

For More Study Material & Test Papers Visit : www.mathsiit.com

Special DPP's of Complex Number

MANOJ CHAUHAN SIR(IIT-DELHI) EX. SR. FACULTY (BANSAL CLASSES)

<u> DPP - 1</u>

Q.1	The sequence $S = i + (A) 50 (1-i)$		00 terms simplifies to w (C) $25(1+i)$	•					
Q.2	If $z + z^3 = 0$ then whice (A) Re(z) < 0	th of the following must (B) $\operatorname{Re}(z) = 0$	be true on the complex p (C) Im(z) = 0	blane? (D) $z^4 = 1$					
Q.3	Number of integral va (A) 1	alues of n for which the c (B) 2	quantity $(n+i)^4$ where i^2 (C) 3	=-1, is an integer is (D) 4					
Q.4	Let $i = \sqrt{-1}$. The pro- (A) - 25	oduct of the real part of $(B) - 6$	the roots of $z^2 - z = 5 - (C) - 5$	5 <i>i</i> is (D) 25					
Q.5	There is only one way to choose real numbers M and N such that when the polynomial $5x^4 + 4x^3 + 3x^2 + Mx + N$ is divided by the polynomial $x^2 + 1$, the remainder is 0. If M and N assume these unique values, then M – N is								
	(A) - 6	(B) - 2	(C) 6	(D) 2					
Q.6	In the quadratic equation $x^2 + (p+iq)x + 3i = 0$, p & q are real. If the sum of the squares of the roots is 8 then								
	(A) $p = 3, q = -1$	(B) $p = -3, q = -1$	(C) $p = \pm 3, q = \pm 1$	(D) $p = -3, q = 1$					
Q.7	The complex number (A) 625	z satisfying $z+ z =1$ (B) 169	+ 7i then the value of (C) 49	z ² equals (D) 25					
Q.8	The figure formed by four points $1+0i$; $-1+0i$; $3+4i$ & $\frac{25}{-3-4i}$ on the argand plane is :								
	(A) a parallelogram b(C) a cyclic quadrilate	_	(B) a trapezium which is not equilateral(D) none of these						
Q.9	If $z = (3 + 7i)(p + iq)$ where $p, q \in I - \{0\}$, is purely imaginary then minimum value of $ z ^2$ is								
	(A) 0	(B) 58	(C) $\frac{3364}{3}$	(D) 3364					
Q.10		$\dots + z^{17} = 0$ and	altaneously satisfying the $1 + z + z^2 + z^3 + \dots$ (C) 3	$+z^{13}=0$ is					
Q.11	If $\frac{x-3}{3+i} + \frac{y-3}{3-i} = i$								
	(A) $x = 2 \& y = -8$	(B) $x = -2 \& y = 8$	(C) $x = -2 \& y = -6$	(D) $x = 2 \& y = 8$					
Q.12	Number of complex n	umbers z satisfying $z^3 =$	$=\overline{z}$ is						

Q.13 If $x = 9^{1/3} 9^{1/9} 9^{1/27}$ ad inf $y = 4^{1/3} 4^{-1/9} 4^{1/27}$ ad inf then, the argument of the complex number w = x + yz is $x = \sum_{r=1}^{\infty} (1+i)^{-r}$

(A) 0 (B)
$$\pi - \tan^{-1}\left(\frac{\sqrt{2}}{3}\right)$$
 (C) $-\tan^{-1}\left(\frac{\sqrt{2}}{3}\right)$ (D) $-\tan^{-1}\left(\frac{2}{\sqrt{3}}\right)$

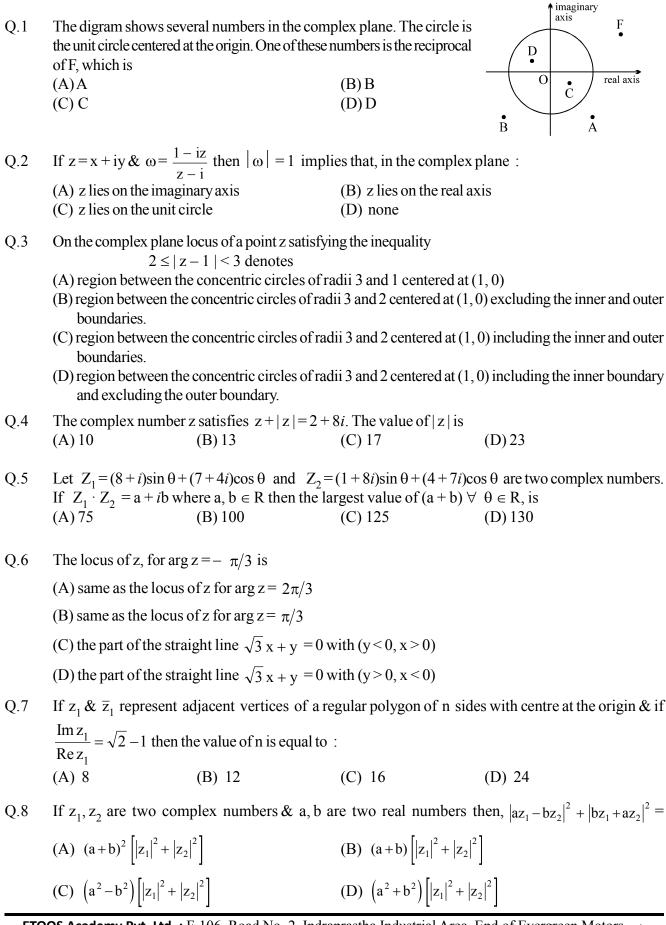
Q.14 Let z=9+bi where b is non zero real and $i^2 = -1$. If the imaginary part of z^2 and z^3 are equal, then b^2 equals (A) 261 (B) 225 (C) 125 (D) 361

One or more than one is/are correct:

Q.15 If the expression $(1 + ir)^3$ is of the form of s(1 + i) for some real 's' where 'r' is also real and $i = \sqrt{-1}$, then the value of 'r' can be

(A) $\cot \frac{\pi}{8}$ (B) $\sec \pi$ (C) $\tan \frac{\pi}{12}$ (D) $\tan \frac{5\pi}{12}$

<u>DPP - 2</u>



ETOOS Academy Pvt. Ltd.: F-106, Road No. 2, Indraprastha Industrial Area, End of Evergreen Motors **4** (Mahindra Showroom), BSNL Office Lane, Jhalawar Road, Kota, Rajasthan (324005)

Q.9 The value of e(CiS(-i) - CiS(i)) is equal to

(A) 0 (B)
$$1 - e$$
 (C) $e - \frac{1}{e}$ (D) $e^2 - 1$

Q.10 All real numbers x which satisfy the inequality $|1+4i-2^{-x}| \le 5$ where $i = \sqrt{-1}$, $x \in \mathbb{R}$ are (A) $[-2, \infty)$ (B) $(-\infty, 2]$ (C) $[0, \infty)$ (D) [-2, 0]

Q.11 For
$$Z_1 = \sqrt[6]{\frac{1-i}{1+i\sqrt{3}}}$$
; $Z_2 = \sqrt[6]{\frac{1-i}{\sqrt{3}+i}}$; $Z_3 = \sqrt[6]{\frac{1+i}{\sqrt{3}-i}}$ which of the following holds good?
(A) $\sum |Z_1|^2 = \frac{3}{2}$
(B) $|Z_1|^4 + |Z_2|^4 = |Z_3|^{-8}$
(C) $\sum |Z_1|^3 + |Z_2|^3 = |Z_3|^{-6}$
(D) $|Z_1|^4 + |Z_2|^4 = |Z_3|^8$

Q.12 Number of real or purely imaginary solution of the equation, $z^3 + iz - 1 = 0$ is: (A) zero (B) one (C) two (D) three

Q.13A point 'z' moves on the curve |z-4-3i| = 2 in an argand plane. The maximum and minimum values
of |z| are :
(A) 2, 1(B) 6, 5(C) 4, 3(D) 7, 3

Q.14 If z is a complex number satisfying the equation |z+i|+|z-i|=8, on the complex plane then maximum value of |z| is (A) 2 (B) 4 (C) 6 (D) 8

<u>DPP - 3</u>									
Q.1	If $z_1 \& z_2$ are two non-zero complex numbers such that $ z_1 + z_2 = z_1 + z_2 $, then $\operatorname{Arg} z_1 - \operatorname{Arg} z_1$ is equal to:								
	$(A) - \pi$	(B) $- \pi/2$	(C) 0	(D) π/2					
Q.2	Let Z be a complex nu $(Z^3+3)^2 = -$ (A) $5^{1/2}$	mber satisfying the equa 16 then $ Z $ has the value (B) $5^{1/3}$	tion ue equal to (C) $5^{2/3}$	(D) 5					
Q.3	Let $i = \sqrt{-1}$. Define a sequence of complex number by $z_1 = 0$, $z_{n+1} = z_n^2 + i$ for $n \ge 1$. In the complex plane, how far from the origin is z_{111} ?								
	(A) 1	(B) $\sqrt{2}$	(C) $\sqrt{3}$	(D) $\sqrt{110}$					
Q.4	The points representi (A) a straight line (C) a parabola	ng the complex number	z for which $ z+5 ^2 - z-5 ^2 = 10$ lie on (B) a circle (D) the bisector of the line joining $(5,0)$ & $(-5,0)$						
Q.5	If $x = \frac{1+\sqrt{3}i}{2}$ then the value of the expression, $y = x^4 - x^2 + 6x - 4$, equals								
	$(A) - 1 + 2\sqrt{3}i$	(B) $2 - 2\sqrt{3}i$	(C) $2 + 2\sqrt{3}i$	(D) none					
Q.6	Consider two comple	x numbers α and β as							
	$\alpha = \left(\frac{a+bi}{a-bi}\right)^2 + \left(\frac{a-bi}{a+bi}\right)^2$, where $a, b \in \mathbb{R}$ and $\beta = \frac{z-1}{z+1}$, where $ z = 1$, then								
	(A) Both α and β are purely real(B) Both α and β are purely imaginary(C) α is purely real and β is purely imaginary(D) β is purely real and α is purely imaginary								
Q.7	Let Z is complex satisfying the equation $z^2 - (3+i)z + m + 2i = 0$, where $m \in \mathbb{R}$. Suppose the equation has a real root. The additive inverse of non real root, is								
		(B) 1 + i	(C) - 1 - i	(D)-2					
Q.8	The minimum value of (A) 2	of $ 1+z + 1-z $ whe (B) $3/2$	re z is a complex numb (C) 1	er is : (D) 0					
Q.9	If $i = \sqrt{-1}$, then $4 + 5\left(-\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)^{334} + 3\left(-\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)^{365}$ is equal to								
	(A) $1 - i\sqrt{3}$	(B) $-1 + i\sqrt{3}$	(C) $i\sqrt{3}$	(D) $-i\sqrt{3}$					
Q.10	Let $ z-5+12i \le 1$	and the least and greate	st values of $ z $ are <i>m</i> and	d <i>n</i> and if <i>l</i> be the least positive					
	value of $\frac{x^2 + 24x + 1}{x}$ (x > 0), then <i>l</i> is								
	(A) $\frac{m+n}{2}$		(C) m	(D) n					
Q.11	The system of equation (A) no solution (C) two distinct solution	ons $\begin{vmatrix} z + 1 - i \end{vmatrix} = 2$ where $Re \ z \ge 1$ where e	nere z is a complex num (B) exactly one soluti (D) infinite solution	iber has : on					

ETOOS Academy Pvt. Ltd. : F-106, Road No. 2, Indraprastha Industrial Area, End of Evergreen Motors **6** (Mahindra Showroom), BSNL Office Lane, Jhalawar Road, Kota, Rajasthan (324005)

Q.12 Let C_1 and C_2 are concentric circles of radius 1 and 8/3 respectively having centre at (3, 0) on the

argand plane. If the complex number z satisfies the inequality, $\log_{1/3} \left(\frac{|z-3|^2+2}{11|z-2|z-2|} \right)$

$$g_{1/3}\left(\frac{|z-3|^2+2}{|1||z-3|-2}\right) > 1$$
 then:

(A) z lies outside C_1 but inside C_2 (C) z lies outside both of C_1 and C_2

(B) z lies inside of both C_1 and C_2 (D) none of these

Q.13 Identify the incorrect statement.

(A) no non zero complex number z satisfies the equation, $\bar{z} = -4z$

- (B) $\overline{z} = z$ implies that z is purely real
- (C) $\overline{z} = -z$ implies that z is purely imaginary
- (D) if z_1, z_2 are the roots of the quadratic equation $az^2 + bz + c = 0$ such that $Im(z_1 z_2) \neq 0$ then a, b, c must be real numbers.
- Q.14 The equation of the radical axis of the two circles represented by the equations, |z-2|=3 and |z-2-3i|=4 on the complex plane is : (A) 3y+1=0 (B) 3y-1=0 (C) 2y-1=0 (D) none
- Q.15 If $z_1 = -3 + 5i$; $z_2 = -5 3i$ and z is a complex number lying on the line segment joining $z_1 \& z_2$ then arg z can be :

(A)
$$-\frac{3\pi}{4}$$
 (B) $-\frac{\pi}{4}$ (C) $\frac{\pi}{6}$ (D) $\frac{5\pi}{6}$

Q.16 Given z = f(x) + i g(x) where $f, g: (0, 1) \rightarrow (0, 1)$ are real valued functions then, which of the following holds good?

(A)
$$z = \frac{1}{1 - ix} + i\left(\frac{1}{1 + ix}\right)$$

(B) $z = \frac{1}{1 + ix} + i\left(\frac{1}{1 - ix}\right)$
(C) $z = \frac{1}{1 + ix} + i\left(\frac{1}{1 + ix}\right)$
(D) $z = \frac{1}{1 - ix} + i\left(\frac{1}{1 - ix}\right)$

Q.17 $z_1 = \frac{a}{1-i}$; $z_2 = \frac{b}{2+i}$; $z_3 = a - bi$ for $a, b \in \mathbb{R}$ if $z_1 - z_2 = 1$ then the centroid of the triangle formed by the points z_1 , z_2 , z_3 in the argand's plane is given by

(A)
$$\frac{1}{9}$$
 (1+7i) (B) $\frac{1}{3}$ (1+7i) (C) $\frac{1}{3}$ (1-3i) (D) $\frac{1}{9}$ (1-3i)

- Q.18 Consider the equation $10z^2 3iz k = 0$, where z is a complex variable and $i^2 = -1$. Which of the following statements is True?
 - (A) For all real positive numbers k, both roots are pure imaginary.
 - (B) For negative real numbers k, both roots are pure imaginary.
 - (C) For all pure imaginary numbers k, both roots are real and irrational.
 - (D) For all complex numbers k, neither root is real.
- Q.19 Number of complex numbers z such that |z| = 1 and $\left| \frac{z}{\overline{z}} + \frac{\overline{z}}{z} \right| = 1$ is (A) 4 (B) 6 (C) 8 (D) more than 8
- Q.20 Number of ordered pairs(s) (a, b) of real numbers such that $(a + ib)^{2008} = a ib$ holds good, is (A) 2008 (B) 2009 (C) 2010 (D) 1

<u>DPP - 4</u>

- Q.1 Consider $az^2 + bz + c = 0$, where $a, b, c \in R$ and $4ac > b^2$.
- (i) If z_1 and z_2 are the roots of the equation given above, then which of the following complex numbers is purely real?
 - (A) $z_1 \overline{z}_2$ (B) $\overline{z}_1 z_2$ (C) $z_1 z_2$ (D) $(z_1 z_2)i$

(ii) In the argand's plane, if A is the point representing z_1 , B is the point representing z_2 and $z = \frac{OA}{\overline{OB}}$ then

(A) z is purely real	(B) z is purely imaginary
(C) z = 1	(D) \triangle AOB is a scalene triangle.

Q.2 Let z be a complex number having the argument θ , $0 < \theta < \pi/2$ and satisfying the equality |z-3i| = 3.

Then $\cot \theta - \frac{6}{z}$ is equal to : (A) 1 (B) -1 (C) i (D) -i

Q.3 If the complex number z satisfies the condition $|z| \ge 3$, then the least value of $|z + \frac{1}{z}|$ is equal to :

(A) 5/3 (B) 8/3 (C) 11/3 (D) none of these

Q.4 Given
$$z_p = \cos\left(\frac{\pi}{2^P}\right) + i \sin\left(\frac{\pi}{2^P}\right)$$
, then $\lim_{n \to \infty} (z_1 z_2 z_3 \dots z_n) =$
(A) 1 (B) -1 (C) i (D) -i

- Q.5The maximum & minimum values of |z+1| when $|z+3| \le 3$ are :(A) (5,0)(B) (6,0)(C) (7,1)(D) (5,1)
- Q.6 If $z^3 + (3+2i)z + (-1+ia) = 0$ has one real root, then the value of 'a' lies in the interval ($a \in R$) (A) (-2, -1) (B) (-1, 0) (C) (0, 1) (D) (1, 2)

Q.7 If x = a + bi is a complex number such that $x^2 = 3 + 4i$ and $x^3 = 2 + 11i$ where $i = \sqrt{-1}$, then (a + b) equal to (A) 2 (B) 3 (C) 4 (D) 5

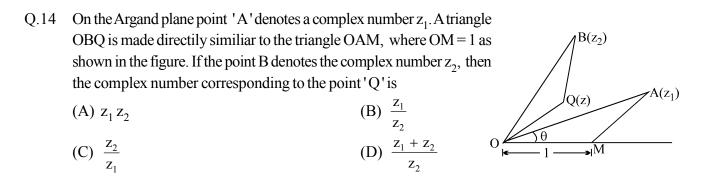
Q.8 If Arg
$$(z+a) = \frac{\pi}{6}$$
 and Arg $(z-a) = \frac{2\pi}{3}$; $a \in \mathbb{R}^+$, then
(A) z is independent of a (B) $|a| = |z+a|$
(C) $z = a \operatorname{Cis} \frac{\pi}{6}$ (D) $z = a \operatorname{Cis} \frac{\pi}{3}$

- Q.9 If z_1, z_2, z_3 are the vertices of the \triangle ABC on the complex plane which are also the roots of the equation, $z^3 - 3\alpha z^2 + 3\beta z + x = 0$, then the condition for the \triangle ABC to be equilateral triangle is (A) $\alpha^2 = \beta$ (B) $\alpha = \beta^2$ (C) $\alpha^2 = 3\beta$ (D) $\alpha = 3\beta^2$
- Q.10 The locus represented by the equation, |z-1| + |z+1| = 2 is:
 (A) an ellipse with focii (1,0); (-1,0)
 (B) one of the family of circles passing through the points of intersection of the circles |z-1| = 1 and |z+1| = 1
 (C) the radical axis of the circles |z-1| = 1 and |z+1| = 1
 - (D) the portion of the real axis between the points (1, 0); (-1, 0) including both.
- Q.11 The points $z_1 = 3 + \sqrt{3} i$ and $z_2 = 2\sqrt{3} + 6i$ are given on a complex plane. The complex number lying on the bisector of the angle formed by the vectors z_1 and z_2 is :

(A)
$$z = \frac{(3+2\sqrt{3})}{2} + \frac{\sqrt{3}+2}{2}i$$
 (B) $z = 5+5i$
(C) $z = -1-i$ (D) none

Q.12 Let $z_1 \& z_2$ be non zero complex numbers satisfying the equation, $z_1^2 - 2 z_1 z_2 + 2 z_2^2 = 0$. The geometrical nature of the triangle whose vertices are the origin and the points representing $z_1 \& z_2$ is : (A) an isosceles right angled triangle (B) a right angled triangle which is not isosceles

- (C) an equilateral triangle
- (D) an isosceles triangle which is not right angled.
- Q.13 Let P denotes a complex number z on the Argand's plane, and Q denotes a complex number $\sqrt{2 |z|^2} \operatorname{CiS}\left(\frac{\pi}{4} + \theta\right)$ where $\theta = \operatorname{amp} z$. If 'O' is the origin, then the $\Delta \operatorname{OPQ}$ is : (A) isosceles but not right angled (B) right angled but not isosceles (C) right isosceles (D) equilateral.



Q.15 $z_1 \& z_2$ are two distinct points in an argand plane. If $a |z_1| = b |z_2|$, (where $a, b \in R$) then the point $\frac{a z_1}{b z_2} + \frac{b z_2}{a z_1}$ is a point on the :

- b z_2 a z_1 (A) line segment [-2, 2] of the real axis (C) unit circle |z| = 1
- (B) line segment [-2, 2] of the imaginary axis (D) the line with arg $z = \tan^{-1} 2$.

Q.16 When the polynomial $5x^3 + Mx + N$ is divided by $x^2 + x + 1$ the remainder is 0. The value of (M+N) is equal to (C) - 5

(D) 15

Q.17 If
$$z = \frac{\pi}{4} (1+i)^4 \left(\frac{1-\sqrt{\pi}i}{\sqrt{\pi}+i} + \frac{\sqrt{\pi}-i}{1+\sqrt{\pi}i} \right)$$
 then $\left(\frac{|z|}{ampz} \right)$ equals
(A) 1 (B) π (C) 3π (D) 4

(B) 5

Q.18 $(\sqrt[3]{3} + (\sqrt[3]{5/6})_i)^3$ is an integer where $i = \sqrt{-1}$. The value of the integer is equal to (A) 24 (B) - 24(C) - 22(D) - 21

One ore more than one is/are correct:

(A) - 3

- Q.19 If $z \in C$, which of the following relation(s) represents a circle on an Argand diagram? (B) $(z-3+i)(\overline{z}-3-i) = 5$ (A) |z-1| + |z+1| = 3(D) |z-3|=2(C) 3|z-2+i|=7
- Q.20 Let z_1, z_2, z_3 be three complex number such that

$$|z_1| = |z_2| = |z_3| = 1$$
 and $\frac{z_1^2}{z_2 z_3} + \frac{z_2^2}{z_1 z_3} + \frac{z_3^2}{z_1 z_2} + 1 = 0$

then $|z_1 + z_2 + z_3|$ can take the value equal to (B) 2 (D) 4 (A) 1 (C) 3

<u>DPP - 5</u>

- Q.1 A root of unity is a complex number that is a solution to the equation, $z^n = 1$ for some positive integer *n*. Number of roots of unity that are also the roots of the equation $z^2 + az + b = 0$, for some integer *a* and *b* is
 - (A) 6 (B) 8 (C) 9 (D) 10

Q.2 z is a complex number such that $z + \frac{1}{z} = 2 \cos 3^\circ$, then the value of $z^{2000} + \frac{1}{z^{2000}} + 1$ is equal to

(A) 0 (B) -1 (C) $\sqrt{3}+1$ (D) $1-\sqrt{3}$

Q.3 The complex number ω satisfying the equation $\omega^3 = 8i$ and lying in the second quadrant on the complex plane is

(A)
$$-\sqrt{3} + i$$
 (B) $-\frac{\sqrt{3}}{2} + \frac{1}{2}i$ (C) $-2\sqrt{3} + i$ (D) $-\sqrt{3} + 2i$

Q.4 If $z^4 + 1 = \sqrt{3}i$ (A) z^3 is purely real (B) z represents the vertices of a square of side $2^{1/4}$ (D) z represents the vertices of a square of side $2^{3/4}$.

Q.5 The complex number z satisfies the condition $\left|z - \frac{25}{z}\right| = 24$. The maximum distance from the origin of co-ordinates to the point z is : (A) 25 (B) 30 (C) 32 (D) none of these

Q.6If the expression $x^{2m} + x^m + 1$ is divisible by $x^2 + x + 1$, then :(A) m is any odd integer(B) m is divisible by 3(C) m is not divisible by 3(D) none of these

Q.7 If $z_1 = 2 + 3i$, $z_2 = 3 - 2i$ and $z_3 = -1 - 2\sqrt{3}i$ then which of the following is true?

(A)
$$\arg\left(\frac{z_3}{z_2}\right) = \arg\left(\frac{z_3 - z_1}{z_2 - z_1}\right)$$
 (B) $\arg\left(\frac{z_3}{z_2}\right) = \arg\left(\frac{z_2}{z_1}\right)$
(C) $\arg\left(\frac{z_3}{z_2}\right) = 2\arg\left(\frac{z_3 - z_1}{z_2 - z_1}\right)$ (D) $\arg\left(\frac{z_3}{z_2}\right) = \frac{1}{2}\arg\left(\frac{z_3 - z_1}{z_2 - z_1}\right)$

Q.8 If *m* and *n* are the smallest positive integers satisfying the relation

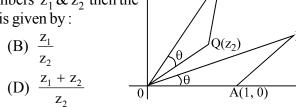
$$\left(2\operatorname{Cis}\frac{\pi}{6}\right)^{m} = \left(4\operatorname{Cis}\frac{\pi}{4}\right)^{n}, \text{ then } (\boldsymbol{m}+\boldsymbol{n}) \text{ has the value equal to}$$
(A) 120 (B) 96 (C) 72 (D) 60

ETOOS Academy Pvt. Ltd. : F-106, Road No. 2, Indraprastha Industrial Area, End of Evergreen Motors (Mahindra Showroom), BSNL Office Lane, Jhalawar Road, Kota, Rajasthan (324005)

- Q.9If z is a complex number satisfying the equation
 $Z^6 + Z^3 + 1 = 0$.If this equation has a root re^{iθ} with 90° < θ < 180° then the value of ' θ ' is
(A) 100°(B) 110°(C) 160°(D) 170°
- Q.10 Least positive argument of the 4th root of the complex number $2-i\sqrt{12}$ is (A) $\pi/6$ (B) $5\pi/12$ (C) $7\pi/12$ (D) $11\pi/12$
- Q.11 P(z) is the point moving in the Argand's plane satisfying $\arg(z-1) \arg(z+i) = \pi$ then, P is (A) a real number, hence lies on the real axis. (B) an imaginary number, hence lies on the imaginary axis. (C) a point on the hypotenuse of the right angled triangle OAB formed by $O \equiv (0, 0)$; $A \equiv (1, 0)$; $B \equiv (0, -1)$. (D) a point on an arc of the circle passing through $A \equiv (1, 0)$; $B \equiv (0, -1)$.
- Q.12 Number of ordered pair(s) (z, ω) of the complex numbers z and ω satisfying the system of equations, $z^3 + \overline{\omega}^7 = 0$ and $z^5 \cdot \omega^{11} = 1$ is : (A) 7 (B) 5 (C) 3 (D) 2
- Q.13 If $p = a + b\omega + c\omega^2$; $q = b + c\omega + a\omega^2$ and $r = c + a\omega + b\omega^2$ where $a, b, c \neq 0$ and ω is the complex cube root of unity, then : (A) p + q + r = a + b + c (B) $p^2 + q^2 + r^2 = a^2 + b^2 + c^2$ (C) $p^2 + q^2 + r^2 = 2(pq + qr + rp)$ (D) none of these
- Q.14 If A and B be two complex numbers satisfying $\frac{A}{B} + \frac{B}{A} = 1$. Then the two points represented by A and

B and the origin form the vertices of
(A) an equilateral triangle
(B) an isosceles triangle which is not equilateral
(C) an isosceles triangle which is not right angled
(D) a right angled triangle

- Q.15 On the complex plane triangles OAP & OQR are similiar and l(OA) = 1. If the points P and Q denotes the complex numbers $z_1 \& z_2$ then the complex number 'z' denoted by the point R is given by :
 - (A) $z_1 z_2$ (I) (C) $\frac{z_2}{z_1}$ (I)



Paragraph for question nos. 16 to 18

For the complex number $w = \frac{4z - 5i}{2z + 1}$

Q.16 The locus of z, when w is a real number other than 2, is (A) a point circle

(B) a straight line with slope
$$-\frac{5}{2}$$
 and y-intercept $\frac{5}{4}$

(C) a straight line with slope
$$\frac{5}{2}$$
 and y-intercept $\frac{5}{4}$

- (D) a straight line passing through the origin
- Q.17 The locus of z, when w is a purely imaginary number is
 - (A) a circle with centre $\left(\frac{1}{2}, -\frac{5}{4}\right)$ passing through origin.

(B) a circle with centre
$$\left(-\frac{1}{4},\frac{5}{8}\right)$$
 passing through origin

(C) a circle with centre
$$\left(\frac{1}{4}, -\frac{5}{8}\right)$$
 and radius $\frac{\sqrt{29}}{8}$
(D) any other circle

Q.18 The locus of z, when
$$|w| = 1$$
 is
(A) a circle with centre $\left(-\frac{5}{8}, \frac{1}{4}\right)$ and radius $\frac{1}{2}$ (B) a circle with centre $\left(\frac{1}{4}, -\frac{5}{8}\right)$ and radius $\frac{1}{2}$
(C) a circle with centre $\left(\frac{5}{8}, -\frac{1}{4}\right)$ and radius $\frac{1}{2}$ (D) any other circle

Paragraph of questions nos. 19 to 21

Consider the two complex numbers z and w such that $w = \frac{z-1}{z+2} = a + bi$, where $a, b \in \mathbb{R}$. Q.19 If $z = \text{CiS } \theta$ then, which of the following does hold good?

(A)
$$\cos \theta = \frac{1-5a}{1+4a}$$
 (B) $\sin \theta = \frac{9b}{1-4a}$
(C) $(1+5a)^2 + (3b)^2 = (1-4a)^2$ (D) All of these

Q.20 Which of the following is the value of $-\frac{b}{a}$, whenever it exists?

(A)
$$3 \tan\left(\frac{\theta}{2}\right)$$
 (B) $\frac{1}{3} \tan\left(\frac{\theta}{2}\right)$ (C) $-\frac{1}{3} \cot \theta$ (D) $3 \cot\left(\frac{\theta}{2}\right)$

Q.21 Which of the following equals |z|? (A) |w| (B) $(a + 1)^2 + b^2$ (C) $a^2 + (b + 2)^2$ (D) $(a + 1)^2 + (b + 1)^2$

ETOOS Academy Pvt. Ltd.: F-106, Road No. 2, Indraprastha Industrial Area, End of Evergreen Motors (Mahindra Showroom), BSNL Office Lane, Jhalawar Road, Kota, Rajasthan (324005)

<u> DPP - 5</u>

- Q.1 If the six solutions of $x^6 = -64$ are written in the form a + bi, where *a* and *b* are real, then the product of those solutions with a > 0, is (A) 4 (B) 8 (C) 16 (D) 64
- Q.2 Number of imaginary complex numbers satisfying the equation, $z^2 = \overline{z} 2^{1-|z|}$ is (A) 0 (B) 1 (C) 2 (D) 3

Q.3 If $z_1 \& z_2$ are two complex numbers & if $\arg \frac{z_1 + z_2}{z_1 - z_2} = \frac{\pi}{2}$ but $|z_1 + z_2| \neq |z_1 - z_2|$ then the figure formed by the points represented by 0, z_1 , $z_2 \& z_1 + z_2$ is : (A) a parallelogram but not a rectangle or a rhombous (B) a rectangle but not a square

(C) a rhombous but not a square (D) a square

Q.4 If
$$z_n = \cos \frac{\pi}{(2n+1)(2n+3)} + i \sin \frac{\pi}{(2n+1)(2n+3)}$$
, then $\lim_{n \to \infty} (z_1 \cdot z_2 \cdot z_3 \cdot \dots \cdot z_n) = \pi$

(A)
$$\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}$$
 (B) $\cos \frac{\pi}{6} + i \sin \frac{\pi}{6}$ (C) $\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6}$ (D) $\cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2}$

Q.5 The straight line $(1+2i)z+(2i-1)\overline{z} = 10i$ on the complex plane, has intercept on the imaginary axis equal to

(A) 5 (B)
$$\frac{5}{2}$$
 (C) $-\frac{5}{2}$ (D) -5

Q.6 If $\cos \theta + i \sin \theta$ is a root of the equation $x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-1} x + a_n = 0$ then the value of $\sum_{r=1}^{n} a_r \cos r \theta$ equals (where all coefficient are real) (A) 0 (B) 1 (C) -1 (D) none

Q.7 Let A(z₁) and B(z₂) represent two complex numbers on the complex plane. Suppose the complex slope of the line joining A and B is defined as $\frac{z_1 - z_2}{\overline{z_1} - \overline{z_2}}$. Then the lines l_1 with complex slope ω_1 and l_2 with complex slope ω_2 on the complex plane will be perpendicular to each other if (A) $\omega_1 + \omega_2 = 0$ (B) $\omega_1 - \omega_2 = 0$ (C) $\omega_1 \omega_2 = -1$ (D) $\omega_1 \omega_2 = 1$

Q.8 If the equation, $z^4 + a_1 z^3 + a_2 z^2 + a_3 z + a_4 = 0$, where a_1, a_2, a_3, a_4 are real coefficients different from zero has a pure imaginary root then the expression $\frac{a_3}{a_1 a_2} + \frac{a_1 a_4}{a_2 a_3}$ has the value equal to: (A) 0 (B) 1 (C) -2 (D) 2

Q.9 Suppose A is a complex number & $n \in N$, such that $A^n = (A+1)^n = 1$, then the least value of *n* is (A) 3 (B) 6 (C) 9 (D) 12

Q.10 Intercept made by the circle $z \overline{z} + \overline{\alpha} z + \alpha \overline{z} + r = 0$ on the real axis on complex plane, is

(A) $\sqrt{(\alpha + \overline{\alpha}) - r}$ (B) $\sqrt{(\alpha + \overline{\alpha})^2 - 2r}$ (C) $\sqrt{(\alpha + \overline{\alpha})^2 + r}$ (D) $\sqrt{(\alpha + \overline{\alpha})^2 - 4r}$ Q.11 If Z_r ; r = 1, 2, 3, ..., 50 are the roots of the equation $\sum_{r=0}^{50} (Z)^r = 0$, then the value of $\sum_{r=1}^{50} \frac{1}{Z_r - 1}$ is (A) -85 (B) -25 (C) 25 (D) 75

ETOOS Academy Pvt. Ltd. : F-106, Road No. 2, Indraprastha Industrial Area, End of Evergreen Motors 14 (Mahindra Showroom), BSNL Office Lane, Jhalawar Road, Kota, Rajasthan (324005)

- Q.12 All roots of the equation, $(1+z)^6 + z^6 = 0$:
 - (A) lie on a unit circle with centre at the origin
 - (B) lie on a unit circle with centre at (-1, 0)
 - (C) lie on the vertices of a regular polygon with centre at the origin
 - (D) are collinear

Q.13 If z & w are two complex numbers simultaneously satisfying the equations, z³ + w⁵ = 0 and z². w⁴ = 1, then:
(A) z and w both are purely real (B) z is purely real and w is purely imaginary
(C) w is purely real and z is purely imaginarly (D) z and w both are imaginary.

Q.14 A function f is defined by $f(z) = (4 + i)z^2 + \alpha z + \gamma$ for all complex numbers z, where α and γ are complex numbers. If f(1) and f(i) are both real then the smallest possible value of $|\alpha| + |\gamma|$ equals (A) 1 (B) $\sqrt{2}$ (C) 2 (D) $2\sqrt{2}$

Q.15 Given f(z) = the real part of a complex number z. For example, f(3-4i) = 3. If $a \in N$, $n \in N$ then the

value of
$$\sum_{n=1}^{6a} \log_2 \left| f\left(\left(1 + i\sqrt{3} \right)^n \right) \right|$$
 has the value equal to
(A) $18a^2 + 9a$ (B) $18a^2 + 7a$ (C) $18a^2 - 3a$ (D) $18a^2 - a$

Q.16 It is given that complex numbers z_1 and z_2 satisfy $|z_1| = 2$ and $|z_2| = 3$. If the included angle of their corresponding vectors is 60° then $\left| \frac{z_1 + z_2}{z_1 - z_2} \right|$ can be expressed as $\frac{\sqrt{N}}{7}$ where N is natural number then N equals (A) 126 (B) 119 (C) 133 (D) 19

Q.17 Let $f(x) = x^3 + ax^2 + bx + c$ be a cubic polynomial with real coefficients and all real roots. Also |f(i)| = 1 where $i = \sqrt{-1}$ Statement-1: All 3 roots of f(x) = 0 are zero

because

Statement-2: a + b + c = 0

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

Q.18 All complex numbers 'z' which satisfy the relation |z-|z+1|| = |z+|z-1|| on the complex plane lie on the (A) line y = 0

- (B) line x = 0
- (C) circle $x^2 + y^2 = 1$
- (D) line x = 0 or on a line segment joining (-1, 0) to (1, 0)

One ore more than one is/are correct:

- Q.19 Let A and B be two distinct points denoting the complex numbers α and β respectively. A complex number z lies between A and B where $z \neq \alpha, z \neq \beta$. Which of the following relation(s) hold good? (A) $|\alpha - z| + |z - \beta| = |\alpha - \beta|$
 - (B) \exists a positive real number 't' such that $z = (1 t)\alpha + t\beta$

(C)
$$\begin{vmatrix} z - \alpha & \overline{z} - \overline{\alpha} \\ \beta - \alpha & \overline{\beta} - \overline{\alpha} \end{vmatrix} = 0$$
 (D) $\begin{vmatrix} z & \overline{z} & 1 \\ \alpha & \overline{\alpha} & 1 \\ \beta & \overline{\beta} & 1 \end{vmatrix} = 0$

Q.20 Equation of a straight line on the complex plane passing through a point P denoting the complex number α and perpendicular to the vector \overrightarrow{OP} where 'O' in the origin can be written as

(A)
$$\operatorname{Im}\left(\frac{z-\alpha}{\alpha}\right) = 0$$
 (B) $\operatorname{Re}\left(\frac{z-\alpha}{\alpha}\right) = 0$ (C) $\operatorname{Re}(\overline{\alpha} z) = 0$ (D) $\overline{\alpha} z + \alpha \overline{z} - 2 |\alpha|^2 = 0$

Q.21 Which of the following represents a point on an argands' plane, equidistant from the roots of the equation $(z+1)^4 = 16z^4$?

(A) (0, 0) (B)
$$\left(-\frac{1}{3}, 0\right)$$
 (C) $\left(\frac{1}{3}, 0\right)$ (D) $\left(0, \frac{2}{\sqrt{5}}\right)$

Q.22 If z is a complex number which simultaneously satisfies the equations 3 | z - 12 | = 5 | z - 8i | and | z - 4 | = | z - 8 | then the Im(z) can be (A) 15 (B) 16 (C) 17 (D) 8

Q.23 Let z_1, z_2, z_3 are the coordinates of the vertices of the triangle $A_1A_2A_3$. Which of the following statements are equivalent.

 $(A)A_1A_2A_3$ is an equilateral triangle.

(B) $(z_1 + \omega z_2 + \omega^2 z_3)(z_1 + \omega^2 z_2 + \omega z_3) = 0$, where ω is the cube root of unity.

(C)
$$\frac{z_2 - z_1}{z_3 - z_2} = \frac{z_3 - z_2}{z_1 - z_3}$$
 (D) $\begin{vmatrix} 1 & 1 & 1 \\ z_1 & z_2 & z_3 \\ z_2 & z_3 & z_1 \end{vmatrix} = 0$

Q.24 If $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_{n-1}$ are the imaginary n^{th} roots of unity then the product $\prod_{r=1}^{n-1} (i - \alpha_r)$ (where $i = \sqrt{-1}$) can take the value equal to (A) 0 (B) 1 (C) i (D) (1 + i)

[MATCH THE COLUMN]

Match the equation in z, in Column-I with the corresponding values of arg(z) in Column-II. O.25 Column-I Column-II (equations in z) (principal value of arg(z))(A) $z^2 - z + 1 = 0$ $- 2\pi/3$ (P) $z^2 + z + 1 = 0$ **(B)** (Q) $-\pi/3$ (C) $2z^2 + 1 + i\sqrt{3} = 0$ (R) $\pi/3$ $2z^2 + 1 - i\sqrt{3} = 0$ (D) (S) $2\pi/3$

ETOOS Academy Pvt. Ltd.: F-106, Road No. 2, Indraprastha Industrial Area, End of Evergreen Motors (Mahindra Showroom), BSNL Office Lane, Jhalawar Road, Kota, Rajasthan (324005)

ANSWER KEY

DPP-1

Q.1 Q.8 Q.15	A C B, C, 1	Q.2 Q.9 D	B D	Q.3 Q.10	C A	Q.4 Q.11	B B	Q.5 Q.12	C D	Q.6 Q.13	C C	Q.7 Q.14	A B
						DP	PP-2						
Q.1 Q.8	C D	Q.2 Q.9	B D	Q.3 Q.10	D A	Q.4 Q.11	C B	Q.5 Q.12	C A	Q.6 Q.13	C D	Q.7 Q.14	A B
	DPP-3												
Q.1 Q.8 Q.15	C A D	Q.2 Q.9 Q.16	B C B	Q.3 Q.10 Q.17	B B A	Q.4 Q.11 Q.18	A B B	Q.5 Q.12 Q.19	A A C	Q.6 Q.13 Q.20	C D C	Q.7 Q.14	C B
DPP-4													
Q.1 (i) Q.8	D (ii)C D	Q.2 Q.9	C A	Q.3 Q.10	B D	Q.4 Q.11	B B	Q.5 Q.12	A A	Q.6 Q.13	B C	Q.7 Q.14	B C
Q.15	А	Q.16	С	Q.17	D	Q.18	В	Q.19	B, C, 1	D Q.20	A, B		
						DP	PP-5						
Q.1	В	Q.2	А	Q.3	А	Q.4	D	Q.5	А	Q.6	С	Q.7	С
Q.8 Q.15	C A	Q.9 Q.16	C C	Q.10 Q.17	B B	Q.11 Q.18	C D	Q.12 Q.19	D C	Q.13 Q.20	C D	Q.14 Q.21	A B
DPP-6													
Q.1	А	Q.2	С	Q.3	С	Q.4	В	Q.5	A	Q.6	С	Q.7	А
Q.8	В	Q.9	В	Q.10	D	Q.11	В	Q.12	D	Q.13	А	Q.14	В
Q.15	D	Q.16	С	Q.17	В	Q.18	D	Q.19	A, B,	C, D		Q.20	B, D
Q.21 Q.25	C (A) O	Q.22 . R: (B)		Q.23 C) O. S:				Q.24	A, B,	C, D			
Q.25 (A) Q, R; (B) P, S; (C) Q, S; (D) P, R													