

For More Study Material & Test Papers Visit : www.mathsiit.com

QUESTION BANK

LIMIT, CONTINUITY, DIFFERENTIABILITY OF FUNCTION

MANOJ CHAUHAN SIR(IIT-DELHI) EX. SR. FACULTY (BANSAL CLASSES)

[STRAIGHT OBJECTIVE TYPE]

- Q.1 If both f (x) & g(x) are differentiable functions at $x = x_0$, then the function defined as, h(x) = Maximum {f(x), g(x)}
 - (A) is always differentiable at $x = x_0$
 - (B) is never differentiable at $x = x_0$
 - (C) is differentiable at $x = x_0$ when $f(x_0) \neq g(x_0)$
 - (D) cannot be differentiable at $x = x_0$ if $f(x_0) = g(x_0)$.

Q.2 If $\lim_{x\to 0} (x^{-3} \sin 3x + ax^{-2} + b)$ exists and is equal to zero then (A) a = -3 & b = 9/2 (B) a = 3 & b = 9/2(C) a = -3 & b = -9/2 (D) a = 3 & b = -9/2

Q.3 Let $l = \lim_{x \to \infty} \left(\frac{x+1}{x-1}\right)^x$ then $\{l\}$ where $\{x\}$ denotes the fractional part function is (A) $8 - e^2$ (B) $7 - e^2$ (C) $e^2 - 6$ (D) $e^2 - 7$ Q.4 For x > 0, let $h(x) = \begin{cases} \frac{1}{q} & \text{if } x = \frac{p}{q} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$ where p & q > 0 are relatively prime integers

then which one does not hold good? (A) h(x) is discontinuous for all x in $(0, \infty)$ (B) h(x) is continuous for each irrational in $(0, \infty)$ (C) h(x) is discontinuous for each rational in $(0, \infty)$ (D) h(x) is not derivable for all x in $(0, \infty)$.

Q.5 For a certain value of c, $\lim_{x \to -\infty} [(x^5 + 7x^4 + 2)^C - x]$ is finite & non zero. The value of c and the value of the limit is (A) 1/5, 7/5 (B) 0, 1 (C) 1, 7/5 (D) none

Q.6 If α , β are the roots of the quadratic equation $ax^2 + bx + c = 0$ then $\lim_{x \to \alpha} \frac{1 - \cos(ax^2 + bx + c)}{(x - \alpha)^2}$ equals

Q.7
$$\lim_{x \to \infty} \left(\sqrt[3]{(x+a)(x+b)(x+c)} - x \right) =$$

(A) \sqrt{abc} (B) $\frac{a+b+c}{3}$ (C) abc (D) $(abc)^{1/3}$
Q.8 $\lim_{x \to \infty} x \left(\tan^{-1} \frac{x+1}{x+2} - \cot^{-1} \frac{x+2}{x} \right)$ is
(A) -1 (B) $\frac{1}{2}$ (C) $-\frac{1}{2}$ (D) non existent

2

Q.9 Given
$$f(x) = \frac{e^x - \cos 2x - x}{x^2}$$
 for $x \in R - \{0\}$
 $g(x) = f(\{x\})$ for $n < x < n + \frac{1}{2}$
 $= f(1 - \{x\})$ for $n + \frac{1}{2} \le x < n + 1$, $n \in I$ where $\{x\}$ denotes fractional part function
 $= \frac{5}{2}$ otherwise
then $g(x)$ is
(A) discontinuous at all integral values of x only
(B) continuous at $x = n + \frac{1}{2}$; $n \in I$ and at some $x \in I$

(D) continuous everywhere

Q.10 Let the function f, g and h be defined as follows

$$f(\mathbf{x}) = \begin{cases} x \sin\left(\frac{1}{x}\right) & \text{for } -1 \le x \le 1 \text{ and } x \ne 0 \\ 0 & \text{for } x = 0 \end{cases}$$

$$g(\mathbf{x}) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{for } -1 \le x \le 1 \text{ and } x \ne 0\\ 0 & \text{for } x = 0 \end{cases}$$

 $\begin{array}{cc} h(\mathbf{x}) = |\mathbf{x}|^3 & \text{for} - 1 \le \mathbf{x} \le 1 \\ \text{Which of these functions are differentiable at } \mathbf{x} = 0? \\ \text{(A)} f \text{ and } g \text{ only } \quad \text{(B)} f \text{ and } h \text{ only } \quad \text{(C)} g \text{ and } h \text{ only } \quad \text{(D) none} \end{array}$

Q.11
$$\lim_{n \to \infty} \left(\left(\frac{n}{n+1} \right)^{\alpha} + \sin \frac{1}{n} \right)^n$$
 when $\alpha \in Q$ is equal to
(A) $e^{-\alpha}$ (B) $-\alpha$ (C) $e^{1-\alpha}$ (D) $e^{1+\alpha}$

Q.12 Let $f(x) = \frac{g(x)}{h(x)}$, where g and h are cotinuous functions on the open interval (a, b). Which of the

following statements is true for a < x < b?

- (A) f is continuous at all x for which x is not zero.
- (B) f is continuous at all x for which g(x) = 0
- (C) f is continuous at all x for which g(x) is not equal to zero.
- (D) f is continuous at all x for which h(x) is not equal to zero.

Q.13	$f(x) = \frac{2\cos x - \sin 2x}{(\pi - 2x)^2}; g(x) = \frac{e^{-\cos x} - 1}{8x - 4\pi}$							
	h (x) = f (x) for $x < \pi/2$							
	$=$ g (x) for x > $\pi/2$							
	then which of the following holds?	(\mathbf{D}) h has an image	avalla diagontinuity at y = -/2					
	(A) <i>h</i> is continuous at $x = \pi/2$	(B) <i>h</i> has an irremo	Solution by the provided at $x = \pi/2$					
	(C) <i>h</i> has a removable discontinuity at $x = a$	$\pi/2$ (D) $f\left(\frac{\pi}{2}^{+}\right) = g\left(\frac{\pi}{2}\right)$	$\left(\frac{\pi}{2}\right)$					
Q.14	If $f(x) = \frac{x - e^x + \cos 2x}{x^2}$, $x \neq 0$ is continuous at $x = 0$, then							
	(A) $f(0) = \frac{5}{2}$ (B) $[f(0)] = -2$	(C) $\{f(0)\} = -0.5$	(D) $[f(0)] \cdot \{f(0)\} = -1.5$					
	where $[x]$ and $\{x\}$ denotes greatest integer	and fractional part fun	iction					
	$\begin{bmatrix} x+b, x<0 \end{bmatrix}$							
Q.15	The function $g(x) = \begin{bmatrix} \cos x, & x \ge 0 \end{bmatrix}$ can be	be made differentiable	at $x = 0$.					
	(A) if b is equal to zero	(B) if b is not equal	to zero					
	(C) if b takes any real value	(D) for no value of t	0					
Q.16	If $f(x) = \sin^{-1}(\sin x)$: $x \in \mathbb{R}$ then f is							
	(A) continuous and differentiable for all x							
	(B) continuous for all x but not differentiable for all $x = (2k + 1)\frac{\pi}{2}$, $k \in I$							
	(C) neither continuous nor differentiable for $x = (2k - 1)\frac{\pi}{2}$; $k \in I$							
	(D) neither continuous nor differentiable fo	$r x \in \mathbb{R} - [-1, 1]$						
Q.17	$\operatorname{Limit}_{x \to \frac{\pi}{2}} \frac{\sin x}{\cos^{-1} \left[\frac{1}{4} (3\sin x - \sin 3x) \right]} \text{where [] denotes greatest integer function, is}$							
	2	4						
	(A) $\frac{-}{\pi}$ (B) 1	(C) $\frac{-}{\pi}$	(D) does not exist					
0.18	$\lim_{x \to \infty} \frac{\sqrt{(1-\cos x)} + \sqrt{(1-\cos x)} + \sqrt{(1-\cos x)}}{\sqrt{(1-\cos x)} + \sqrt{(1-\cos x)}}$	$(x) + \dots + \infty = 1$	aale					
Q.10	$x \rightarrow 0$ x^2	Cqt	uais					
	(A) 0 (B) $\frac{1}{2}$	(C) 1	(D) 2					
	$\mathbf{x} \{\mathbf{x}\} + 1$	$0 \le x < 1$						
Q.19	Consider the function $f(x) = \begin{bmatrix} 2 - \{x\} \end{bmatrix}$	$1 \le x \le 2$ where	$\{x\}$ denotes the fractional part					
	function. Which one of the following statements is NOT correct?							
	(A) $\lim_{x \to 1} f(x)$ exists	(B) $f(0) \neq f(2)$						
	(C) $f(x)$ is continuous in [0, 2]	(D) Rolles theorem is	s not applicable to $f(x)$ in $[0, 2]$					

ETOOS Academy Pvt. Ltd. : F-106, Road No. 2, Indraprastha Industrial Area, End of Evergreen Motors (Mahindra Showroom), BSNL Office Lane, Jhalawar Road, Kota, Rajasthan (324005)

The function $f(x) = \lim_{n \to \infty} \frac{x^{2n} - 1}{x^{2n} + 1}$ is identical with the function Q.20

(A)
$$g(x) = sgn(x - 1)$$

(B) $h(x) = sgn(tan^{-1}x)$
(C) $u(x) = sgn(|x| - 1)$
(B) $h(x) = sgn(tan^{-1}x)$
(D) $v(x) = sgn(cot^{-1}x)$

- Q.21 Which one of the following statement is true?
 - (A) If $\underset{x\to c}{\text{Lim}} f(x) \cdot g(x)$ and $\underset{x\to c}{\text{Lim}} f(x)$ exist, then $\underset{x\to c}{\text{Lim}} g(x)$ exists.
 - (B) If $\text{Lim} f(x) \cdot g(x)$ exists, then Lim f(x) and Lim g(x) exist. $x \rightarrow c$ $x \rightarrow c$
 - (C) If $\lim_{x\to c} (f(x)+g(x))$ and $\lim_{x\to c} f(x)$ exist, then $\lim_{x\to c} g(x)$ exist.
 - (D) If $\lim_{x\to c} (f(x)+g(x))$ exists, then $\lim_{x\to c} f(x)$ and $\lim_{x\to c} g(x)$ exist.
- The functions defined by $f(x) = \max \{x^2, (x-1)^2, 2x(1-x)\}, 0 \le x \le 1$ Q.22 (A) is differentiable for all x
 - (B) is differentiable for all x excetp at one point
 - (C) is differentiable for all x except at two points
 - (D) is not differentiable at more than two points.

(B) 9/2

Q

Q

Q

(A) 18

Q.23 Which one of the following functions is continuous everywhere in its domain but has atleast one point where it is not differentiable?

ETOOS Academy Pvt. Ltd.: F-106, Road No. 2, Indraprastha Industrial Area, End of Evergreen Motors (Mahindra Showroom), BSNL Office Lane, Jhalawar Road, Kota, Rajasthan (324005)

(C) 9

(D) none

5

Q.28 The graph of function f contains the point P (1, 2) and Q(s, r). The equation of the secant line

Q.36 Let $f(x) = \max\{|x^2 - 2|x||, |x|\}$ and $g(x) = \min\{|x^2 - 2|x||, |x|\}$ then (A) both f(x) and g(x) are non differentiable at 5 points. (B) f(x) is not differentiable at 5 points whether g(x) is non differentiable at 7 points. (C) number of points of non differentiability for f(x) and g(x) are 7 and 5 respectively. (D) both f(x) and g(x) are non differentiable at 3 and 5 points respectively. Q.37 If $\lim_{x \to 0} \frac{\sin nx [(a-n).nx - \tan x]}{x^2} = 0$ (n > 0) then the value of 'a' is equal to (A) $\frac{1}{n}$ (B) $n^2 + 1$ (C) $\frac{n^2 + 1}{n}$ (D) none Q.38 Let $g(x) = \begin{bmatrix} 3x^2 - 4\sqrt{x} + 1 & \text{for } x < 1 \\ ax + b & \text{for } x \ge 1 \end{bmatrix}$. If g(x) is the continuous and differentiable for all numbers in its domain then (A) a = b = 4(B) a = b = -4(C) a = 4 and b = -4(D) a = -4 and b = 4Q.39 Let $f(x) = \begin{bmatrix} a \sin^{2n} x & \text{for } x \ge 0 \text{ and } n \to \infty \\ b(\cos^{2m} x) - 1 & \text{for } x < 0 \text{ and } m \to \infty \end{bmatrix}$ then (B) $f(0^+) \neq f(0)$ $(A) f(0^{-}) \neq f(0^{+})$ (C) $f(0^{-}) = f(0)$ (D) f is continuous at x = 0

Q.40 Let f(x) be continuous and differentiable function for all reals.

$$f(x + y) = f(x) - 3xy + f(y)$$
. If $\lim_{h \to 0} \frac{f(h)}{h} = 7$, then the value of $f'(x)$ is
(A) - 3x (B) 7 (C) - 3x + 7 (D) 2 f(x) + 7

Q.41 Let $a = \min [x^2 + 2x + 3, x \in R]$ and $b = \lim_{x \to 0} \frac{\sin x \cos x}{e^x - e^{-x}}$. Then the value of $\sum_{r=0}^n a^r b^{n-r}$ is

(A)
$$\frac{2^{n+1}+1}{3\cdot 2^n}$$
 (B) $\frac{2^{n+1}-1}{3\cdot 2^n}$ (C) $\frac{2^n-1}{3\cdot 2^n}$ (D) $\frac{4^{n+1}-1}{3\cdot 2^n}$

Q.42 Given $l_1 = \lim_{x \to \pi/4} \cos^{-1} \left[\sec \left(x - \frac{\pi}{4} \right) \right]; \quad l_2 = \lim_{x \to \pi/4} \sin^{-1} \left[\csc \left(x + \frac{\pi}{4} \right) \right];$

$$l_{3} = \lim_{x \to \pi/4} \tan^{-1} \left[\cot \left(x + \frac{\pi}{4} \right) \right]; \quad l_{4} = \lim_{x \to \pi/4} \cot^{-1} \left[\tan \left(x - \frac{\pi}{4} \right) \right]$$

where [x] denotes greatest integer function then which of the following limits exist? (A) l_1 and l_2 only (B) l_1 and l_3 only (C) l_1 and l_4 only (D) All of them

7

Q.43 Suppose that a and b ($b \neq a$) are real positive numbers then the value of

$$\lim_{t \to 0} \left(\frac{b^{t+1} - a^{t+1}}{b - a} \right)^{1/t}$$
 has the value equals to

(A)
$$\frac{a \ln b - b \ln a}{b - a}$$
 (B) $\frac{b \ln b - a \ln a}{b - a}$ (C) $b \ln b - a \ln a$ (D) $\left(\frac{b^b}{a^a}\right)^{\frac{1}{b - a}}$

Q.44 Which of the following functions defined below are NOT differentiable at the indicated point?

(A)
$$f(x) = \begin{bmatrix} x^2 & \text{if } -1 \le x < 0 \\ -x^2 & \text{if } 0 \le x \le 1 \end{bmatrix}$$
 at $x = 0$ (B) $g(x) = \begin{bmatrix} x & \text{if } -1 \le x < 0 \\ \tan x & \text{if } 0 \le x \le \frac{\pi}{4} \end{bmatrix}$ at $x = 0$
(C) $h(x) = \begin{bmatrix} \sin 2x & \text{if } x \le 0 \\ 2x & \text{if } x > 0 \end{bmatrix}$ at $x = 0$ (D) $k(x) = \begin{bmatrix} x & \text{if } 0 \le x \le 1 \\ 2 - x & \text{if } 1 < x \le 2 \end{bmatrix}$ at $x = 1$

Q.45 If
$$f(x) = \cos x$$
, $x = n \pi$, $n = 0, 1, 2, 3,$
= 3, otherwise and

$$\phi(x) = \begin{bmatrix} x^2 + 1 & \text{when } x \neq 3, x \neq 0 \\ 3 & \text{when } x = 0 & \text{then } \lim_{x \to 0} f(\phi(x)) = \\ 5 & \text{when } x = 3 \end{bmatrix}$$
(A) 1 (B) 3 (C) 5 (D) none

Q.46 Let [x] be the greatest integer function and $f(x) = \frac{\sin \frac{1}{4}\pi[x]}{[x]}$. Then which one of the following

does not hold good?(B) continuous at 3/2(C) discontinuous at 2(D) differentiable at 4/3

Q.47 Number of points where the function $f(x) = (x^2 - 1) |x^2 - x - 2| + sin(|x|)$ is not differentiable, is (A) 0 (B) 1 (C) 2 (D) 3

Q.48
$$\lim_{x \to 0} \left(\frac{3}{1 + \sqrt{4 + x}} \right)^{\cos ex}$$
 has the value equal to :
(A) $e^{-1/12}$ (B) $e^{-1/6}$ (C) $e^{-1/4}$ (D) $e^{-1/3}$
Q.49
$$\lim_{x \to \infty} \frac{\cot^{-1}(\sqrt{x + 1} - \sqrt{x})}{\sec^{-1}\left\{ \left(\frac{2x + 1}{x - 1} \right)^x \right\}}$$
 is equal to
(A) 1 (B) 0 (C) $\pi/2$ (D) non existent
Q.50 Consider function f : R - {-1, 1} \rightarrow R. f(x) = $\frac{x}{1 - |x|}$. Then the incorrect statement is
(A) it is continuous at the origin. (B) it is not derivable at the origin.
(C) the range of the function is R. (D) f is continuous and derivable in its domain

ETOOS Academy Pvt. Ltd.: F-106, Road No. 2, Indraprastha Industrial Area, End of Evergreen Motors (Mahindra Showroom), BSNL Office Lane, Jhalawar Road, Kota, Rajasthan (324005)

Q.51 Given $f(x) = b([x]^2 + [x]) + 1$ for $x \ge -1$ $= Sin(\pi(x+a))$ for x < -1where [x] denotes the integral part of x, then for what values of a, b the function is continuous at x = -1?Q.52 $\lim_{n \to \infty} \cos\left(\pi \sqrt{n^2 + n} \right)$ when n is an integer : (C) is equal to zero (D) does not exist (A) is equal to 1 (B) is equal to -1Q.53 Limit $\left(1 + \log_{\cos\frac{x}{2}}^2 \cos x\right)^2$ (A) is equal to 4 (B) is equal to 9 (C) is equal to 289 (D) is non existent Q.54 The value of $\lim_{x \to 0} \frac{(\tan(\{x\} - 1)) \sin\{x\}}{\{x\} (\{x\} - 1)}$ where $\{x\}$ denotes the fractional part function: (A) is 1 (B) is tan 1 (C) is $\sin 1$ (D) is non existent $Q.55 \quad \underset{x \rightarrow 0^{-}}{\text{Limit}} \left(-\ell n \left(\left\{ x \right\} + \left| \left[x \right] \right| \right) \right)^{\left\{ x \right\}}$ (D) is $ln \frac{1}{2}$ (A) is 0 (B) is 1 (C) *l*n 2 where [] is the greatest integer function and {} is the fractional part. Q.56 If $f(x) = \frac{\ell n \left(e^{x^2} + 2\sqrt{x}\right)}{\frac{\tan \sqrt{x}}{\sqrt{x}}}$ is continuous at x = 0, then f(0) must be equal to : (C) e^{2} (A) 0 (D) 2 **(B)** 1 Q.57 $\lim_{x \to \infty} \frac{2 + 2x + \sin 2x}{(2x + \sin 2x)e^{\sin x}}$ is: (A) equal to zero (B) equal to 1 (C) equal to -1(D) non existent Q.58 The value of $\lim_{x\to 0} (\cos ax)^{\csc^2 bx}$ is (A) $e^{\left(-\frac{8b^2}{a^2}\right)}$ (B) $e^{\left(-\frac{8a^2}{b^2}\right)}$ (C) $e^{\left(-\frac{a^2}{2b^2}\right)}$ (D) $e^{\left(-\frac{b^2}{2a^2}\right)}$ Q.59 If f(x + y) = f(x) + f(y) + c, for all real x and y and f(x) is continuous at x = 0 and f'(0) = 1 then f'(x) equals to (A) c (B) –1 (C) 0(D) 1 If x is a real number in [0, 1] then the value of $\lim_{m \to \infty} \lim_{n \to \infty} \lim_{n \to \infty} [1 + \cos^{2m}(n \mid \pi x)]$ is given by O.60 (A) 1 or 2 according as x is rational or irrational (B) 2 or 1 according as x is rational or irrational (C) 1 for all x(D) 2 for all x

ETOOS Academy Pvt. Ltd.: F-106, Road No. 2, Indraprastha Industrial Area, End of Evergreen Motors (Mahindra Showroom), BSNL Office Lane, Jhalawar Road, Kota, Rajasthan (324005) **9**

Q.61
$$\lim_{n \to \infty} \sum_{r=1}^{n} \frac{r}{n^2 + n + r}$$
 equals
(A) 0 (B) 1/3 (C) 1/2 (D) 1

Q.62
$$\lim_{n \to \infty} \left(\sqrt{n^2 + n + 1} - \left[\sqrt{n^2 + n + 1} \right] \right)$$
 where [] denotes the greatest integer function is
(A) 0 (B) 1/2 (C) 2/3 (D) 1/4

Q.63
$$\lim_{n \to \infty} \left(\frac{\sqrt[n]{p} + \sqrt[n]{q}}{2} \right)^n$$
, p, q > 0 equals

(A) 1 (B)
$$\sqrt{pq}$$
 (C) pq (D) $\frac{pq}{2}$

Q.64 Let f (x) be the continuous function such that $f(x) = \frac{1 - e^x}{x}$ for $x \neq 0$ then

(A)
$$f'(0^+) = \frac{1}{2}$$
 and $f'(0^-) = -\frac{1}{2}$
(B) $f'(0^+) = -\frac{1}{2}$ and $f'(0^-) = \frac{1}{2}$
(C) $f'(0^+) = f'(0^-) = \frac{1}{2}$
(D) $f'(0^+) = f'(0^-) = -\frac{1}{2}$

[COMPREHENSION TYPE]

Paragraph for question nos 65 to 67

Let
$$f(x) = \begin{cases} e^{\{x^2\}} - 1, & x > 0 \\ \frac{\sin x - \tan x + \cos x - 1}{2x^2 + \ln(2 + x) + \tan x}, & x < 0 \\ 0, & x = 0 \end{cases}$$

where $\{ \}$ represents fractional part function. Suppose lines L_1 and L_2 represent tangent and normal to curve y = f(x) at x = 0. Consider the family of circles touching both the lines L_1 and L_2 .

Q.65 Ratio of radii of two circles belonging to this family cutting each other orthogonally is

(A)
$$2 + \sqrt{3}$$
 (B) $\sqrt{3}$ (C) $2 + \sqrt{2}$ (D) $2 - \sqrt{2}$

Q.66 A circle having radius unity is inscribed in the triangle formed by L_1 and L_2 and a tangent to it. Then the minimum area of the triangle possible is

(A)
$$3 + \sqrt{2}$$
 (B) $2 + \sqrt{3}$ (C) $3 + 2\sqrt{2}$ (D) $3 - 2\sqrt{2}$

Q.67If centers of circles belonging to family having equal radii 'r' are joined, the area of figure formed is
(A) $2r^2$ (B) $4r^2$ (C) $8r^2$ (D) r^2

Paragraph for Question Nos. 68 to 70

Let f(x) is a function continuous for all $x \in R$ except at x = 0. Such that $f'(x) < 0 \forall x \in (-\infty, 0)$

and $f'(x) > 0 \quad \forall x \in (0, \infty)$. Let $\lim_{x \to 0^+} f(x) = 2$, $\lim_{x \to 0^-} f(x) = 3$ and f(0) = 4.

Q.68 The value of
$$\lambda$$
 for which $2\left(\lim_{x \to 0} f(x^3 - x^2)\right) = \lambda\left(\lim_{x \to 0} f(2x^4 - x^5)\right)$ is

(A)
$$\frac{4}{3}$$
 (B) 2 (C) 3 (D) 5

Q.69 The values of $\lim_{x \to 0^+} \frac{f(-x)x^2}{\left\{\frac{1-\cos x}{\lfloor f(x) \rfloor}\right\}}$ where $[\cdot]$ denote greatest integer function and $\{\cdot\}$ denote

fraction part function.

(A) 6 (B) 12 (C) 18 (D) 24
Q.70
$$\lim_{x \to 0^{-}} \left(\left[3f\left(\frac{x^{3} - \sin^{3}x}{x^{4}}\right) \right] - f\left(\left[\frac{\sin x^{3}}{x}\right]\right) \right) \text{ where } [\cdot] \text{ denote greatest integer function.}$$
(A) 3 (B) 5 (C) 7 (D) 9

[REASONING TYPE]

Q.71 Let $h(x) = f_1(x) + f_2(x) + f_3(x) + \dots + f_n(x)$ where $f_1(x), f_2(x), f_3(x), \dots, f_n(x)$ are real valued functions of x.

Statement-1: $f(x) = |\cos |x|| + \cos^{-1}(\operatorname{sgn} x) + |\ln x|$ is not differentiable at 3 points in $(0, 2\pi)$ because

Statement-2: Exactly one function $f_i(x)$, i = 1, 2, ..., n not differentiable and the rest of the function differentiable at x = a makes h(x) not differentiable at x = a.

(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.(C) Statement-1 is true, statement-2 is false. (D) Statement-1 is false, statement-2 is true.

Q.72 Statement-1 : $f(x) = |x| \sin x$ is differentiable at x = 0

because

Statement-2 : If g(x) is not differentiable at x = a and h(x) is differentiable at x = a then $g(x) \cdot h(x)$ can not be differentiable at x = a.

(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.(C) Statement-1 is true, statement-2 is false. (D) Statement-1 is false, statement-2 is true.

Q.73 Statement-1:
$$f(x) = |\cos x|$$
 is not deviable at $x = \frac{\pi}{2}$.

because

Statement-2: If g (x) is differentiable at x = a and g (a) = 0 then |g(x)| is non-derivable at x = a. (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1. (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1. (C) Statement-1 is true, statement-2 is false. (D) Statement-1 is false, statement-2 is true. Q.74 Let $f(x) = x - x^2$ and $g(x) = \{x\} \forall x \in \mathbb{R}$. Where $\{\cdot\}$ denotes fractional part function. Statement-1: f(g(x)) will be continuous $\forall x \in \mathbb{R}$.

because

Statement-2: f(0) = f(1) and g(x) is periodic with period 1.

(A) Statement-1 is true, statement-2 is true; statement-2 is correct explanation for statement-1.(B) Statement-1 is true, statement-2 is true; statement-2 is NOT the correct explanation for statement-1.(C) Statement-1 is true, statement-2 is false. (D) Statement-1 is false, statement-2 is true.

Q.75 Let
$$f(x) = \begin{cases} -ax^2 - b |x| - c & -\alpha \le x < 0 \\ ax^2 + b |x| + c & 0 \le x \le \alpha \end{cases}$$
 where a, b, c are positive and $\alpha > 0$, then

Statement-1: The equation f(x) = 0 has at least one real root for $x \in [-\alpha, \alpha]$ because

Statement-2: Values of $f(-\alpha)$ and $f(\alpha)$ are opposite in sign.

(A) Statement-1 is true, statement-2 is true; statement-2 is correct explanation for statement-1.

(B) Statement-1 is true, statement-2 is true; statement-2 is NOT the correct explanation for statement-1.(C) Statement-1 is true, statement-2 is false. (D) Statement-1 is false, statement-2 is true.

[MULTIPLE OBJECTIVE TYPE]

Q.76 Lim f(x) does not exist when

(A)
$$f(x) = [[x]] - [2x - 1], c = 3$$

(B) $f(x) = [x] - x, c = 1$
(C) $f(x) = \{x\}^2 - \{-x\}^2, c = 0$
(D) $f(x) = \frac{\tan(\operatorname{sgn} x)}{\operatorname{sgn} x}, c = 0$.

where [x] denotes step up function & $\{x\}$ fractional part function.

Q.77 Let
$$f(x) = \begin{bmatrix} \frac{\tan^2 \{x\}}{x^2 - [x]^2} & \text{for } x > 0 \\ 1 & \text{for } x = 0 \end{bmatrix}$$
 where $[x]$ is the step up function and $\{x\}$ is the fractional $\sqrt{\{x\}\cot\{x\}}$ for $x < 0$

part function of x, then :

Q.78

(A)
$$\lim_{x \to 0^+} f(x) = 1$$

(B) $\lim_{x \to 0^-} f(x) = 1$
(C) $\cot^{-1} \left(\lim_{x \to 0^-} f(x) \right)^2 = 1$
(D) f is continuous at $x = 1$
If $f(x) = \begin{cases} \frac{x \cdot ln(\cos x)}{ln(1+x^2)} & x \neq 0\\ 0 & x = 0 \end{cases}$ then :
(A) f is continuous at $x = 0$
(B) f is continuous at $x = 0$ but not differentiable at $x = 0$

(C) f is differentiable at x = 0

(D) f is not continuous at x = 0.

Q.79 Which of the following limits vanish?

(A)
$$\lim_{x \to \infty} x^{\frac{1}{4}} \sin \frac{1}{\sqrt{x}}$$

(B) $\lim_{x \to \pi/2} (1 - \sin x) \cdot \tan x$
(C) $\lim_{x \to \infty} \frac{2x^2 + 3}{x^2 + x - 5} \cdot \operatorname{sgn}(x)$
(D) $\lim_{x \to 3^+} \frac{[x]^2 - 9}{x^2 - 9}$

where [] denotes greatest integer function

Q.80 Which of the following function(s) not defined at x = 0 has/have non-removable discontinuity at the point x = 0?

(A)
$$f(x) = \frac{1}{1+2^{\frac{1}{x}}}$$
 (B) $f(x) = \arctan \frac{1}{x}$ (C) $f(x) = \frac{e^{\frac{1}{x}} - 1}{e^{\frac{1}{x}} + 1}$ (D) $f(x) = \frac{1}{\ell n |x|}$

Q.81 Which of the following function(s) not defined at x = 0 has/have removable discontinuity at x=0?

(A)
$$f(x) = \frac{1}{1 + 2^{\cot x}}$$
 (B) $f(x) = \cos\left(\frac{|\sin x|}{x}\right)$ (C) $f(x) = x \sin\frac{\pi}{x}$ (D) $f(x) = \frac{1}{\ln |x|}$

Q.82The function $1 + |\sin x|$ is
(A) continuous everywhere
(C) not differentiable at x = 0(B) differentiable nowhere
(D) not differentiable at infinite no. of points

Q.83 Let [x] denote the greatest integer less than or equal to x. If $f(x) = [x \sin \pi x]$, then f(x) is: (A) continuous at x = 0 (B) continuous in (-1, 0)(C) differentiable at x = 1 (D) differentiable in (-1, 1)

Q.84 The function, f(x) = [|x|] - |[x]| where [x] denotes greatest integer function (A) is continuous for all positive integers
(B) is discontinuous for all non positive integers

(C) has finite number of elements in its range

- (D) is such that its graph does not lie above the x axis.
- Q.85Let f(x + y) = f(x) + f(y) for all $x, y \in R$. Then
(A) f(x) must be continuous $\forall x \in R$ (B) f(x) may be continuous $\forall x \in R$
(D) f(x) may be discontinuous $\forall x \in R$
- Q.86 Given that the derivative f' (a) exists. Indicate which of the following statement(s) is/are always True

(A)
$$f'(a) = \underset{h \to a}{\text{Limit}} \frac{f(h) - f(a)}{h - a}$$
 (B) $f'(a) = \underset{h \to 0}{\text{Limit}} \frac{f(a) - f(a - h)}{h}$
(C) $f'(a) = \underset{t \to 0}{\text{Limit}} \frac{f(a + 2t) - f(a)}{t}$ (D) $f'(a) = \underset{t \to 0}{\text{Limit}} \frac{f(a + 2t) - f(a + t)}{2t}$

Q.87 The function $f(x) = \sqrt{1 - \sqrt{1 - x^2}}$ (A) has its domain $-1 \le x \le 1$. (B) has finite one sided derivates at the point x = 0. (C) is continuous and differentiable at x = 0. (D) is continuous but not differentiable at x = 0. Consider the function $f(x) = |x^3 + 1|$ then Q.88 (A) Domain of $f \in \mathbb{R}$ (B) Range of f is R^+ (C) f has no inverse. (D) *f* is continuous and differentiable for every $x \in \mathbb{R}$. 0.89 Select the correct statements. (A) The function f defined by $f(x) = \begin{vmatrix} 2x^2 + 3 & \text{for } x \le 1 \\ 3x + 2 & \text{for } x > 1 \end{vmatrix}$ is neither differentiable nor continuous at x = 1. (B) The function $f(x) = x^2 |x|$ is twice differentiable at x = 0. (C) If f is continuous at x = 5 and f(5) = 2 then $\lim_{x \to 2} f(4x^2 - 11)$ exists. (D) If $\lim_{x \to a} (f(x) + g(x)) = 2$ and $\lim_{x \to a} (f(x) - g(x)) = 1$ then $\lim_{x \to a} f(x) \cdot g(x)$ need not exist. Q.90 Assume that $\lim_{\theta \to -1} f(\theta)$ exists and $\frac{\theta^2 + \theta - 2}{\theta + 3} \le \frac{f(\theta)}{\theta^2} \le \frac{\theta^2 + 2\theta - 1}{\theta + 3}$ holds for certain interval containing the point $\theta = -1$ then $\lim_{\theta \to -1} f(\theta)$ (A) is equal to f(-1) (B) is equal to 1 (C) is non existent (D) is equal to -1f is a continuous function in [a, b]; g is a continuous functin in [b, c] 0.91 A function h(x) is defined as h(x) = f(x) for $x \in [a, b)$ for $x \in (b, c]$ = g(x)if f(b) = g(b), then (A) h(x) has a removable discontinuity at x=b. (B) h(x) may or may not be continuous in [a, c] (C) $h(b^{-}) = g(b^{+})$ and $h(b^{+}) = f(b^{-})$

- (D) $h(b^+) = g(b^-)$ and $h(b^-) = f(b^+)$
- Q.92 Which of the following function(s) has/have the same range?

(A)
$$f(x) = \frac{1}{1+x}$$
 (B) $f(x) = \frac{1}{1+x^2}$ (C) $f(x) = \frac{1}{1+\sqrt{x}}$ (D) $f(x) = \frac{1}{\sqrt{3-x}}$

[MATCH THE COLUMN]

Q.93 Column–I Column-II

(A)
$$\lim_{x \to 1} \frac{\ln x}{x^4 - 1}$$
 (P) 2

(B)
$$\lim_{x \to 0} \frac{3e^x - x^3 - 3x - 3}{\tan^2 x}$$
 (Q) $\frac{2}{3}$

(C)
$$\lim_{x \to \infty} \frac{\pi - 2 \tan^{-1} x}{ln \left(1 + \frac{1}{x}\right)}$$
(R) $\frac{3}{2}$

(D)
$$\lim_{x \to 0} \frac{2 \sin x - \sin 2x}{x(\cos x - \cos 2x)}$$
 (S) $\frac{1}{4}$

(E)
$$\lim_{x \to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x}$$

Q.95

Q.94 Column-I contains 4 functions and column-II contains comments w.r.t their continuity and differentiability at x = 0. Note that column-I may have more than one matching options in column-II.

	Column-l	Column-II					
(A)	$f(\mathbf{x}) = [\mathbf{x}] + 1 - \mathbf{x} $	(P)	continuous				
	[] denotes the greatest integer function						
(B)	$g(\mathbf{x}) = \mathbf{x} - 2 + \mathbf{x} $	(Q)	differentiable				
(C)	$h(\mathbf{x}) = [\tan^2 \mathbf{x}]$	(R)	discontinuous				
	[] denotes the greatest integer function						
(D)	$l(x) = \begin{bmatrix} \frac{x(3e^{1/x} + 4)}{(2 - e^{1/x})} & x \neq 0 \end{bmatrix}$	(S)	non derivable				
	$\begin{bmatrix} 0 & x = 0 \end{bmatrix}$						
	Column I		Colum	ın II			
			001111				
(A)	$\lim_{x \to \infty} \left(\frac{x}{1+x} \right) \text{equals}$		(P)	e ²			
(B)	$\lim_{x \to \infty} \left(\sin \frac{1}{x} + \cos \frac{1}{x} \right)^x$		(Q)	e ^{-1/2}			
(C)	$\lim_{x \to 0} (\cos x)^{\cot^2 x}$		(R)	e			
	$((\pi))^{1/x}$						

(D)
$$\lim_{x \to 0} \left(\tan \left(\frac{\pi}{4} + x \right) \right)^{-1}$$
 (S) e^{-1}

Column-I

(A)
$$f(x) = \begin{bmatrix} x+1 & \text{if } x < 0 \\ \cos x & \text{if } x \ge 0 \end{bmatrix}$$
 at $x = 0$ is (P) continuous

(B) For every
$$x \in R$$
 the function (Q) differentiability

$$g(\mathbf{x}) = \frac{\sin(\pi[\mathbf{x} - \pi])}{1 + [\mathbf{x}]^2}$$
(R) discontinuous

where [x] denotes the greatest integer function is

(C)
$$h(x) = \sqrt{\{x\}^2}$$
 where $\{x\}$ denotes fractional part function
for all $x \in I$, is

(D)
$$k(\mathbf{x}) = \begin{bmatrix} x^{\frac{1}{\ln x}} & \text{if } \mathbf{x} \neq 1 \\ e & \text{if } \mathbf{x} = 1 \end{bmatrix}$$
 at $\mathbf{x} = 1$ is

Column-I

Column-I

Column-II

Column-II

non derivable

(S)

(A)
$$\lim_{x \to \infty} \left(\sqrt{x + \sqrt{x}} - \sqrt{x - \sqrt{x}} \right)$$
 equals (P) -2

(B) The value of the limit,
$$\lim_{x \to 0} \frac{\sin 2x - 2 \tan x}{\ln(1 + x^3)}$$
 is (Q) -1

(C)
$$\lim_{x \to 0^+} (ln \sin^3 x - ln(x^4 + ex^3))$$
 equals (R) 0

(D) Let
$$\tan(2\pi | \sin \theta |) = \cot(2\pi | \cos \theta |)$$
, where $\theta \in \mathbb{R}$ (S) 1
and $f(x) = (|\sin \theta | + |\cos \theta |)^x$. The value of $\lim_{x \to \infty} \left[\frac{2}{f(x)}\right]$ equals

(Here [] represents greatest integer function)

Column-II

(A)
$$\lim_{x \to 0} \frac{1 - \cos 2x}{e^{x^2} - e^x + x}$$
 equals (P) 1

(B) If the value of
$$\lim_{x \to 0^+} \left(\frac{(3/x)+1}{(3/x)-1} \right)^{1/x}$$
 can be expressed in the (Q) 2

form of $e^{p/q}$, where p and q are relative prime then (p + q) is equal to

(C)
$$\lim_{x \to 0} \frac{\tan^3 x - \tan x^3}{x^5} \text{ equals}$$
(R) 4

(D)
$$\lim_{x \to 0} \frac{x + 2\sin x}{\sqrt{x^2 + 2\sin x + 1} - \sqrt{\sin^2 x - x + 1}}$$
 (S) 5

Q.96

Q.97

Q.98

Column-I

Column-II

(A)
$$\lim_{n \to \infty} \cos^2 \left(\pi \left(\sqrt[3]{n^3 + n^2 + 2n} \right) \right)$$
 where *n* is an integer, equals (P) $\frac{1}{2}$

(B)
$$\lim_{n \to \infty} n \sin\left(2\pi\sqrt{1+n^2}\right) (n \in N)$$
 equals (Q) $\frac{1}{4}$

(C)
$$\lim_{n \to \infty} (-1)^n \sin\left(\pi \sqrt{n^2 + 0.5n + 1}\right) \left(\sin\frac{(n+1)\pi}{4n}\right) \text{ is (where } n \in \mathbb{N}) \quad (\mathbb{R}) \quad \pi$$

(D) If
$$\lim_{x \to \infty} \left(\frac{x+a}{x-a}\right)^x = e$$
 where 'a' is some real constant then the (S) non existent value of 'a' is equal to

Q.100 Column-I Column-I
(A)
$$\lim_{x \to \infty} \left(e^{\sqrt{x^4 + 1}} - e^{(x^2 + 1)} \right) \text{ is } \qquad (P) \quad e$$
(B) For $a > 0$ let $f(x) = \begin{bmatrix} \frac{a^x + a^{-x} - 2}{x^2} & \text{if } x > 0 \\ 3ln(a - x) - 2, & \text{if } x \le 0 \end{bmatrix}$
(Q) e^2

If f is continuous at x = 0 then 'a' equals
(C) Let L =
$$\lim_{x \to a} \frac{x^x - a^a}{x - a}$$
 and M = $\lim_{x \to a} \frac{x^x - a^x}{x - a}$ (a > 0).
If L = 2M then the value of 'a' is equal to
(R) 1/e
(R) 1/e
(R) 1/e

Q.99

ANSWER KEY

[STRAIGHT OBJECTIVE TYPE]

Q.1	С	Q.2	А	Q.3	D	Q.4	А	Q.5	А	Q.6	С	Q.7	В
Q.8	В	Q.9	D	Q.10	С	Q.11	С	Q.12	D	Q.13	В	Q.14	D
Q.15	D	Q.16	В	Q.17	А	Q.18	В	Q.19	С	Q.20	С	Q.21	С
Q.22	С	Q.23	А	Q.24	D	Q.25	С	Q.26	В	Q.27	А	Q.28	С
Q.29	А	Q.30	С	Q.31	В	Q.32	А	Q.33	А	Q.34	D	Q.35	А
Q.36	В	Q.37	С	Q.38	С	Q.39	А	Q.40	С	Q.41	D	Q.42	А
Q.43	D	Q.44	D	Q.45	В	Q.46	А	Q.47	С	Q.48	А	Q.49	А
Q.50	В	Q.51	А	Q.52	С	Q.53	С	Q.54	D	Q.55	D	Q.56	D
Q.57	D	Q.58	С	Q.59	D	Q.60	В	Q.61	С	Q.62	В	Q.63	В
Q.64	D	Q.65	А	Q.66	С	Q.67	В	Q.68	С	Q.69	В	Q.70	В
Q.71	А	Q.72	С	Q.73	С	Q.74	А	Q.75	D				

[MULTIPLE OBJECTIVE TYPE]

Q.76	B,C	Q.77	A,C	Q.78	A,C	Q.79	A,B,D
Q.80	A,B,C	Q.81	B,C,D	Q.82	A, C, D	Q.83	A, B, D
Q.84	A,B,C,D	Q.85	B,D	Q.86	A,B	Q.87	A,B,D
Q.88	A,C	Q.89	B,C	Q.90	A,D	Q.91	A,C
Q.92	B,C						

[MATCH THE COLUMN]

- Q.93 (A) S; (B) R; (C) P; (D) Q; (E) P
- Q.95 (A) S; (B) R; (C) Q; (D) P
- Q.97 (A) S; (B) P; (C) Q; (D) R
- Q.99 (A) Q; (B) R; (C) P; (D) P

- Q.94 (A) R, S; (B) P, S; (C) P, Q; (D) P, S
 - Q.96 (A) P, S; (B) P, Q; (C) R, S; (D) P, Q
- Q.98 (A) R; (B) S; (C) P; (D) Q
 - Q.100 (A) S; (B) P, Q; (C) P