (b2 – 2ac)x+ b2 – 4ac= 0

Q.2

a x + (b – 2ac)x+ b – 4ac= 0

in terms ofαααα and ββββ is givenby

(A)– (αααα2 – ββββ2) (B) (αααα + ββββ)2 – 2 αβαβαβαβ

(C) αααα2ββββ + ββββ2αααα – 4αβαβαβαβ (D) – (αααα 2 + ββββ2)
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The set of values of 'a' for which the

inequality, (x - 3a) (x - a - 3) < 0 is satisfied

for all x∈∈∈∈ [1, 3] is :

(A) (1/3, 3) (B) (0, 1/3)

Q.3

(A) (1/3, 3) (B) (0, 1/3)

(C) (- 2, 0) (D) (- 2, 3)
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If αααα and ββββ are the roots of a(x2 – 1) + 2bx = 0

then, which one of the following are the roots

of the same equation?

(A) αααα + ββββ, αααα – ββββ (B)

Q.4

(A) αααα + ββββ, αααα – ββββ (B)

(C) (D)
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Solve the following InequalityQ.5
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Solve the following InequalityQ.5
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Solve the following Inequality

(x – 1) (3 – x) (x – 2)2 > 0

Q.5
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Solve the following InequalityQ.5
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Double InequalityDouble Inequality
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Example
Solve the following Inequality

(i)

Q.
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Solve the following Inequality

(ii)

Q.
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Solve the following Inequality

(iii)

Q.
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Solve the following Inequality

(iv)

Q.
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True / False :

y = ax2 + bx + c

Q. a > 0

Y

X
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True / False :

y = ax2 + bx + c

Q. c > 0

Y

X
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True / False :

y = ax2 + bx + c

Q. D > 0

Y

X
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True / False :

y = ax2 + bx + c

Q. – b/a > 0

Y

X
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True / False :

y = ax2 + bx + c

Q. c/a > 0

Y

X
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True / False :

y = ax2 + bx + c

Q. b > 0

Y

X
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True / False :

y = ax2 + bx + c

Q. – D/4a > 0

Y

X
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Q. Quadratic Equationax2 + bx + c = 0 has no

real roots thenshowthat c (a + b + c) > 0
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Q. Find a,

(a – 1) x2 – (a + 1) x + a + 1 > 0 ∀∀∀∀x∈∈∈∈R
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Q. Find a, if (a + 4) x2 – 2a x + 2a – 6 < 0

∀∀∀∀x∈∈∈∈R
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Q. If αααα is root of x2 – 2x + 5 = 0

Find the value ofαααα3 + αααα2 - αααα + 21
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Q. If ββββ is root of x2 – 2x + 5 = 0

Find the value ofββββ 3
+ 4ββββ 2

- 7ββββ + 37

124



Q. If x = 3 +

Find the value of x4 + 12x3 + 44x2 – 48x + 17
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Q. If p (q – r) x2 + q (r – p) x + r (p – q) = 0 has

equal root.

Showthat :
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Q. If x2 + = 14 ; x > 0 then (MCQ)

(a) x3 + x-3 = 62 (b) x3 + x-3 = 52

(c) x5 + x-5 = 624 (d) x5 + x-5 = 724
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Q. Find the integral solutions of the following

systemof inequalities

(a) 5x – 1 < (x + 1)2 < 7x – 3

(b)(b)

[IIT -JEE 1978]
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Q. If l, m, n are real l ≠≠≠≠ m, thenthe roots of the

equation(l – m) x2 – 5 (l + m) x – 2(l – m) = 0

are

(a) real and equal (b) complex

(c) real andunequal (d) noneof these(c) real andunequal (d) noneof these

[IIT -JEE 1979]

129



Q. For what value of m, does the systemof

equations 3x + my = m, 2x – 5y = 20 has

solutionsatisfying the conditions x > 0, y > 0

[IIT -JEE 1980]
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Q. Find all real values of whichsatisfy

x2 – 3x + 2 > 0 and x2 – 3x – 4≤≤≤≤ 0.

[IIT -JEE 1983]
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Q. Let a, b, c be real numbers witha ≠≠≠≠ 0 and let

αααα, ββββ be the roots of the equations

ax2 + bx + c = 0.

Express the roots of a3x2 + abc x + c3 = 0

αααα ββββin terms ofαααα, ββββ . [IIT -JEE 2001]
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Q. If αααα and ββββ are the roots of x2 + px + q = 0 and

γγγγ, δδδδ are the roots of x2 + rx + s = 0, then

evaluate (αααα - γγγγ) (ββββ - γγγγ) (αααα - δδδδ) (ββββ - δδδδ) in terms

of p, q, r and s.

[IIT -JEE 1979][IIT -JEE 1979]
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Assignment 3Assignment 3
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Q.1

Solve the following inequalities
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Q.2

Solve the following inequalities
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Q.3

Solve the following inequalities

137



Q.4

Solve the following inequalities
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Q.5

Solve the following inequalities
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Q.6

Solve the following inequalities
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Q.7 For what values of c does the equation

(c – 2) x2 + 2 (c – 2) x + 2 = 0

possessno real roots?

Solve the following inequalities

141

possessno real roots?



Q.8 For what values of a does the equation

possessequalroots?

Solve the following inequalities

142

possessequalroots?



Q.9 Find the value of k for whichthe curve

y = x2 + kx + 4 touches the Ox axis.

Solve the following inequalities

143



Q.10 Find the least integral value of k for which

the equationx2 – 2 (k + 2) x + 12 + k2 = 0 has

twodifferent real roots.

Solve the following inequalities

144

twodifferent real roots.



Q.11 If the equation4x2 – 4(5x + 1) + p2 = 0 has

one root equals to two more thanthe other,

then thevalueof p is equalto

Solve the following inequalities

145

then thevalueof p is equalto

(a) (b) ±±±± 5

(c) 5 or -1 (d) 4 or -3



Q.12 Possible values of x simultaneously satisfying
the systemof inequalities

Solve the following inequalities

146

(A) (-1, 3] ∪∪∪∪ [6, ∞) (B) (-2, 3] ∪∪∪∪ [6, ∞)

(C) (-2, -1)∪∪∪∪ (4,∞) (D) [3, 6]



Identity

ax2 + bx + c = 0

Number of roots are infinite

When a = b = c = 0

147



Note

⇒⇒⇒⇒3 distinct real root of quadratic ⇒⇒⇒⇒ infinite root

148



Examples
Find the value of p for whichthe equation

(p + 2) (p – 1) x2 + (p – 1) (2p + 1) x + p2 – 1 = 0

has infinite roots

Q.
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Prove that above is anidentity

Q.
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Quadratic With One Root Zero

ax2 + bx + c = 0

Product of root =      = 0 

c = 0
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Quadratic With Both Root Zero

ax2 + bx + c = 0

Sum of root = Product of root = 0 

b = 0, c = 0
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Quadratic With One Root Infinite

ax2 + bx + c = 0

a = 0

153



Quadratic With Both Root ∞

y = ax2 + bx + c

a = 0, b = 0, c ≠≠≠≠ 0

154



Example
Q. If (2p – q) x2 + (p – 1) x + 5 = 0 has both

roots infinite. Find p & q
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Symmetric Function

If f( αααα, ββββ) = f(ββββ, αααα) ∀∀∀∀αααα, ββββ

Then f(αααα, ββββ) is calledsymmetricfunction of αααα, ββββThen f(αααα, ββββ) is calledsymmetricfunction of αααα, ββββ

156



Example
Q. Check if f(αααα, ββββ) is symmetric or not

(i) f(αααα, ββββ) = αααα2ββββ + αβαβαβαβ 2
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Example
Q. Check if f(αααα, ββββ) is symmetric or not

(i) f(αααα, ββββ) = αααα2ββββ + αβαβαβαβ 2

(ii) f(αααα, ββββ) = cos (αααα - ββββ)
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Example
Q. Check if f(αααα, ββββ) is symmetric or not

(i) f(αααα, ββββ) = αααα2ββββ + αβαβαβαβ 2

(ii) f(αααα, ββββ) = cos (αααα - ββββ)

(iii) f (αααα, ββββ) = sin (αααα - ββββ)(iii) f (αααα, ββββ) = sin (αααα - ββββ)
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Example
Q. Check if f(αααα, ββββ) is symmetric or not

(i) f(αααα, ββββ) = αααα2ββββ + αβαβαβαβ 2

(ii) f(αααα, ββββ) = cos (αααα - ββββ)

(iii) f (αααα, ββββ) = sin (αααα - ββββ)(iii) f (αααα, ββββ) = sin (αααα - ββββ)

(iv) f (αααα, ββββ) = (αααα2 - ββββ)
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Condition of Common RootCondition of Common Root
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Condition for both Roots Common

a
1
x2 + b

1
x2 + c

1
= 0

a
2
x2 + b

2
x2 + c

2
= 0
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Condition for One Root Common

163



Examples
Q. Find k for which equations x2 – 3x + 2 = 0,

3x2 + 4kx + 2 = 0 have a common root
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Q. Find p and q if px2 + 5x + 2 = 0

3x2 + 10x + q = 0 have bothroots incommon

165



Q. Find the value of a & b if x2 – 4x + 5 = 0,

x2 + ax + b = 0 have a commonroot where a,

b∈∈∈∈R
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Q. If 4x2sin2θθθθ – (4sinθθθθ) x + 1 = 0 &

a2(b2 – c2) x2 + b2(c2 – a2) x2 + c2(a2 – b2) = 0

have a common root and the second

equationhas equal roots find possible value

θθθθ θ∈θ∈θ∈θ∈ ππππof θθθθ whereθ∈θ∈θ∈θ∈ (0,ππππ)

167



Q. If the quadratic equation

ax2 + bx + c = 0 & x2 + cx + b = 0

b ≠≠≠≠ c have a commonroot then prove

that there uncommonroots are roots of
2the equationx2 + x + bc = 0

168



Q. x2 + ax + 12 = 0, x2 + bx + 15 = 0 &

x2 + (a + b) x + 36 = 0

have a commonpositive root

Find a, b & commonroot of equation.
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Q. If one root of quadratic equation

x2 – x + 3a = 0 is double the root of the

equationx2 – x + a = 0 find a

170



Q. If Q
1

(x) = x2 + (k – 29) x – k

Q
2

(x) = 2x2 + (2k – 43) x + k

bothare factors of a cubic polynomial find k
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Q. If x2 + abx + c = 0 & x2 + acx + b = 0

have only one root commonthen show

that quadratic equationcontaining their

other commonroots is
2a(b + c) x2 + (b + c) x – abc = 0

172



Q. A value of b for whichthe equations

x2 + bx – 1 = 0, x2 + x + b = 0

have one root incommonis

(a) (b) (c) (d)

[IIT -JEE 2011]
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Fill in the blank :
Q. If the quadratic equations x2 + ax + b = 0

and x2 + bx + a = 0 (a ≠≠≠≠ b) have a
common root, then the numerical value
of a + b is … .

[IIT -JEE 1986]
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Assignment 4Assignment 4
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Q.1 Find value of k for whichthe equation
(x – 1) (x – 2) = 0 & 2x2 + kx – 8 = 0
have a commonroot

176



Q.2 If x be the real number suchthat x3 + 4x + 8.
then the value of the expressionx7 + 64x2 is
(A) 124 (B) 125 (C) 128 (D) 132

177



Q.3 If every solutionof the equation
3 cos2x – cosx – 1 = 0 is a solutionof the
equationa cos22x + bcos2x – 1 = 0. Thenthe
value of (a + b) is equal to
(A) 5 (B) 9 (C) 13 (D) 14

178



Q.4 If x2 + 3x + 5 = 0 & ax2 + bx + c = 0 have
commonroot/roots and a : b, c∈∈∈∈ N then find
minimum value of a + b + c

179



Q.5 Determine the values of m for whichthe
equation3x2 + 4mx + 2 = 0 and 2x2 + 3x – 2
may have a commonroot.

180



Q.6 Q.7 For what value of a is the difference 
between the roots of the equation (a – 2) x2 –
(a – 4) x – 2 = 0 equal to 3 ?
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Q.7 Find all values of a for whichthe sumof the
roots of the equationx2 – 2a (x – 1) -1 = 0 is
equal to the sumof the squares of its roots.

182



Q.8 For what values of a do the equations
x2 + ax + 1 = 0 and x2 + x + a = 0
have a root incommon?
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Maximum & Minimum
Value of Quadratic Equation

y = ax2 + bx + c attain its maximumor

minimum at point wherex =minimum at point wherex =

according as a < 0 or a > 0.
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Maximum & Minimum
Value of Quadratic Equation

y = ax2 + bx + c attain its maximumor

minimum at point wherex =minimum at point wherex =

according as a < 0 or a > 0.

Maximum and Minimum value can be

obtained by making a perfect square.

185



Examples
p(x) = ax2 + bx + 8 is quadratic polynomial.

Minimum value of p(x) is 6 whenx = 2

Find a & b

Q.
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y = 2x2 – 3x + 1, find minimumvalue of yQ.
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y = 7 + 5x – 2x2 find maximumvalue of yQ.
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For x ≥≥≥≥ 2 smallest possible value of

log
10

(x3 – 4x2 + x + 26) – log
10

(x + 2)

Q.
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Range of Linear

y = ax + b    ;a ≠≠≠≠ 0

y∈∈∈∈Ry∈∈∈∈R

190



Q. y = f(x) = x + 1

Example

191



Range of

y =

y ∈∈∈∈ R –

192



Q.

Examples

, Find range of y
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Q. , Find range of y
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Q. , Find range of y
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Q. , Find range of y
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Range of 

Assume y
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Range of 

Assume y

Check for common roots in numerator &Check for common roots in numerator &

denominator
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Range of 

Assume y

Check for common roots in numerator &Check for common roots in numerator &

denominator

Form Quadratic Equation
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Range of 

Assume y

Check for common roots in numerator &Check for common roots in numerator &

denominator

Form Quadratic Equation

Apply D ≥≥≥≥ 0 (since x is real)
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Range of 

Assume y

Check for common roots in numerator &Check for common roots in numerator &

denominator

Form Quadratic Equation

Apply D ≥≥≥≥ 0 (since x is real)

Solve inequality iny and hence the range 201



Note

Always check for coefficient of x2 not equal

to zero

202



Examples
Find range of following

Q.
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Find range of following

Q.
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Find range of following

Q.
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Find range of following

Q.
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Find range of following

Q.
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Find range of following

Q.
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Assignment 5Assignment 5
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Q.1 Find the range of the function f(x) = x2 – 2x – 4

210



Q.2 Find the least value of

211



Q.3 Find Range

212



Q.4 Find the domain and Range of

213



General 2° in x & y

f(x, y) = ax2 + 2h xy + by2 + 2gx + 2fy + c

214



Condition of General 2° in x & y
to be Resolved into two linear 

Factors

abc + 2fgh – af 2 – bg2 – ch2 = 0abc + 2fgh – af 2 – bg2 – ch2 = 0

215



Rule

Step 1 :

factorize purely 2°
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Rule

Step 1 :

factorize purely 2°

Step 2 :Step 2 :

Add constant to both the linear
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Rule

Step 1 :

factorize purely 2°

Step 2 :Step 2 :

Add constant to both the linear

Step 3 :

Compare coefficient of x & coefficient of y & 

absolute term if needed
218



Examples
Q. Prove that the Expression

2x2 + 3xy + y2 + 2y + 3x + 1

can be factorized into two linear factors &

find themfind them
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Q. Prove that the Expression

x2 – 3xy + 2y2 – 2x – 3y – 35 = 0

can be factorized into two linear factors &

find them

220



Q. If the equation x2 + 16y2 – 3x + 2 = 0 is

satisfied by real values of x & y thenshow

that x ∈∈∈∈ [1, 2] & y∈∈∈∈ [-1/8, 1/8]
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Theory of Equation

ax2 + bx + c = a (x -αααα) (x - ββββ)
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Theory of Equation

ax2 + bx + c = a (x -αααα) (x - ββββ)

ax3 + bx2 + cx + d = a(x -αααα) (x - ββββ) (x -γγγγ)

223



Sum & Product of Root 
taken 1 at a time

α+ ββββ + γγγγ = -b/a

αβγβγβγβγ = -d/aαβγβγβγβγ = -d/a

224



Sum of root taken 2 at a time

αβαβαβαβ + βγβγβγβγ + γαγαγαγα = c/a

225



Bi Quadratic

ax4 + bx3 + cx2 + dx + e = a(x -αααα) ……. (x – δδδδ)

226



Sum of root taken 2 at a time

αβαβαβαβ + αγαγαγαγ + αδαδαδαδ + βγβγβγβγ + βδβδβδβδ + γδγδγδγδ =  c/a

227



Sum of root taken 3 at a time

αβγαβγαβγαβγ + αβδαβδαβδαβδ + αγβαγβαγβαγβ + βγδβγδβγδβγδ =  -d/a

228



Note

(a + b + c)2 = ∑∑∑∑a2 + 2∑∑∑∑ab

229



Examples
Q. Find sum of square & sumof cubes of roots

of the cubic equationx3 – px2 + qx – r = 0

230



Q. Solve the cubic

4x3 + 16x2 – 9x – 36 = 0

Where sumof 2 root is zero

231



Q. If a, b, c are roots of cubic x3 – x2 + 1 = 0

Find

232



Q. If αααα, ββββ, γγγγ, δδδδ are roots of the equation

tan = 3 tan3x

Find the value of tanαααα + tanββββ + tanγγγγ + tanδδδδ
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Q. Find a cubic eachof its roots is greater by

unity thena root of x3 – 5x2 + 6x – 3 = 0

234



Q. Find the cubic whose roots are cubes of the

roots of x3 + 3x2 + 2 = 0
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Q. The length of side of a ∆∆∆∆ are roots of the

equationx3 – 12x2 + 47x – 60 = 0

Find ∆∆∆∆2

236



Location of RootsLocation of Roots
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Type -1

Both roots of a quadratic equation are greater 

than a specified number

αααα ββββ(αααα,ββββ) > d

238



Condition

If y = ax2 + bx + c

239



Condition

If y = ax2 + bx + c

αααα ββββ
d
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Condition

If y = ax2 + bx + c

αααα ββββ
d

241

d



Condition

If y = ax2 + bx + c

(i) a > 0 αααα ββββ
d

242

d



Condition

If y = ax2 + bx + c

(i) a > 0

(ii) D ≥≥≥≥ 0

αααα ββββ
d

(ii) D ≥≥≥≥ 0

243

d



Condition

If y = ax2 + bx + c

(i) a > 0

(ii) D ≥≥≥≥ 0

αααα ββββ
d

(ii) D ≥≥≥≥ 0

(iii)

d

244



Condition

If y = ax2 + bx + c

(i) a > 0

(ii) D ≥≥≥≥ 0

αααα ββββ
d

(ii) D ≥≥≥≥ 0

(iii)

(iv) f(d) > 0

245

d



Examples
Q. Find the value of d for whichboth roots of

the equationx2 – 6dx + 2 – 2d + 9d2 = 0 are

greater than3

246



Q. Find all the values of ‘a’ for which both

roots of the equationx2 + x + a = 0 exceed

the quantity ‘a’.
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Type - 2

Both roots lies on either side of a fixed number 

say (d)

αααα < d < ββββαααα < d < ββββ

248



Condition

a > 0

f(d) < 0 αααα ββββ

d
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Q. Find k for which 1 root of the equationis

greater than2 and other is less than2

x2 – (k + 1) x + k2 + k – 8 = 0

Examples

250



Q. Find the set of value of ‘a’ for whichzeroes

of the quadratic polynomial

(a2 + a + 1) x2 + (a – 1)x + a2 are located on

either side of 3.

251



Q. Find a for which one root is positive, one is

negative –x2 – (3a – 2) x + a2 + 1 = 0

252



Q. Find a for which both root lie on either side

of -1 of quadratic

(a2 – 5a + 6) x2 – (a – 3) x + 7 = 0

253



Type - 3

Both roots lies between two fixed number

d < αααα < ββββ < ed < αααα < ββββ < e

254



Conditions

αααα ββββ

d ed e

255



Conditions

(i) D ≥≥≥≥ 0

αααα ββββ

d ed e
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Conditions

(i) D ≥≥≥≥ 0

(ii) f (e) > 0
αααα ββββ

d ed e
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Conditions

(i) D ≥≥≥≥ 0

(ii) f (e) > 0

(iii) f (d) > 0
αααα ββββ

d e(iii) f (d) > 0 d e
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Conditions

(i) D ≥≥≥≥ 0

(ii) f (e) > 0

(iii) f (d) > 0
αααα ββββ

d e(iii) f (d) > 0

(iv) d < < e

d e

259



Example
If αααα, β∈β∈β∈β∈ (-6, 1)

Find k for which

x2 + 2 (k – 3) x + 9 = 0

Q.

x2 + 2 (k – 3) x + 9 = 0
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Type - 4

Both roots lies on either side of two fixed number

αααα < d < e < ββββ

261



Conditions

αααα ββββ
d e

αααα ββββ

262



Conditions

(i) f (d) < 0

αααα ββββ
d e

αααα ββββ
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Conditions

(i) f (d) < 0

(ii) f (e) < 0
αααα ββββ

d e

αααα ββββ

264



Example
Q. Find k for which one root of the equation

(k – 5) x2 – 2kx + k – 4 = 0 is smaller

than 1 and the other root is greater than2
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Type - 5

Exactly one root lies inthe interval (d, e)

266



Type - 5

Exactly one root lies inthe interval (d, e)

267

e

d



Type - 5

Exactly one root lies inthe interval (d, e)

268

f(d) f(e) < 0
e

d



Examples
Q. Find the set of values of m for whichexactly

one root of the equation

x2 + mx + (m2 + 6m) = 0 lie in(–2, 0)

269



Q. Find a for which exactly one root of the

quadratic equationx2 – (a + 1) x + 2a = 0

lies in (0,3)

270



Type - 6

If f (p) f(q) < 0

⇒⇒⇒⇒ Exactly one root q

p

lies between(p, q)

271



Examples
Q. If a < b < c < d showthat

Quadratic (x – a) (x – c) +λλλλ (x – b) (x – d) = 0

has real root for all real values ofλλλλ

272



Q. Find p for which the expression

x2 – 2px + 3p + 4 < 0 is satisfied for at least

one real x
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Q. Find a for which expression

(a2 + 3) x2 + < 0 is satisfied for at

least one real x
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Q. Find m if x2 – 4x + 3m + 1 > 0 is satisfied for

all positive x
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Q. Showthat for any real value of a

(a2 + 3) x2 + (a + 2) x – 5 < 0 is true for at least

one negative x.
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Q. If f(x) = 4x2 + ax + (a – 3) is negative for at

least one negative x, find all values of a

277



Q. Find a for which x2 + 2(a – 1) x + a + 5 = 0

has at least one positive root.

278



Q. Find p for which the least value of

4x2 – 4px + b2 – 2p + 2 inx∈∈∈∈ [0,2] is equal to 3

279



Q. Find k for which the equation

x4 + x2 (1 – 2k) + k2 – 1 = has

(i) No real solution
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Q. Find k for which the equation

x4 + x2 (1 – 2k) + k2 – 1 = has

(ii) one real solution
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Q. Find k for which the equation

x4 + x2 (1 – 2k) + k2 – 1 = has

(iii) two real solution
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Q. Find k for which the equation

x4 + x2 (1 – 2k) + k2 – 1 = has

(iv) three real solution
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Q. Find k for which the equation

x4 + x2 (1 – 2k) + k2 – 1 = has

(v) Four real solution
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Modulas Inequality

285



Example
Q.

286



Note

| x | < αααα ⇒⇒⇒⇒ x∈∈∈∈ (-αααα, αααα)
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Note

| x | < αααα ⇒⇒⇒⇒ x∈∈∈∈ (-αααα, αααα)

| x | > ββββ ⇒⇒⇒⇒ x∈∈∈∈ (-∞∞∞∞, -ββββ) ∪∪∪∪ (ββββ,∞∞∞∞)
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Examples
Q. (| x – 1 | – 3) (| x + 2 | – 5) < 0

289



Q. | x – 5| > | x2 – 5x + 9 |

290



Q.
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