

For More Study Material & Test Papers Visit : www.mathsiit.com

TRIGONOMETRIC PH - 2

MANOJ CHAUHAN SIR(IIT-DELHI) EX. SR. FACULTY (BANSAL CLASSES)

<u>KEY CONCEPTS (TRIGONOMETRIC EQUATIONS & INEQUATIONS)</u> THINGS TO REMEMBER :

- 1. If $\sin \theta = \sin \alpha \implies \theta = n \pi + (-1)^n \alpha$ where $\alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], n \in I$.
- 2. If $\cos \theta = \cos \alpha \implies \theta = 2 n \pi \pm \alpha$ where $\alpha \in [0, \pi]$, $n \in I$.
- 3. If $\tan \theta = \tan \alpha \implies \theta = n\pi + \alpha$ where $\alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, $n \in I$.
- 4. If $\sin^2 \theta = \sin^2 \alpha \Rightarrow \theta = n \pi \pm \alpha$.
- 5. $\cos^2 \theta = \cos^2 \alpha \implies \theta = n \pi \pm \alpha.$

6. $\tan^2 \theta = \tan^2 \alpha \implies \theta = n\pi \pm \alpha$. [Note: α is called the principal angle] 7. TYPES OF TRICONOMETRIC FOUNTIONS:

7. TYPES OF TRIGONOMETRIC EQUATIONS :

- (a) Solutions of equations by factorising. Consider the equation ; $(2 \sin x - \cos x) (1 + \cos x) = \sin^2 x$; $\cot x - \cos x = 1 - \cot x \cos x$
- (b) Solutions of equations reducible to quadratic equations. Consider the equation : $3\cos^2 x - 10\cos x + 3 = 0$ and $2\sin^2 x + \sqrt{3}\sin x + 1 = 0$
- (c) Solving equations by introducing an Auxilliary argument. Consider the equation: $\sin x + \cos x = \sqrt{2}$; $\sqrt{3} \cos x + \sin x = 2$; $\sec x - 1 = (\sqrt{2} - 1) \tan x$
- (d) Solving equations by Transforming a sum of Trigonometric functions into a product. Consider the example : $\cos 3x + \sin 2x - \sin 4x = 0$; $\sin^2 x + \sin^2 2x + \sin^2 3x + \sin^2 4x = 2$; $\sin x + \sin 5x = \sin 2x + \sin 4x$
- (e) Solving equations by transforming a product of trigonometric functions into a sum. Consider the equation :

$$\sin 5x \cdot \cos 3x = \sin 6x \cdot \cos 2x ; 8 \cos 2x \cos 4x = \frac{\sin 6x}{\sin x}; \sin 3\theta = 4\sin \theta \sin 2\theta \sin 4\theta$$

- (f) Solving equations by a change of variable :
 - (i) Equations of the form of $a \cdot \sin x + b \cdot \cos x + d = 0$, where $a \cdot b \& d$ are real numbers & $a \cdot b \neq 0$ can be solved by changing $\sin x \& \cos x$ into their corresponding tangent of half the angle. Consider the equation $3 \cos x + 4 \sin x = 5$.
 - (ii) Many equations can be solved by introducing a new variable. eg. the equation $\sin^4 2x + \cos^4 2x = \sin 2x \cdot \cos 2x$ changes to

 $2(y+1)\left(y-\frac{1}{2}\right) = 0$ by substituting, $\sin 2x \cdot \cos 2x = y$.

(g) Solving equations with the use of the Boundness of the functions $\sin x \& \cos x$ or by making two perfect squares. Consider the equations :

$$\sin x \left(\cos \frac{x}{4} - 2\sin x \right) + \left(1 + \sin \frac{x}{4} - 2\cos x \right) \cdot \cos x = 0 ;$$

$$\sin^2 x + 2\tan^2 x + \frac{4}{\sqrt{3}} \tan x - \sin x + \frac{11}{12} = 0$$

8. **TRIGONOMETRIC INEQUALITIES :** There is no general rule to solve a Trigonometric inequations and the same rules of algebra are valid except the domain and range of trigonometric functions should be kept in mind.

Consider the examples :
$$\log_2\left(\sin\frac{x}{2}\right) < -1$$
; $\sin x\left(\cos x + \frac{1}{2}\right) \le 0$; $\sqrt{5 - 2\sin 2x} \ge 6\sin x - 1$

EXERCISE-I

Q.1 Solve the equation for x, $5^{\frac{1}{2}} + 5^{\frac{1}{2} + \log_5(\sin x)} = 15^{\frac{1}{2} + \log_{15}\cos x}$

- Q.2 Find all the values of θ satisfying the equation; $\sin \theta + \sin 5 \theta = \sin 3 \theta$ such that $0 \le \theta \le \pi$.
- Q.3 Solve the equality: $2\sin 11x + \cos 3x + \sqrt{3}\sin 3x = 0$
- Q.4 Find all value of θ , between $0 \& \pi$, which satisfy the equation; $\cos \theta \cdot \cos 2\theta \cdot \cos 3\theta = 1/4$.
- Q.5 Find the general solution of the equation, $2 + \tan x \cdot \cot \frac{x}{2} + \cot x \cdot \tan \frac{x}{2} = 0$
- Q.6 Solve for x, the equation $\sqrt{13 18 \tan x} = 6 \tan x 3$, where $-2\pi < x < 2\pi$.
- Q.7 Determine the smallest positive value of x which satisfy the equation, $\sqrt{1 + \sin 2x} \sqrt{2} \cos 3x = 0$.

Q.8
$$2\sin\left(3x + \frac{\pi}{4}\right) = \sqrt{1 + 8\sin 2x \cdot \cos^2 2x}$$

Q.9 Find the number of principal solution of the equation, $\sin x - \sin 3x + \sin 5x = \cos x - \cos 3x + \cos 5x$.

Q.10 Find the general solution of the trigonometric equation $3^{\left(\frac{1}{2} + \log_3(\cos x + \sin x)\right)} - 2^{\log_2(\cos x - \sin x)} = \sqrt{2}$.

- Q.11 Find all values of θ between $0^\circ \& 180^\circ$ satisfying the equation; $\cos 6\theta + \cos 4\theta + \cos 2\theta + 1 = 0$.
- Q.12 Find the solution set of the equation, $\log_{\frac{-x^2-6x}{10}}(\sin 3x + \sin x) = \log_{\frac{-x^2-6x}{10}}(\sin 2x).$
- Q.13 Find the value of θ , which satisfy $3 2\cos\theta 4\sin\theta \cos 2\theta + \sin 2\theta = 0$.
- Q.14 Find the general solution of the equation, $\sin \pi x + \cos \pi x = 0$. Also find the sum of all solutions in [0, 100].
- Q.15 Find the least positive angle measured in degrees satisfying the equation $\sin^3 x + \sin^3 2x + \sin^3 3x = (\sin x + \sin 2x + \sin 3x)^3$.
- Q.16 Find the range of y such that the equation, $y + \cos x = \sin x$ has a real solution. For y = 1, find x such that $0 < x < 2\pi$.
- Q.17 Find the general values of θ for which the quadratic function $(\sin\theta) x^2 + (2\cos\theta)x + \frac{\cos\theta + \sin\theta}{2}$ is the square of a linear function.

- Q.18 Prove that the equations (a) $\sin x \cdot \sin 2x \cdot \sin 3x = 1$ (b) $\sin x \cdot \cos 4x \cdot \sin 5x = -1/2$ have no solution.
- Q.19 Let $f(x) = \sin^6 x + \cos^6 x + k(\sin^4 x + \cos^4 x)$ for some real number k. Determine
- (a) all real numbers k for which f(x) is constant for all values of x.
- (b) all real numbers k for which there exists a real number 'c' such that f(c) = 0.
- (c) If k = -0.7, determine all solutions to the equation f(x) = 0.
- Q.20 If α and β are the roots of the equation, $a\cos\theta + b\sin\theta = c$ then match the entries of **column-I** with the entries of **column-II**.

- Q.1 Solve the equation : $\sin 5x = 16 \sin^5 x$.
- Q.2 Find all the solutions of, $4\cos^2 x \sin x 2\sin^2 x = 3\sin x$.
- Q.3 Solve for $x, (-\pi \le x \le \pi)$ the equation; $2(\cos x + \cos 2x) + \sin 2x(1 + 2\cos x) = 2\sin x$.
- Q.4 Find the general solution of the following equation: $2(\sin x - \cos 2x) - \sin 2x(1 + 2\sin x) + 2\cos x = 0.$
- Q.5 Solve the inequality $\sin 2x > \sqrt{2} \sin^2 x + (2 \sqrt{2}) \cos^2 x$.
- Q.6 Find the values of x, between 0 & 2π , satisfying the equation; $\cos 3x + \cos 2x = \sin \frac{3x}{2} + \sin \frac{x}{2}$.
- Q.7 Find the set of values of 'a' for which the equation, $\sin^4 x + \cos^4 x + \sin 2x + a = 0$ possesses solutions. Also find the general solution for these values of 'a'.
- Q.8 Solve: $\tan^2 2x + \cot^2 2x + 2\tan 2x + 2\cot 2x = 6$.
- Q.9 Solve the equation: $1 + 2 \operatorname{cosecx} = -\frac{\operatorname{sec}^2 \frac{x}{2}}{2}$.
- Q.10 Solve: $\tan^2 x \cdot \tan^2 3x \cdot \tan 4x = \tan^2 x \tan^2 3x + \tan 4x$.

Q.11 Find the set of values of x satisfying the equality

$$\sin\left(x - \frac{\pi}{4}\right) - \cos\left(x + \frac{3\pi}{4}\right) = 1 \text{ and the inequality } \frac{2\cos 7x}{\cos 3 + \sin 3} > 2^{\cos 2x}$$

- Q.12 Solve: $\sin\left(\frac{\sqrt{x}}{2}\right) + \cos\left(\frac{\sqrt{x}}{2}\right) = \sqrt{2} \sin\sqrt{x}$.
- Q.13 Find the general solution of the equation, $\sin \frac{2x+1}{x} + \sin \frac{2x+1}{3x} 3\cos^2 \frac{2x+1}{3x} = 0.$

Q.14 Let S be the set of all those solutions of the equation, $(1+k)\cos x \cos (2x-\alpha) = (1+k\cos 2x)\cos(x-\alpha)$ which are independent of k & α . Let H be the set of all such solutions which are dependent on k & α . Find the condition on k & α such that H is a non-empty set, state S. If a subset of H is $(0, \pi)$ in which k=0, then find all the permissible values of α .

Q.15 Solve for x & y,
$$x \cos^3 y + 3x \cos y \sin^2 y = 14$$

 $x \sin^3 y + 3x \cos^2 y \sin y = 13$

- Q.16 Find the value of α for which the three elements set $S = \{\sin \alpha, \sin 2\alpha, \sin 3\alpha\}$ is equal to the three element set $T = \{\cos \alpha, \cos 2\alpha, \cos 3\alpha\}$.
- Q.17 Find all values of 'a' for which every root of the equation, $a \cos 2x + |a| \cos 4x + \cos 6x = 1$ is also a root of the equation, $\sin x \cos 2x = \sin 2x \cos 3x - \frac{1}{2} \sin 5x$, and conversely, every root of the second equation is also a root of the first equation.

Q.18 Solve the equations for 'x' given in **column-I** and match with the entries of **column-II**. **Column-I** Column-II

(A) $\cos 3x \cdot \cos^3 x + \sin 3x \cdot \sin^3 x = 0$ (B) $\sin 3\alpha = 4 \sin \alpha \sin(x + \alpha) \sin(x - \alpha)$ where α is a constant $\neq n\pi$. (C) $|2 \tan x - 1| + |2 \cot x - 1| = 2$. (D) $\sin^{10}x + \cos^{10}x = \frac{29}{16} \cos^4 2x$. (P) $n\pi \pm \frac{\pi}{3}$ (Q) $n\pi + \frac{\pi}{4}$, $n \in I$ (R) $\frac{n\pi}{4} + \frac{\pi}{8}$, $n \in I$ (S) $\frac{n\pi}{2} \pm \frac{\pi}{4}$

EXERCISE-III

ANSWER KEY

TRIGONOMETRIC EQUATIONS AND INEQUATIONS

EXERCISE-I

Q.1	$x = 2n\pi + \frac{\pi}{6}, n \in I$ Q.2 $0, \frac{\pi}{6}, \frac{\pi}{3}, \frac{2\pi}{3},$	$\frac{5\pi}{6}$ &	π
Q.3	$x = \frac{n\pi}{7} - \frac{\pi}{84}$ or $x = \frac{n\pi}{4} + \frac{7\pi}{48}$, $n \in I$	Q.4	$\frac{\pi}{8}, \frac{\pi}{3}, \frac{3\pi}{8}, \frac{5\pi}{8}, \frac{2\pi}{3}, \frac{7\pi}{8}$
Q.5	$x = 2n\pi \pm \frac{2\pi}{3}, n \in I$	Q.6 α	-2π ; $\alpha - \pi$, α , $\alpha + \pi$, where $\tan \alpha = \frac{2}{3}$
Q.7	$x = \pi/16$	Q.8	$x = 2n\pi + \frac{\pi}{12}$ or $2n\pi + \frac{17\pi}{12}$; $n \in I$
Q.9	10 solutions	Q.10	$\mathbf{x} = 2\mathbf{n}\pi + \frac{\pi}{12}$
Q.11	30°, 45°, 90°, 135°, 150°	Q.12	$x = -\frac{5\pi}{3}$
Q.13	$\theta = 2 \operatorname{n} \pi$ or $2 \operatorname{n} \pi + \frac{\pi}{2}$; $n \in I$	Q.14	$x = n - \frac{1}{4}, n \in I; sum = 5025$
Q.15	72° Q.16 $-\sqrt{2} \le y \le \sqrt{2}$; $\frac{\pi}{2}$, π	Q.17	$2n\pi + \frac{\pi}{4}$ or $(2n+1)\pi - \tan^{-1}2$, $n \in I$
Q.19	(a) $-\frac{3}{2}$; (b) $k \in \left[-1, -\frac{1}{2}\right]$; (c) $x = \frac{n\pi}{2} \pm \frac{\pi}{6}$ Q.20 (A) R; (B) S; (C) P; (D) Q		
<u>EXERCISE–II</u>			
Q.1	$x = n \pi$ or $x = n \pi \pm \frac{\pi}{6}$		
Q.2	$n\pi$; $n\pi + (-1)^n \frac{\pi}{10}$ or $n\pi + (-1)^n \left(-\frac{3\pi}{10}\right)$		$\mathbf{Q.3} \qquad \frac{\pm \pi}{3}, \frac{-\pi}{2}, \pm \pi$
Q.4	$x = 2 n \pi$ or $x = n \pi + (-1)^n \left(-\frac{\pi}{2}\right)$ or $x = n \pi + (-1)^n \frac{\pi}{6}$		
Q.5	$n\pi + \frac{\pi}{8} < x < n\pi + \frac{\pi}{4}$ Q.6 $\frac{\pi}{7}, \frac{5\pi}{7}$	$\frac{1}{7}$, π , $\frac{9\pi}{7}$	$,\frac{13\pi}{7}$
Q.7	$\frac{1}{2} \left[n \pi + (-1)^n \sin^{-1} \left(1 - \sqrt{2a+3} \right) \right] \text{ where } n \in I \text{ and } a \in \left[-\frac{3}{2}, \frac{1}{2} \right]$		
Q.8	$x = \frac{n\pi}{4} + (-1)^n \frac{\pi}{8}$ or $\frac{n\pi}{4} + (-1)^{n+1} \frac{\pi}{24}$	Q.9	$\mathbf{x} = 2 \mathbf{n} \pi - \frac{\pi}{2}$
Q.10	$\frac{(2n+1)\pi}{4}$, $k\pi$, where $n, k \in I$		
Q.11	$x = 2n\pi + \frac{3\pi}{4}$, $n \in I$ Q.12 $x = (4)$	$n\pi + \frac{\pi}{2}$	$\Big)^2$ or $\mathbf{x} = \left(\frac{4m\pi}{3} + \frac{\pi}{2}\right)^2$ where m, $\mathbf{n} \in \mathbf{W}$.