MC SIR

CLAS	: 23	XII	(ABCD)	
	· •	4 M.L	(IDCD)	

SPECIAL DPP ON VECTOR

DPP. NO.- 1

- Q.1 A(1,-1,-3), B(2,1,-2) & C(-5,2,-6) are the position vectors of the vertices of a triangle ABC. The length of the bisector of its internal angle at A is:
 - (A) $\sqrt{10}/4$
- (B*) $3\sqrt{10}/4$
- $(C)\sqrt{10}$
- (D) none
- Let $\vec{r} = \vec{a} + \lambda \vec{l}$ and $\vec{r} = \vec{b} + \mu \vec{m}$ be two lines in space where $\vec{a} = 5\hat{i} + \hat{j} + 2\hat{k}$, $\vec{b} = -\hat{i} + 7\hat{j} + 8\hat{k}$, Q.2 $\vec{l} = -4\hat{i} + \hat{j} - \hat{k}$ and $\vec{m} = 2\hat{i} - 5\hat{j} - 7\hat{k}$ then the p.v. of a point which lies on both of these lines, is

- (A*) $\hat{i}+2\hat{j}+\hat{k}$ (B) $2\hat{i}+\hat{j}+\hat{k}$ (C) $\hat{i}+\hat{j}+2\hat{k}$ (D) non existent as the lines are skew

[Hint: $\lambda = \mu = 1$ (point of intersection of two lines)]

- P, Q have position vectors $\vec{a} \& \vec{b}$ relative to the origin 'O' & X, Y divide \overrightarrow{PQ} internally and externally Q.3 respectively in the ratio 2:1. Vector \overrightarrow{XY} =

- (A) $\frac{3}{2} (\vec{b} \vec{a})$ (B) $\frac{4}{3} (\vec{a} \vec{b})$ (C) $\frac{5}{6} (\vec{b} \vec{a})$ (D*) $\frac{4}{3} (\vec{b} \vec{a})$
- Let \vec{p} is the p.v. of the orthocentre & \vec{g} is the p.v. of the centroid of the triangle ABC where circumcentre Q.4 is the origin. If $\vec{p} = K \vec{g}$, then K =
 - (A*)3
- (B)2

- (C) 1/3
- (D) 2/3
- A vector \vec{a} has components 2p & 1 with respect to a rectangular cartesian system. The system is rotated Q.5 through a certain angle about the origin in the counterclockwise sense. If with respect to the new system, \vec{a} has components p+1 & 1 then,
 - (A) p = 0

(B*) p = 1 or p = -1/3

(C) p = -1 or p = 1/3

(D) p = 1 or p = -1

[Hint: Equate the magnitude i.e. $4p^2 + 1 = (p+1)^2 + 1 = p^2 + 2p + 2$ $3 p^2 - 2p - 1 = 0 \implies p = 1 \text{ or } -1/3$

- The number of vectors of unit length perpendicular to vectors $\vec{a} = (1, 1, 0) \& \vec{b} (0, 1, 1)$ is: 0.6
 - (A) 1

- $(B^*)2$
- (C)3
- $(D) \infty$

Two collinear vector always denotes a plane] Hint:

- Q.7 Four points A(+1,-1,1); B(1,3,1); C(4,3,1) and D(4,-1,1) taken in order are the vertices of
 - (A) a parallelogram which is neither a rectangle nor a rhombus
 - (B) rhombus
 - (C) an isosceles trapezium
 - (D*) a cyclic quadrilateral.

It is a rectangle 1 Hint:

- Let α , β & γ be distinct real numbers. The points whose position vector's are $\alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$; Q.8 $\beta \hat{i} + \gamma \hat{j} + \alpha \hat{k}$ and $\gamma \hat{i} + \alpha \hat{j} + \beta \hat{k}$
 - (A) are collinear

(B*) form an equilateral triangle

(C) form a scalene triangle

(D) form a right angled triangle

If the vectors $\vec{a} = 3\hat{i} + \hat{j} - 2\hat{k}$, $\vec{b} = -\hat{i} + 3\hat{j} + 4\hat{k}$ & $\vec{c} = 4\hat{i} - 2\hat{j} - 6\hat{k}$ constitute the sides of a \triangle ABC, Q.9 then the length of the median bisecting the vector \vec{c} is

(A) $\sqrt{2}$

(B) $\sqrt{14}$

(C) $\sqrt{74}$

(D*) $\sqrt{6}$

[Hint: $\vec{m} = \vec{b} + \frac{\vec{c}}{2} = \hat{i} + 2\hat{j} + \hat{k}$, hence $|\vec{m}| = 16$]

Q.10 P be a point interior to the acute triangle ABC. If $\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC}$ is a null vector then w.r.t. the triangle ABC, the point P is, its

(A*) centroid

(B) orthocentre

(C) incentre

(D) circumcentre

 $\vec{a} - \vec{p} + \vec{b} - \vec{p} + \vec{c} - \vec{p} = 0$ \Rightarrow $\vec{p} = \frac{\vec{a} + \vec{b} + \vec{c}}{3}$ \Rightarrow (A)] [12th, 24-08-2008] Hint:

A vector of magnitude 10 along the normal to the curve $3x^2 + 8xy + 2y^2 - 3 = 0$ at its point P(1, 0) can Q.11

 $(A^*) 6\hat{i} + 8\hat{i}$

(B) $-8\hat{i} + 3\hat{i}$

(C) $6\hat{i} - 8\hat{j}$ (D) $8\hat{i} + 6\hat{j}$

differentiate the curve [Sol.

[13th, 14-09-2008]

 $6x + 8(xy_1 + y) + 4yy_1 = 0$

 m_T at (1, 0) is $6 + 8(y_1(0)) = 0$

 $y_1(0) = -\frac{3}{4}$

again normal vector of magnitude $10 = \pm (6\hat{i} + 8\hat{j})$ Ans.

Consider the points A, B and C with position vectors $(-2\hat{i}+3\hat{j}+5\hat{k})$, $(\hat{i}+2\hat{j}+3\hat{k})$ and $7\hat{i}-\hat{k}$ Q.12respectively.

Statement-1:

The vector sum, $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}$

because

Statement-2: A, B and C form the vertices of a triangle.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C*) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.
- Note that although $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}$ but A, B and C do not form the vertices of a triangle, infact Hint:

they are collinear as, $\overrightarrow{AB} = (3, -1, -2)$; $\overrightarrow{BC} = (6, -2, -4)$ and $\overrightarrow{CA} = (-9, 3, 6)$

 $\left|\overrightarrow{AB}\right| = \sqrt{14}$; $\left|\overrightarrow{BC}\right| = 2\sqrt{14}$; $\left|\overrightarrow{CA}\right| = 3\sqrt{14}$] [13th, 16-12-2007]

SPECIAL DPP ON VECTOR

DPP. NO.- 2

If the three points with position vectors (1, a, b); (a, 2, b) and (a, b, 3) are collinear in space, then the value of a + b is

(A)3

$$(B^*)4$$

$$(C)$$
 5

(D) none

A(1, a, b); B(a, 2, b); C(a, b, 3)[Hint:

$$\overrightarrow{AB} = (a-1)\hat{i} + (2-a)\hat{j} + 0\hat{k}; \quad \overrightarrow{BC} = \hat{i} + (b-2)\hat{j} + (3-b)\hat{k}$$

$$\overrightarrow{AB} = \lambda \overrightarrow{BC} = \lambda (0 \hat{i} + (b-2)\hat{j} + (3-b)\hat{k})$$
 where $\lambda \neq 0$

hence
$$a-1=0$$
 \Rightarrow $a=1$ (1)

$$2 - a = \lambda(b - 2) \qquad \dots (2)$$

and
$$3-b=0$$
 \Rightarrow $b=3$ (3)

with
$$a = 1$$
 and $b = 3$, $\lambda = 1$

hence
$$a + b = 4$$
 \Rightarrow (B)

[12th (25-9-2005)]

Consider the following 3 lines in space Q.2

$$L_1: \vec{r} = 3\hat{i} - \hat{i} + 2\hat{k} + \lambda(2\hat{i} + 4\hat{i} - \hat{k})$$

$$L_2$$
: $\vec{r} = \hat{i} + \hat{j} - 3\hat{k} + \mu(4\hat{i} + 2\hat{j} + 4\hat{k})$

$$L_3: \vec{r} = 3\hat{i} + 2\hat{j} - 2\hat{k} + t(2\hat{i} + \hat{j} + 2\hat{k})$$

Then which one of the following pair(s) are in the same plane.

(A) only L_1L_2

(B) only
$$L_2L_3$$

(C) only
$$L_3L_1$$

$$(D^*) L_1 L_2$$
 and $L_2 L_3$

[Hint: L_1L_2 intersecting; L_2L_3 parallel;

$$L_2L_3$$
 parallel

$$L_3L_1$$
 skew]

The acute angle between the medians drawn from the acute angles of an isosceles right angled triangle is: Q.3

(A)
$$\cos^{-1}(2/3)$$
 (B) $\cos^{-1}(3/4)$

(B)
$$\cos^{-1}(3/4)$$

$$(C^*) \cos^{-1}(4/5)$$

If $\vec{e}_1 \& \vec{e}_2$ are two unit vectors and θ is the angle between them, then $\cos(\theta/2)$ is Q.4

(A*)
$$\frac{1}{2} |\vec{e}_1 + \vec{e}_2|$$
 (B) $\frac{1}{2} |\vec{e}_1 - \vec{e}_2|$ (C) $\frac{\vec{e}_1 \cdot \vec{e}_2}{2}$ (D) $\frac{|\vec{e}_1 \times \vec{e}_2|}{2|\vec{e}_1||\vec{e}_2|}$

(B)
$$\frac{1}{2} |\vec{e}_1 - \vec{e}_2|$$

(C)
$$\frac{\vec{e}_1 \cdot \vec{e}_2}{2}$$

(D)
$$\frac{|\vec{\mathbf{e}}_1 \times \vec{\mathbf{e}}_2|}{2|\vec{\mathbf{e}}_1||\vec{\mathbf{e}}_2|}$$

[Sol.
$$(\hat{e}_1 + \hat{e}_2)^2 = 2 + 2\cos\theta = 4\cos^2\frac{\theta}{2}$$
 \Rightarrow $\cos\frac{\theta}{2} = \frac{1}{2}|\vec{e}_1 + \vec{e}_2|$ Ans.]

The vectors $3\hat{i} - 2\hat{j} + \hat{k}$, $\hat{i} - 3\hat{j} + 5\hat{k}$ & $2\hat{i} + \hat{j} - 4\hat{k}$ form the sides of a triangle. Then triangle is Q.5

(A) an acute angled triangle

(B) an obtuse angled triangle

(C) an equilateral triangle

(D*) a right angled triangle

Q.6 If the vectors $3\overline{p} + \overline{q}$; $5\overline{p} - 3\overline{q}$ and $2\overline{p} + \overline{q}$; $4\overline{p} - 2\overline{q}$ are pairs of mutually perpendicular vectors then $\sin(\overline{p}^{\overline{q}})$ is

$$(A)\sqrt{55}/4$$

$$(B^*) \sqrt{55}/8$$

(B*)
$$\sqrt{55}/8$$
 (C) $3/16$ (D) $\sqrt{247}/16$

[Sol.

$$(3\vec{p} + \vec{q}) \cdot (5\vec{p} - 3\vec{q}) = 0$$
 or $15\vec{p}^2 - 3\vec{q}^2 = 4\vec{p} \cdot \vec{q}$ (1)

$$(2\vec{p} + \vec{q}) \cdot (4\vec{p} - 2\vec{q}) = 0$$
 or $8\vec{p}^2 = 2\vec{q}^2 \implies \vec{q}^2 = 4\vec{p}^2$ (2)

$$8\vec{p}^2 = 2\vec{q}^2 \implies$$

$$\vec{q}^2 = 4\vec{p}^2$$

now $\cos\theta = \frac{\vec{p} \cdot \vec{q}}{|\vec{p}||\vec{q}|}$; substituting $\vec{q}^2 = 4\vec{p}^2$ in (1) $3\vec{p}^2 = 4\vec{p} \cdot \vec{q}$

$$\cos \theta = \frac{3}{4} \cdot \frac{\vec{p}^2}{|\vec{p}| \, 2|\vec{p}|} = \frac{3}{8} \qquad \Rightarrow \qquad \sin \theta = \frac{\sqrt{55}}{8} \quad \Rightarrow \qquad (B)$$

Consider the points A, B and C with position vectors $(-2\hat{i}+3\hat{j}+5\hat{k})$, $(\hat{i}+2\hat{j}+3\hat{k})$ and $7\hat{i}-\hat{k}$ Q.7 respectively.

The vector sum, $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}$ Statement-1:

because

A, B and C form the vertices of a triangle. Statement-2:

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C*) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

Note that although $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}$ but A, B and C do not form the vertices of a triangle, infact Hint: they are collinear as, $\overrightarrow{AB} = (3, -1, -2)$; $\overrightarrow{BC} = (6, -2, -4)$ and $\overrightarrow{CA} = (-9, 3, 6)$

$$\left| \overrightarrow{AB} \right| = \sqrt{14}; \quad \left| \overrightarrow{BC} \right| = 2\sqrt{14}; \quad \left| \overrightarrow{CA} \right| = 3\sqrt{14}$$
 [13th, 16-12-2007]

The set of values of c for which the angle between the vectors $cx\hat{i} - 6\hat{j} + 3\hat{k} & x\hat{i} - 2\hat{i} + 2cx\hat{k}$ is Q.8 acute for every $x \in R$ is

(A)(0,4/3)

- (B) [0, 4/3]
- (C)(11/9,4/3)
- $(D^*)[0, 4/3)$

(A) (0, 4/3) (B) [0, 4/3] $cx^2 + 12 + 6cx > 0$; c = 0 is obviously] Hint:

Let $\vec{u} = \hat{i} + \hat{j}$, $\vec{v} = \hat{i} - \hat{j}$ and $\vec{w} = \hat{i} + 2\hat{j} + 3\hat{k}$. If \hat{n} is a unit vector such that $\vec{u} \cdot \hat{n} = 0$ and $\vec{v} \cdot \hat{n} = 0$, then Q.9 $|\vec{\mathbf{w}} \cdot \hat{\mathbf{n}}|$ is equal to

(A) 1

(B) 2

- (C*)3
- (D)0

[Hint: $\hat{n} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$, where $a_1^2 + a_2^2 + a_3^2 = 1$

[12th (16-1-2005)]

$$\vec{\mathbf{u}} \cdot \hat{\mathbf{n}} = 0 \implies \mathbf{a}_1 + \mathbf{a}_2 = 0$$

also
$$\vec{v} \cdot \hat{n} = 0 \implies a_1 - a_2 = 0$$

hence,
$$a_1 = a_2 = 0$$

 $a_3 = 1 \text{ or } -1$

 $\hat{\mathbf{n}} = \hat{\mathbf{k}} \text{ or } -\hat{\mathbf{k}}$

$$|\vec{\mathbf{w}} \cdot \hat{\mathbf{n}}| = 3$$

Q.10 If the vector $6\hat{i} - 3\hat{j} - 6\hat{k}$ is decomposed into vectors parallel and perpendicular to the vector $\hat{i} + \hat{j} + \hat{k}$ then the vectors are:

- $(A^*) (\hat{i} + \hat{j} + \hat{k}) & 7\hat{i} 2\hat{j} 5\hat{k}$
- (B) $-2(\hat{i} + \hat{j} + \hat{k}) \& 8\hat{i} \hat{i} 4\hat{k}$
- (C) + $2(\hat{i} + \hat{j} + \hat{k})$ & $4\hat{i} 5\hat{j} 8\hat{k}$
- (D) none

[Hint: A vector \vec{a} which is decomposed into parallel and perpendicular to the vector \vec{b} is $\left(\frac{\vec{a} \cdot \vec{b}}{\vec{b}^2}\right) \vec{b}$ &

$$\vec{a} - \left(\frac{\vec{a} \cdot \vec{b}}{\vec{b}^2}\right) \vec{b} \text{ or } \frac{\vec{b} \times (\vec{a} \times \vec{b})}{\vec{b}^2}$$

SPECIAL DPP ON VECTOR

DPP. NO.- 3

- If $\vec{a} + \vec{b} + \vec{c} = 0$, $|\vec{a}| = 3$, $|\vec{b}| = 5$, $|\vec{c}| = 7$, then the angle between $\vec{a} \& \vec{b}$ is: 0.1
 - (A) $\pi/6$
- (B) $2\pi/3$
- (C) $5\pi/3$
- (D*) $\pi/3$

[Hint: $\vec{a} + \vec{b} = -\vec{c}$ Square $|\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b} = |\vec{c}|^2$

$$\therefore \qquad \cos \theta = \frac{\left|\vec{c}\right|^2 - \left|\vec{a}\right|^2 - \left|\vec{b}\right|^2}{2\left|\vec{a}\right|\left|\vec{b}\right|}$$

- The lengths of the diagonals of a parallelogram constructed on the vectors $\vec{p} = 2\vec{a} + \vec{b} & \vec{q} = \vec{a} 2\vec{b}$, Q.2 where \vec{a} & \vec{b} are unit vectors forming an angle of 60° are:
 - (A) 3 & 4
- (B*) $\sqrt{7} \& \sqrt{13}$
- (C) $\sqrt{5} \& \sqrt{11}$
- (D) none

[Hint: $|\vec{d}_1| = |\vec{p} + \vec{q}|$; $|\vec{d}_2| = |\vec{p} - \vec{q}|$]

- Let \vec{a} , \vec{b} , \vec{c} be vectors of length 3, 4, 5 respectively. Let \vec{a} be perpendicular to $\vec{b} + \vec{c}$, \vec{b} to $\vec{c} + \vec{a}$ & \vec{c} Q.3 to $\vec{a} + \vec{b}$. Then $|\vec{a} + \vec{b} + \vec{c}|$ is:
 - (A) $2\sqrt{5}$
- (B) $2\sqrt{2}$
- (C) $10\sqrt{5}$
- (D*) $5\sqrt{2}$

 $\begin{bmatrix} \vec{a} \cdot (\vec{b} + \vec{c}) = 0 \\ \vec{b} \cdot (\vec{c} + \vec{a}) = 0 \\ \vec{c} \cdot (\vec{a} + \vec{b}) = 0 \end{bmatrix} \implies \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = 0$

 $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$ now square $|\vec{a} + \vec{b} + \vec{c}|$ to get the result

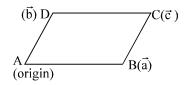
- Given a parallelogram ABCD. If $|\overrightarrow{AB}| = a$, $|\overrightarrow{AD}| = b \& |\overrightarrow{AC}| = c$, then $\overrightarrow{DB} \cdot \overrightarrow{AB}$ has the value Q.4

 - (A*) $\frac{3a^2 + b^2 c^2}{2}$ (B) $\frac{a^2 + 3b^2 c^2}{2}$ (C) $\frac{a^2 b^2 + 3c^2}{2}$
- (D) none

[Hint: To find $(\vec{a} - \vec{b}) \cdot \vec{a}$ i.e. $|\vec{a}|^2 - \vec{a} \cdot \vec{b}$ —(1)

now $\vec{a} + \vec{b} = \vec{c} \implies |\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b} = |\vec{c}|^2$ —(2)

substitute the value of \vec{a} . \vec{b} from (2) in (1)



- The set of values of x for which the angle between the vectors $\vec{a} = x \,\hat{i} 3 \,\hat{j} \hat{k}$ and $\vec{b} = 2x \,\hat{i} + x \,\hat{j} \hat{k}$ Q.5 acute and the angle between the vector \vec{b} and the axis of ordinates is obtuse, is
 - (A) 1 < x < 2
- (B) x > 2
- (C) x < 1
- $(D^*) x < 0$

Q.6	If a vector \vec{a} of magnitude 50 is collinear with vector $\vec{b} = 6\hat{i} - 8\hat{j} - \frac{15}{2}$	\hat{k} and makes an acute angle with
	positive z-axis then:	

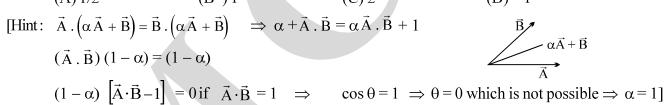
(A)
$$\vec{a} = 4\vec{1}$$

(A)
$$\vec{a} = 4\vec{b}$$
 (B*) $\vec{a} = -4\vec{b}$ (C) $\vec{b} = 4\vec{a}$

(C)
$$\vec{b} = 4\vec{a}$$

[Hint: Let
$$\vec{a} = \lambda \left(6\hat{i} - 8\hat{j} - \frac{15}{2}\hat{k} \right)$$
 $|\vec{a}| = 50 \implies \lambda = \pm 4$ $\vec{a} \cdot \hat{k} > 0 \implies \lambda = -4$]

- A, B, C & D are four points in a plane with pv's \vec{a} , \vec{b} , \vec{c} & \vec{d} respectively such that Q.7 $(\vec{a} - \vec{d}) \cdot (\vec{b} - \vec{c}) = (\vec{b} - \vec{d}) \cdot (\vec{c} - \vec{a}) = 0$. Then for the triangle ABC, D is its (B) circumcentre (C*) orthocentre (A) incentre (D) centroid
- Let \vec{A} & \vec{B} be two non parallel unit vectors in a plane. If $(\alpha \vec{A} + \vec{B})$ bisects the internal angle between Q.8 \vec{A} & \vec{B} , then α is equal to



- Image of the point P with position vector $7\hat{i} \hat{j} + 2\hat{k}$ in the line whose vector equation is, 0.9 $\vec{r} = 9\hat{i} + 5\hat{j} + 5\hat{k} + \lambda(\hat{i} + 3\hat{j} + 5\hat{k})$ has the position vector $(B^*)(9,5,-2)$ (C)(9,-5,-2)(A)(-9,5,2)(D) none
- Q.10 Let \hat{a} , \hat{b} , \hat{c} are three unit vectors such that $\hat{a} + \hat{b} + \hat{c}$ is also a unit vector. If pairwise angles between \hat{a} , \hat{b} , \hat{c} are θ_1 , θ_2 and θ_3 respectively then $\cos \theta_1 + \cos \theta_2 + \cos \theta_3$ equals (A) 3 (B) -3 (C) 1 (D* $(D^*) - 1$

[Hint: consider $(\hat{a} + \hat{b} + \hat{c})^2 = 3 + 2(\cos\theta_1 + \cos\theta_2 + \cos\theta_3)$]

- A tangent is drawn to the curve $y = \frac{8}{x^2}$ at a point $A(x_1, y_1)$, where $x_1 = 2$. The tangent cuts the x-axis Q.11 at point B. Then the scalar product of the vectors AB & OB is (B) - 3(A*)3(D) - 6
- Q.12 L_1 and L_2 are two lines whose vector equations are

$$L_1: \vec{r} = \lambda \left[(\cos \theta + \sqrt{3}) \hat{i} + (\sqrt{2} \sin \theta) \hat{j} + (\cos \theta - \sqrt{3}) \hat{k} \right]$$

$$L_2: \vec{r} = \mu (a\hat{i} + b\hat{j} + c\hat{k}),$$

where λ and μ are scalars and α is the acute angle between L_1 and L_2 . If the angle ' α ' is independent of θ then the value of ' α ' is

$$(A^*)\,\frac{\pi}{6}$$

(B)
$$\frac{\pi}{4}$$

(C)
$$\frac{\pi}{3}$$

(D)
$$\frac{\pi}{2}$$

Line L₁ is parallel to the vector

$$\vec{V}_1 = (\cos\theta + \sqrt{3})\hat{i} + (\sqrt{2}\sin\theta)\hat{j} + (\cos\theta - \sqrt{3})\hat{k}$$

and L_2 is parallel to the vector]

$$\vec{V}_2 = a\hat{i} + b\hat{j} + c\hat{k}$$

$$\therefore \cos \alpha = \frac{\vec{V}_1 \cdot \vec{V}_2}{|\vec{V}_1| |\vec{V}_2|} = \frac{a(\cos \theta + \sqrt{3}) + (b\sqrt{2})\sin \theta + c(\cos \theta - \sqrt{3})}{\sqrt{a^2 + b^2 + c^2} \sqrt{(\cos \theta + \sqrt{3})^2 + 2\sin^2 \theta + (\cos \theta - \sqrt{3})^2}}$$

$$(a + c)\cos \theta + b\sqrt{2}\sin \theta + (a - c)\sqrt{3}$$

$$= \frac{(a+c)\cos\theta + b\sqrt{2}\sin\theta + (a-c)\sqrt{3}}{\sqrt{a^2 + b^2 + c^2} \sqrt{2+6}}$$

in order that $\cos \alpha$ is independent of θ

$$a + c = 0$$
 and $b = 0$

$$\therefore \quad \cos \alpha = \frac{2a\sqrt{3}}{a\sqrt{2} \cdot 2\sqrt{2}} = \frac{\sqrt{3}}{2} \quad \Rightarrow \quad \alpha = \frac{\pi}{6} \text{ Ans. }]$$

SPECIAL DPP ON VECTOR

DPP. NO.- 4

Q.1	Cosine of an angle between the vectors $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ if $ \vec{a} = 2$, $ \vec{b} = 1$ and $\vec{a} \wedge \vec{b} = 60^{\circ}$ is					
	$(A^*) \sqrt{3/7}$	(B) $9/\sqrt{21}$	(C) $3/\sqrt{7}$	(D) none		
Q.2	An arc AC of a ci	rcle subtends a right angle	e at the centre O. The po	int B divides the arc in the ratio 1:2.		
	If $\overrightarrow{OA} = \vec{a} \& \overrightarrow{OB} = \vec{b}$, then the vector \overrightarrow{OC} in terms of $\vec{a} \& \vec{b}$, is					
	$(A) \sqrt{3} \vec{a} - 2\vec{b}$	$(B^*) - \sqrt{3}\vec{a} + 2\vec{b}$	(C) $2\vec{a} - \sqrt{3}\vec{b}$	$(D) - 2\vec{a} + \sqrt{3}\vec{b}$		
				[12 th 18-12-2005]		
Q.3	For two particula	r vectors \vec{A} and \vec{B} it is kn	nown that $\vec{A} \times \vec{B} = \vec{B} \times$	$\vec{\boldsymbol{A}}$. What must be true about the two		
	vectors?	0.1				
		of the two vectors must b				
		A is true for any two ve				
	` '	wo vectors is a scalar mu ors must be perpendicula	•	r.		
[Sol.	$\vec{A} \times \vec{B} = -\vec{A} \times \vec{I}$			2th, 21-10-2007]		
	$\vec{A} \times \vec{B} = 0$					
	either $\vec{A} = 0$ or $\vec{B} = 0$					
	or \vec{A} and \vec{E}	are collinear]				
Q.4	'P' is a point insi	de the triangle ABC, su	ch that $BC(\overrightarrow{PA}) + CA$	$(\overrightarrow{PB}) + AB(\overrightarrow{PC}) = 0$, then for the		
	triangle ABC the (A*) incentre	point P is its: (B) circumcentre	(C) centroid	(D) orthocentre		
Q.5	,	ions of two lines L_1 and I		(B) officed file		
۷.5	_	1	2			
	$\vec{r} = 17\hat{i} - 9\hat{j} + 9\hat{k} + \lambda(3\hat{i} + \hat{j} + 5\hat{k})$ and $\vec{r} = 15\hat{i} - 8\hat{j} - \hat{k} + \mu(4\hat{i} + 3\hat{j})$ I L ₁ and L ₂ are skew lines					
	II $(11,-11,-1)$ is the point of intersection of L_1 and L_2					
	III $(-11, 11, 1)$ is the point of intersection of L_1 and L_2					
	IV $\cos^{-1}(3/\sqrt{35})$ is the acute angle between L ₁ and L ₂					
		e following is true?	(C) IV anly	(D) III and IV		
	(A*) II and IV	(B) I and IV	(C) IV only	(D) III and IV		
Q.6	Given three vectors \vec{a} , \vec{b} & \vec{c} each two of which are non collinear. Further if $(\vec{a} + \vec{b})$ is collinear with					
	\vec{c} , $(\vec{b} + \vec{c})$ is collinear with \vec{a} & $ \vec{a} = \vec{b} = \vec{c} = \sqrt{2}$. Then the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$:					
	(A) is 3	(B^*) is -3	(C) is 0	(D) cannot be evaluated		
[Hint:		c (1)				
	and $\vec{b} + \vec{c} = \mu$	a (2)				

- $(\lambda \vec{c} \vec{a}) + \vec{c} = \mu \vec{a}$ [putting $\vec{b} = \lambda \vec{c} \vec{a}$] $(\lambda+1)$ $\vec{c} = (\mu+1)\vec{a}$ \Rightarrow $\lambda = \mu = -1$
- $\vec{a} + \vec{b} + \vec{c} = 0$ now proceed]
- Q.7 For some non zero vector $\vec{\nabla}$, if the sum of $\vec{\nabla}$ and the vector obtained from $\vec{\nabla}$ by rotating it by an angle 2α equals to the vector obtained from $\vec{\nabla}$ by rotating it by α then the value of α , is
 - $(A^*) 2n\pi \pm \frac{\pi}{2}$
- (B) $n\pi \pm \frac{\pi}{3}$ (C) $2n\pi \pm \frac{2\pi}{3}$ (D) $n\pi \pm \frac{2\pi}{3}$

where n is an integer.

- Given $\vec{V} + \vec{V}_1 = \vec{V}_2$; [Sol.
- Also $\vec{V} \wedge \vec{V}_1 = 2\alpha$
- $(\vec{V}_1)^2=(\vec{V}_2-\vec{V})^2 \qquad \text{and} \qquad \vec{V}^\wedge\vec{V}_2=\alpha$ also, $|\vec{V}|=|\vec{V}_1|=|\vec{V}_2|=\lambda \text{ say}$



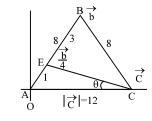
- Let $\vec{u}, \vec{v}, \vec{w}$ be such that $|\vec{u}| = 1$, $|\vec{v}| = 2$, $|\vec{w}| = 3$. If the projection of \vec{v} along \vec{u} is equal to that of \vec{w} Q.8 along \vec{u} and vectors \vec{v} , \vec{w} are perpendicular to each other then $|\vec{u} - \vec{v} + \vec{w}|$ equals
 - (A) 2
- (B) $\sqrt{7}$
- $(C^*) \sqrt{14}$
- (D) 14

- $\vec{v} \cdot \hat{u} = \vec{w} \cdot \hat{u}$ [Sol.
 - $\vec{\mathbf{v}} \perp \vec{\mathbf{w}} \implies \vec{\mathbf{v}} \cdot \vec{\mathbf{w}} = 0$
 - now, $|\vec{\mathbf{u}} \vec{\mathbf{v}} + \vec{\mathbf{w}}|^2 = \vec{\mathbf{u}}^2 + \vec{\mathbf{v}}^2 + \vec{\mathbf{w}}^2 2\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} 2\vec{\mathbf{w}} \cdot \vec{\mathbf{v}} + 2\vec{\mathbf{u}} \cdot \vec{\mathbf{w}} = 1 + 4 + 9$
 - so $|\vec{u} \vec{v} + \vec{w}| = \sqrt{14}$ Ans.] [29-01-2005, 12th & 13th]
- 0.9 If \vec{a} and \vec{b} are non zero, non collinear, and the linear combination
 - $(2x-y)\vec{a}+4\vec{b}=5\vec{a}+(x-2y)\vec{b}$ holds for real x and y then x + y has the value equal to
 - (A) 3
- (B*)1
- (D)3
- $(2x-y-5)\vec{a} = (x-2y-4)\vec{b}$ [12th 17-9-2006] 2x-y=5(1); x-2y=4(2) [Sol.
 - from (1) and (2)

- and
- $2(2y+4)-y=5 \Rightarrow 3y=-3 \Rightarrow y=-1$ x=2; hence x+y=1 Ans.]
- Q.10 In the isosceles triangle ABC $|\overrightarrow{AB}| = |\overrightarrow{BC}| = 8$, a point E divides AB internally in the ratio 1:3, then the cosine of the angle between \overrightarrow{CE} & \overrightarrow{CA} is (where $\left|\overrightarrow{CA}\right| = 12$)

- (A) $-\frac{3\sqrt{7}}{2}$ (B) $\frac{3\sqrt{8}}{17}$ (C*) $\frac{3\sqrt{7}}{2}$

[Sol. Given
$$|\vec{b}| = |\vec{b} - \vec{c}| = 8$$
 and $|\vec{c}| = 12$; $\cos \theta = \frac{\vec{c} \cdot \left(\vec{c} - \frac{\vec{b}}{4}\right)}{|\vec{c}| \left|\vec{c} - \frac{\vec{b}}{4}\right|} = \frac{\vec{c}^2 - \frac{\vec{c} \cdot \vec{b}}{4}}{12 \left|\vec{c} - \frac{\vec{b}}{4}\right|}$



now proceed.]

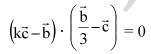
- If $\vec{p} = 3\vec{a} 5\vec{b}$; $\vec{q} = 2\vec{a} + \vec{b}$; $\vec{r} = \vec{a} + 4\vec{b}$; $\vec{s} = -\vec{a} + \vec{b}$ are four vectors such that $\sin(\vec{p} \ ^{\wedge} \ \vec{q}) = 1 \text{ and } \sin(\vec{r} \ ^{\wedge} \ \vec{s}) = 1 \text{ then } \cos(\vec{a} \ ^{\wedge} \ \vec{b}) \text{ is :}$
 - $(A) \frac{19}{5\sqrt{42}}$

 $(D^*) \frac{19}{5\sqrt{42}}$

[Hint: $\vec{p} \cdot \vec{q} = 0 \& \vec{r} \cdot \vec{s} = 0$. Form two simultaneous equations and get a relation between $|\vec{a}| \& |\vec{b}|$ as $25 |\vec{a}|^2 = 43 |\vec{b}|^2$. Now compute $\cos(\vec{a} \wedge \vec{b}) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}$

- Given an equilateral triangle ABC with side length equal to 'a'. Let M and N be two points respectively on the side AB and AC much that $\overrightarrow{AN} = \overrightarrow{KAC}$ and $\overrightarrow{AM} = \frac{\overrightarrow{AB}}{3}$. If \overrightarrow{BN} and \overrightarrow{CM} are orthogonal then the value of K is equal to
 - (A*) $\frac{1}{5}$ (B) $\frac{1}{4}$

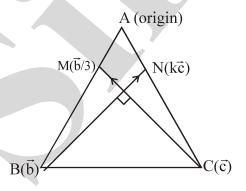
 $\overrightarrow{\mathbf{BN}} \cdot \overrightarrow{\mathbf{CM}} = 0$ [13th, 01-02-2009, P-2] [Sol.



$$\frac{k}{3} \cdot \frac{a^2}{2} - ka^2 - \frac{a^2}{3} + \frac{a^2}{2} = 0$$

$$\frac{\mathbf{k}}{6} - \mathbf{k} + \frac{1}{6} = 0$$

$$\frac{5k}{6} = \frac{1}{6} \qquad \Rightarrow \qquad k = \frac{1}{5} \text{ Ans. }]$$



[QUIZ-79 XII]

If \vec{e}_1 & \vec{e}_2 are two unit vectors and θ is the angle between them , then $\sin\left(\theta/2\right)$ is :

(A)
$$\frac{1}{2} |\vec{e}_1 + \vec{e}_2|$$

(A)
$$\frac{1}{2} |\vec{e}_1 + \vec{e}_2|$$
 (B*) $\frac{1}{2} |\vec{e}_1 - \vec{e}_2|$ (C) $\frac{\vec{e}_1 \cdot \vec{e}_2}{2}$

$$(C) \frac{\vec{e}_1 \cdot \vec{e}_2}{2}$$

(D)
$$\frac{|\vec{e}_1 \times \vec{e}_2|}{2|\vec{e}_1||\vec{e}_2|}$$

[Hint: consider $|\hat{e}_1 - \hat{e}_2|^2 = 2 - 2\cos\theta = 2.\frac{\sin^2\theta}{2}$: $\frac{1}{2} |\hat{e}_1 - \hat{e}_2| = \frac{\sin\theta}{2}$]

If $\vec{p} \& \vec{s}$ are not perpendicular to each other and $\vec{r} \times \vec{p} = \vec{q} \times \vec{p} \& \vec{r}$. $\vec{s} = 0$, then $\vec{r} = 0$ Q.2

(B)
$$\vec{q} + \left(\frac{\vec{q} \cdot \vec{p}}{\vec{p} \cdot \vec{s}}\right) \vec{p}$$

$$(C^*) \vec{q} - \left(\frac{\vec{q} \cdot \vec{s}}{\vec{p} \cdot \vec{s}}\right) \vec{p}$$

(B) $\vec{q} + \left(\frac{\vec{q} \cdot \vec{p}}{\vec{n} \cdot \vec{c}}\right) \vec{p}$ (C*) $\vec{q} - \left(\frac{\vec{q} \cdot \vec{s}}{\vec{n} \cdot \vec{c}}\right) \vec{p}$ (D) $\vec{q} + \mu \vec{p}$ for all scalars μ

[Hint: $(\vec{r} - \vec{q}) \times \vec{p} = 0 \implies \vec{r} - \vec{q} = \lambda \vec{p} \quad \vec{r} = \lambda \vec{p} + \vec{q}$ — (1) now $\vec{r} \cdot \vec{s} = 0$ $\Rightarrow (\lambda \vec{p} + \vec{q}) \cdot \vec{s} = 0 \quad \lambda = -\frac{\vec{q} \cdot \vec{s}}{\vec{p} \cdot \vec{s}}$ (2) Put λ from (2) in (1) to get the result]

If $\vec{u} = \vec{a} - \vec{b}$; $\vec{v} = \vec{a} + \vec{b}$ and $|\vec{a}| = |\vec{b}| = 2$ then $|\vec{u} \times \vec{v}|$ is equal to Q.3

(A)
$$\sqrt{2(16-(\vec{a}.\vec{b})^2)}$$

(A)
$$\sqrt{2(16-(\vec{a}.\vec{b})^2)}$$
 (B*) $2\sqrt{(16-(\vec{a}.\vec{b})^2)}$ (C) $2\sqrt{(4-(\vec{a}.\vec{b})^2)}$ (D) $\sqrt{2(4-(\vec{a}.\vec{b})^2)}$

(C)
$$2\sqrt{(4-(\vec{a}.\vec{b})^2)}$$

(D)
$$\sqrt{2(4-(\vec{a}.\vec{b})^2)}$$

Hint:

$$|\vec{\mathbf{u}} \times \vec{\mathbf{v}}| = 2 |\vec{\mathbf{a}} \times \vec{\mathbf{b}}|;$$
 $\therefore |\vec{\mathbf{u}} \times \vec{\mathbf{v}}|^2 = 4 |\vec{\mathbf{a}} \times \vec{\mathbf{b}}|^2 = 4 [\vec{\mathbf{a}}^2 \mathbf{b}^2 - (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}})^2] = 4 [16 - (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}})^2] \Rightarrow \text{result}]$

Q.4 If \vec{u} and \vec{v} are two vectors such that $|\vec{u}| = 3$; $|\vec{v}| = 2$ and $|\vec{u} \times \vec{v}| = 6$ then the correct statement is

(A)
$$\vec{u} \wedge \vec{v} \in (0, 90^{\circ})$$

(B)
$$\vec{u} \wedge \vec{v} \in (90^{\circ}, 180^{\circ}) (C^*) \vec{u} \wedge \vec{v} = 90^{\circ}$$

(D)
$$(\vec{\mathbf{u}} \times \vec{\mathbf{v}}) \times \vec{\mathbf{u}} = 6\vec{\mathbf{v}}$$

 $|\vec{\mathbf{u}} \times \vec{\mathbf{v}}|^2 = \vec{\mathbf{u}}^2 \vec{\mathbf{v}}^2 - (\vec{\mathbf{u}} \cdot \vec{\mathbf{v}})^2$ [Sol.

[12th, 28-09-2008]

$$36 = (9)(4) - (\vec{\mathbf{u}} \cdot \vec{\mathbf{v}})^2$$

$$\Rightarrow$$
 $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = 0$

 \vec{u} and \vec{v} are orthogonal

also
$$(\vec{u} \times \vec{v}) \times \vec{u} = (\vec{u} \cdot \vec{u}) \vec{v} - (\vec{v} \cdot \vec{u}) \vec{u} = 9 \vec{v} \implies$$

(**D**) is incorrect]

If $\vec{A} = (1, 1, 1)$, $\vec{C} = (0, 1, -1)$ are given vectors, then a vector \vec{B} satisfying the equation $\vec{A} \times \vec{B} = \vec{C}$ and 0.5 $\vec{A} \cdot \vec{B} = 3 \text{ is}$:

(B*)
$$\left(\frac{5}{3}, \frac{2}{3}, \frac{2}{3}\right)$$
 (C) $\left(\frac{2}{3}, \frac{5}{3}, \frac{2}{3}\right)$ (D) $\left(\frac{2}{3}, \frac{2}{3}, \frac{5}{3}\right)$

$$(C)\left(\frac{2}{3},\frac{5}{3},\frac{2}{3}\right)$$

$$(D)\left(\frac{2}{3},\frac{2}{3},\frac{5}{3}\right)$$

[Hint: Let $\vec{B} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$; $b_1 + b_2 + b_3 = 3$ and $\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ b_1 & b_2 & b_3 \end{vmatrix} = 0 \hat{i} + \hat{j} + \hat{k}$;

This gives $b_3 = b_2$; $b_2 - b_1 = -1$; $b_1 - b_3 = 1 \Rightarrow$ (B)

Alternatively: take cross with \vec{A} ;

$$\vec{A} \times (\vec{A} \times \vec{B}) = \vec{A} \times \vec{C}$$
 09

$$\vec{A} \times (\vec{A} \times \vec{B}) = \vec{A} \times \vec{C}$$
 or $(\vec{A} \cdot \vec{B}) - (\vec{A} \cdot \vec{A})\vec{B} = \vec{A} \times \vec{C}$

$$3\vec{A} - 3\vec{B} = \vec{A} \times \vec{C}$$

$$3\vec{A} - 3\vec{B} = \vec{A} \times \vec{C}$$
 \Rightarrow $\vec{B} = \frac{3\vec{A} + \vec{C} \times \vec{A}}{\vec{A}}$

- Given a parallelogram OACB. The lengths of the vectors \overrightarrow{OA} , \overrightarrow{OB} & \overrightarrow{AB} are a, b & c respectively. The Q.6 scalar product of the vectors $\overset{\rightarrow}{OC}$ & $\overset{\rightarrow}{OB}$ is :

- (A) $\frac{a^2 3b^2 + c^2}{2}$ (B) $\frac{3a^2 + b^2 c^2}{2}$ (C) $\frac{3a^2 b^2 + c^2}{2}$ (D*) $\frac{a^2 + 3b^2 c^2}{2}$
- Vectors \vec{a} & \vec{b} make an angle $\theta = \frac{2\pi}{3}$. If $|\vec{a}| = 1$, $|\vec{b}| = 2$ then $\{(\vec{a} + 3\vec{b}) \times (3\vec{a} \vec{b})\}^2 = 1$ Q.7 (A) 225(B)250(C) 275(D*)300
- In a quadrilateral ABCD, \overrightarrow{AC} is the bisector of the $\left(\overrightarrow{AB} \stackrel{\wedge}{AD}\right)$ which is $\frac{2\pi}{3}$, Q.8

 $15 \begin{vmatrix} \overrightarrow{AC} \end{vmatrix} = 3 \begin{vmatrix} \overrightarrow{AB} \end{vmatrix} = 5 \begin{vmatrix} \overrightarrow{AD} \end{vmatrix}$ then $\cos \left(\overrightarrow{BA} \land \overrightarrow{CD} \right)$ is:

$$(A) - \frac{\sqrt{14}}{7\sqrt{2}}$$

(A)
$$-\frac{\sqrt{14}}{7\sqrt{2}}$$
 (B) $-\frac{\sqrt{21}}{7\sqrt{3}}$ (C*) $\frac{2}{\sqrt{7}}$

$$(C^*) \frac{2}{\sqrt{7}}$$

(D)
$$\frac{2\sqrt{7}}{14}$$

[Hint: Given $15|\overrightarrow{AC}| = 3|\overrightarrow{AB}| = 5|\overrightarrow{AD}|$

Let $|\overrightarrow{AC}| = \lambda > 0$

$$|\overrightarrow{AD}| = 3\lambda$$

Now $\cos\left(\overrightarrow{BA} \land \overrightarrow{CD}\right) = \frac{\overrightarrow{BA}.\overrightarrow{CD}}{\left|\overrightarrow{BA}\right| \left|\overrightarrow{CD}\right|} = \frac{\overrightarrow{b}.(\overrightarrow{d} - \overrightarrow{c})}{\left|\overrightarrow{b}\right| \left|\overrightarrow{d} - \overrightarrow{c}\right|} \dots (1)$

 $C(\overrightarrow{c})$ B(४)

Now numerator of (1) = $\vec{b} \cdot \vec{c} - \vec{b} \cdot \vec{d}$ $= |\vec{b}| |\vec{c}| \cos \frac{\pi}{3} - |\vec{b}| |\vec{d}| \cos \frac{2\pi}{3}$

=
$$(5\lambda)(\lambda)\frac{1}{2} + 5\lambda(3\lambda)\frac{1}{2} = \frac{5\lambda^2 + 15\lambda^2}{2} = 10\lambda^2$$

Denominator of $(1) = |\vec{b}| |\vec{d} - \vec{c}|$

Now
$$|\vec{\mathbf{d}} - \vec{\mathbf{c}}|^2 = \vec{\mathbf{d}}^2 + \vec{\mathbf{c}}^2 - 2\vec{\mathbf{c}}.\vec{\mathbf{d}} = 9\lambda^2 + \lambda^2 - 2(\lambda)(3\lambda)1/2 = 10\lambda^2 - 3\lambda^2 = 7\lambda^2$$

$$\therefore |\vec{\mathbf{d}} - \vec{\mathbf{c}}| = \sqrt{7}\lambda$$

Denominator of (1) = $(5\lambda)(\sqrt{7} \lambda) = 5\sqrt{7} \lambda^2$

$$\therefore \cos\left(\overrightarrow{BA} \land \overrightarrow{CD}\right) = \frac{10\lambda^2}{5\sqrt{7} \lambda^2} = \frac{2}{\sqrt{7}} \Rightarrow (C)]$$

If the two adjacent sides of two rectangles are represented by the vectors $\vec{p} = 5\vec{a} - 3\vec{b}$; $\vec{q} = -\vec{a} - 2\vec{b}$ Q.9 and $\vec{r} = -4\vec{a} - \vec{b}$; $\vec{s} = -\vec{a} + \vec{b}$ respectively, then the angle between the vectors $\vec{x} = \frac{1}{3}(\vec{p} + \vec{r} + \vec{s})$ and $\vec{y} = \frac{1}{5} (\vec{r} + \vec{s})$

(A) is
$$-\cos^{-1}\left(\frac{19}{5\sqrt{43}}\right)$$
 (B*) is $\cos^{-1}\left(\frac{19}{5\sqrt{43}}\right)$

(C) is
$$\pi - \cos^{-1}\left(\frac{19}{5\sqrt{43}}\right)$$
 (D) cannot be evaluated

[Sol.
$$\vec{p} \cdot \vec{q} = 0$$

 $(5\vec{a} - 3\vec{b}) \cdot (-\vec{a} - 2\vec{b}) = 0$
 $-5\vec{a}^2 - 10\vec{a}\vec{b} + 3\vec{a}\vec{b} + 6\vec{b}^2 = 0$
 $6\vec{b}^2 - 5\vec{a}^2 - 7\vec{a} \cdot \vec{b} = 0$ (1)
Also $\vec{r} \cdot \vec{s} = 0$

Also
$$\vec{r} \cdot \vec{s} = 0$$

 $(-4\vec{a} - \vec{b})(-\vec{a} + \vec{b}) = 0$ or $4\vec{a}^2 - 4\vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{b} - \vec{b}^2 = 0$
or $4\vec{a}^2 - \vec{b}^2 - 3\vec{a} \cdot \vec{b} = 0$ (2)

now
$$\vec{x} = \frac{1}{3}(\vec{p} + \vec{r} + \vec{s}) = \frac{1}{3}(5\vec{a} - 3\vec{b} - 4\vec{a} - \vec{b} - \vec{a} + \vec{b}) = -\vec{b}$$

 $\vec{y} = \frac{1}{5}(\vec{r} + \vec{s}) = \frac{1}{5}(-5\vec{a}) = -\vec{a}$

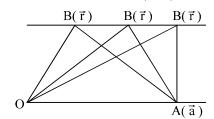
Angle between
$$\vec{x}$$
 and \vec{y} i.e. $\cos\theta = \frac{\vec{x} \cdot \vec{y}}{|\vec{x}||\vec{y}|} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$ (3)

From (1) and (2)
$$|\vec{a}| = \sqrt{\frac{25}{19}} \sqrt{\vec{a} \cdot \vec{b}}$$
 and $|\vec{b}| = \sqrt{\frac{43}{19}} \sqrt{\vec{a} \cdot \vec{b}}$

- If the vector product of a constant vector \overrightarrow{OA} with a variable vector \overrightarrow{OB} in a fixed plane OAB be a Q.10constant vector, then locus of B is:
 - (A) a straight line perpendicular to OA
- (B) a circle with centre O radius equal to $|\overrightarrow{OA}|$
 - (C^*) a straight line parallel to \overrightarrow{OA}
- (D) none of these

[Hint: $|\vec{a} \times \vec{r}| = |\vec{c}|$

Triangles on the same base and between the same parallel will have the same area]



or

Q.11 If the distance from the point P(1, 1, 1) to the line passing through the points Q(0, 6, 8) and R(-1, 4, 7) is expressed in the form $\sqrt{p/q}$ where p and q are coprime, then the value of

$$\frac{(p+q)(p+q-1)}{2}$$
 equals

- (A*) 4950
- (B)5050
- (C) 5150
- (D) none

[Sol. $\vec{a} = -\hat{i} - 2\hat{j} - \hat{k}$

$$\vec{b} = \hat{i} - 5\hat{j} - 7\hat{k}$$

$$|\vec{d}| = \frac{|\vec{a} \times \vec{b}|}{|\vec{a}|}$$

$$\vec{b}$$
 d $\vec{Q}(0,6,8)$ \vec{a} $\vec{R}(-1,4,7)$

$$|\vec{a}| = \sqrt{6}$$

$$|\vec{a} \times \vec{b}|^2 = \vec{a}^2 \vec{b}^2 - (\vec{a} \cdot \vec{b})^2 = (6)(75) - (-1 + 10 + 7)^2 = 450 - 256 = 194$$

$$|\vec{a} \times \vec{b}| = \sqrt{194}$$

$$\therefore d = \sqrt{\frac{194}{6}} = \sqrt{\frac{97}{3}}$$

$$\therefore p + q = 100$$

$$\frac{(p+q)(p+q-1)}{2} = \frac{100 \times 99}{2} = 4950$$

DPP. NO.- 6

- For non-zero vectors \vec{a} , \vec{b} , \vec{c} , $|\vec{a} \times \vec{b} \cdot \vec{c}| = |\vec{a}| |\vec{b}| |\vec{c}|$ holds if and only if; Q.1
 - (A) $\vec{a} \cdot \vec{b} = 0$, $\vec{b} \cdot \vec{c} = 0$

(B) $\vec{c} \cdot \vec{a} = 0$, $\vec{a} \cdot \vec{b} = 0$

(C) $\vec{a} \cdot \vec{c} = 0$, $\vec{b} \cdot \vec{c} = 0$

(D*) $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$

- $\sin \theta \cos \phi = 1 \Rightarrow \theta = \frac{\pi}{2} \text{ and } \phi = 0 \Rightarrow \vec{a}, \vec{b}, \vec{c} \text{ are mutually perpendicular }$
- The vectors $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$; $\vec{b} = 2\hat{i} \hat{j} + \hat{k} & \vec{c} = 3\hat{i} + \hat{j} + 4\hat{k}$ are so placed that the end point of one Q.2 vector is the starting point of the next vector. Then the vectors are
 - (A) not coplanar

- (B*) coplanar but cannot form a triangle
- (C) coplanar but can form a triangle
- (D) coplanar & can form a right angled triangle

- Note that $\vec{a} + \vec{b} = \vec{c}$ Hint:
- Q.3 Given the vectors

$$\vec{\mathbf{u}} = 2\hat{\mathbf{i}} - \hat{\mathbf{j}} - \hat{\mathbf{k}}$$

$$\vec{\mathbf{v}} = \hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$$

$$\vec{\mathbf{w}} = \hat{\mathbf{i}} - \hat{\mathbf{k}}$$

If the volume of the parallelopiped having $-c\vec{u}$, \vec{v} and $c\vec{w}$ as concurrent edges, is 8 then 'c' can be equal to

- $(A^*) \pm 2$

- (D) can not be determined
- $V = -c^{2}[\vec{u}\vec{v}\vec{w}] = -c^{2}\begin{vmatrix} 2 & -1 & -1 \\ 1 & -1 & 2 \\ 1 & 0 & -1 \end{vmatrix} = -c^{2}[2(1-0)-1(1)+(-2-1)] = -c^{2}[2-1-3] = 8$ $\therefore 2c^{2} = 8 \qquad \Rightarrow c = 2 \text{ or } 2 \text{ And } 1$
- Given $\overline{a} = x\hat{i} + y\hat{j} + 2\hat{k}$, $\overline{b} = \hat{i} \hat{j} + \hat{k}$, $\overline{c} = \hat{i} + 2\hat{j}$; $(\overline{a} \ \overline{b}) = \pi/2$, $\overline{a} \cdot \overline{c} = 4$ then Q.4

- (A) $[\overline{a} \ \overline{b} \ \overline{c}]^2 = |\overline{a}|$ (B) $[\overline{a} \ \overline{b} \ \overline{c}] = |\overline{a}|$ (C) $[\overline{a} \ \overline{b} \ \overline{c}] = 0$ (D*) $[\overline{a} \ \overline{b} \ \overline{c}] = |\overline{a}|^2$

Hint:

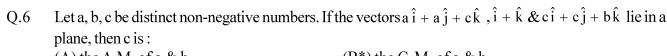
$$x + 2y = 4$$

$$\Rightarrow$$
 $x = 0$; $y = 2$

$$x-y+2=0$$
 and \Rightarrow $x=0$; $y=2$ \Rightarrow $\vec{a}=2\hat{j}+2\hat{k}$ & $|\vec{a}|^2=8$

- $[\overline{a}\ \overline{b}\ \overline{c}] = \begin{vmatrix} 0 & 2 & 2 \\ 1 & -1 & 1 \\ 1 & 2 & 0 \end{vmatrix} = 8 = |\overline{a}|^2 \implies (D)]$
- The set of values of m for which the vectors $\hat{\mathbf{i}} + \hat{\mathbf{j}} + m\hat{\mathbf{k}}$, $\hat{\mathbf{i}} + \hat{\mathbf{j}} + (m+1)\hat{\mathbf{k}}$ & $(\hat{\mathbf{i}} \hat{\mathbf{j}} + m\hat{\mathbf{k}})$ are Q.5 non-coplanar:
 - (A*)R
- (B) $R \{1\}$
- (C) $R \{-2\}$
- $(D) \phi$

[Hint: The value of $\begin{vmatrix} 1 & 1 & m \\ 1 & 1 & m+1 \\ 1 & -1 & m \end{vmatrix} = 1$: non coplanar $\forall m \in \mathbb{R}$]



(A) the A.M. of a & b

(B*) the G. M. of a & b

(C) the H. M. of a & b

(D) equal to zero.

[Sol. Vectors in the same plane, hence

$$\begin{vmatrix} a & a & c \\ 1 & 0 & 1 \\ c & c & b \end{vmatrix} = 0$$

$$-1 (ab - c^{2}) - 1(ac - ac) = 0$$

$$c^{2} = ab$$

Let $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$; $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$; $\vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$ be three non-zero vectors such Q.7

that \vec{c} is a unit vector perpendicular to both \vec{a} & \vec{b} . If the angle between \vec{a} & \vec{b} is $\frac{\pi}{6}$ then $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_1 & b_2 & c_2 \end{vmatrix} = 0$

$$(A) 0 (B) 1$$

$$(C^*) \frac{1}{4} (a_1^2 + a_2^2 + a_3^2) (b_1^2 + b_2^2 + b_3^2)$$
 (D) $\frac{3}{4} (a_1^2 + a_2^2 + a_3^2) (b_1^2 + b_2^2 + b_3^2) (c_1^2 + c_2^2 + c_3^2)$

[Hint:
$$(\vec{a} \times \vec{b} \cdot \vec{c})^2 = |\vec{a}|^2 |\vec{b}|^2 |\vec{c}|^2 \sin^2 \theta \cos^2 \phi = (a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2)\frac{1}{4} \Rightarrow (C)$$
]

Q.8 For three vectors $\vec{\mathbf{u}}$, $\vec{\mathbf{v}}$, $\vec{\mathbf{w}}$ which of the following expressions is not equal to any of the remaining three?

(A)
$$\vec{\mathbf{u}} \cdot (\vec{\mathbf{v}} \times \vec{\mathbf{w}})$$

$$(B)(\vec{v} \times \vec{w}) \cdot \vec{u}$$

$$(C^*) \vec{v} \cdot (\vec{u} \times \vec{w}) \qquad (D) (\vec{u} \times \vec{v}) \cdot \vec{w}$$

The vector \vec{c} is perpendicular to the vectors $\vec{a}=(2,-3,1)$, $\vec{b}=(1,-2,3)$ and satisfies the Q.9 condition $\vec{c} \cdot (\hat{i} + 2\hat{j} - 7\hat{k}) = 10$. Then the vector $\vec{c} =$

$$(A*)(7,5,1)$$

$$(A^*)(7,5,1)$$
 $(B)(-7,-5,-1)$ $(C)(1,1,-1)$

$$(C)(1,1,-1)$$

[Hint: Let $\vec{c} = \lambda (\vec{a} \times \vec{b})$. Hence $\lambda (\vec{a} \times \vec{b}) \cdot (\hat{i} + 2\hat{j} - 7\hat{k}) = 10$

$$\lambda \begin{vmatrix} 2 & -3 & 1 \\ 1 & -2 & 3 \\ 1 & 2 & -7 \end{vmatrix} = 10 \implies \lambda = -1 \implies \vec{c} = -(\vec{a} \times \vec{b})$$

$$\vec{a} = 2\hat{i} - 3\hat{j} + \hat{k}$$
 and $\vec{b} = \hat{i} - 2\hat{j} + 3\hat{k}$

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -3 & 1 \\ 1 & -2 & 3 \end{vmatrix} = (-9+2)\hat{i} - (5)\hat{j} + (-4+3)\hat{k} \implies (-7, -5, -1) \text{ Ans. }]$$

 $Q.10 \quad \text{Let } \vec{a} = \hat{i} + \hat{j} \text{ , } \vec{b} = \hat{j} + \hat{k} \text{ \& } \vec{c} = \alpha \vec{a} + \beta \vec{b} \text{ . If the vectors , } \hat{i} - 2\hat{j} + \hat{k} \text{ , } 3\hat{i} + 2\hat{j} - \hat{k} \text{ \& } \vec{c} \text{ are coplanar } \vec{b} = \hat{j} + \hat{k} \text{ .} \vec{$ then $\frac{\alpha}{\beta}$ is:

$$(C)$$
 3

$$(D^*) - 3$$

[Sol.
$$\vec{V}_1 = \hat{i} - 2\hat{j} + \hat{k}$$

 $\vec{V}_2 = 3\hat{i} + 2\hat{j} - \hat{k}$

$$\vec{V}_3 = \vec{c} = \alpha \vec{a} + \beta \vec{b} = \alpha (\hat{i} + \hat{j}) + \beta (\hat{j} + \hat{k}) = \alpha \hat{i} + (\alpha + \beta)\hat{j} + \beta \hat{k} = \vec{c}$$

since $\vec{V}_1, \vec{V}_2, \vec{V}_3$ are coplanar

now
$$\begin{vmatrix} 1 & -2 & 1 \\ 3 & 2 & -1 \\ \alpha & \alpha + \beta & \beta \end{vmatrix} = 0$$
, using $C_2 \to C_2 - (C_1 + C_3)$, we get

$$\begin{vmatrix} 1 & -4 & 1 \\ 3 & 0 & -1 \\ \alpha & 0 & \beta \end{vmatrix} = 0, \text{ hence } 4(3\beta + \alpha) = 0 \implies 3\beta + \alpha = 0 \implies \frac{\alpha}{\beta} = -3 \text{ Ans.}$$

Q.11 A rigid body rotates about an axis through the origin with an angular velocity $10\sqrt{3}$ radians/sec. If $\vec{\omega}$ points in the direction of $\hat{i} + \hat{j} + \hat{k}$ then the equation to the locus of the points having tangential speed 20 m/sec. is :

(A)
$$x^2 + y^2 + z^2 - xy - yz - zx - 1 = 0$$

(B)
$$x^2 + y^2 + z^2 - 2xy - 2yz - 2zx - 1 = 0$$

$$(C^*)$$
 $x^2 + y^2 + z^2 - xy - yz - zx - 2 = 0$

(D)
$$x^2 + y^2 + z^2 - 2xy - 2yz - 2zx - 2 = 0$$

[Hint:
$$\vec{n} = \frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$$
; $\vec{\omega} = |\vec{\omega}| \vec{n} = 10(\hat{i} + \hat{j} + \hat{k})$

Now $\vec{v} = \vec{\omega} \times \vec{r} = 10 \left(\hat{i} + \hat{j} + \hat{k} \right) \times \left(x \hat{i} + y \hat{j} + z \hat{k} \right)$ where \vec{r} is the position vector of the point whose locus is to be determined.

Hence
$$\vec{v} = 10 \left((z-y)\hat{i} - (z-x)\hat{j} + (y-x)\hat{k} \right)$$

Q.12 A rigid body rotates with constant angular velocity ω about the line whose vector equation is, $\vec{r} = \lambda (\hat{i} + 2\hat{j} + 2\hat{k})$. The speed of the particle at the instant it passes through the point with p.v. $2\hat{i} + 3\hat{j} + 5\hat{k}$ is:

$$(A^*)\omega\sqrt{2}$$

$$(B) 2\alpha$$

(C)
$$\omega/\sqrt{2}$$

(D) none

[Hint:
$$\vec{n} = \frac{\hat{i} + 2\hat{j} + 2\hat{k}}{3}$$
; $\vec{\omega} = \frac{\omega}{3} (\hat{i} + 2\hat{j} + 2\hat{k})$

$$\vec{\mathbf{v}} = \vec{\boldsymbol{\omega}} \times \vec{\mathbf{r}} = \frac{\boldsymbol{\omega}}{3} \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 2 & 2 \\ 2 & 3 & 5 \end{vmatrix} = \frac{\boldsymbol{\omega}}{3} \left(4\hat{\mathbf{i}} - \hat{\mathbf{j}} - \hat{\mathbf{k}} \right)$$

$$\therefore |\vec{v}| = \frac{\omega}{3} \sqrt{18} = \omega \sqrt{2}$$

Given 3 vectors Q.13

$$\vec{V}_1 = a\hat{i} + b\hat{j} + c\hat{k}$$
; $\vec{V}_2 = b\hat{i} + c\hat{j} + a\hat{k}$; $\vec{V}_3 = c\hat{i} + a\hat{j} + b\hat{k}$

In which one of the following conditions \vec{V}_1 , \vec{V}_2 and \vec{V}_3 are linearly independent?

- (A) a + b + c = 0 and $a^2 + b^2 + c^2 \neq ab + bc + ca$
- (B) a + b + c = 0 and $a^2 + b^2 + c^2 = ab + bc + ca$
- (C) $a + b + c \neq 0$ and $a^2 + b^2 + c^2 = ab + bc + ca$
- (D*) $a + b + c \neq 0$ and $a^2 + b^2 + c^2 \neq ab + bc + ca$

only in (D) $[\vec{V}_1 \ \vec{V}_2 \ \vec{V}_3] \neq 0$ [Sol.

Q.14 If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ & $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}$, then the vector \vec{c} such that $\vec{a} \cdot \vec{c} = 2$ & $\vec{a} \times \vec{c} = \vec{b}$ is

$$(A) \ \frac{1}{3} \left(3\hat{i} - 2\hat{j} + 5\hat{k}\right) \quad (B^*) \ \frac{1}{3} \left(-\hat{i} + 2\hat{j} + 5\hat{k}\right) \quad (C) \ \frac{1}{3} \left(\hat{i} + 2\hat{j} - 5\hat{k}\right) \quad (D) \ \frac{1}{3} \left(3\hat{i} + 2\hat{j} + \hat{k}\right)$$

[Hint: $\vec{a} \times \vec{b} = \vec{a} \times (\vec{a} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{a} - (\vec{a} \cdot \vec{a}) \vec{c} = 2\vec{a} - 3\vec{c}$

But
$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 1 & -2 & 1 \end{vmatrix} = 3\hat{i} - 3\hat{k}$$

Hence
$$3\vec{c} = 2\vec{a} - (3\hat{i} - 3\hat{k}) = (2\hat{i} + 2\hat{j} + 2\hat{k}) - (3\hat{i} - 3\hat{k}) = -\hat{i} + 2\hat{j} + 5\hat{k}$$

$$\Rightarrow \quad \vec{c} = \frac{1}{3} \left(-\hat{i} + 2\hat{j} + 5\hat{k} \right) \Rightarrow \qquad (B)]$$

One or more than one is/are correct:

If \vec{a} , \vec{b} , \vec{c} be three non zero vectors satisfying the condition $\vec{a} \times \vec{b} = \vec{c} \& \vec{b} \times \vec{c} = \vec{a}$ then which of the following always hold(s) good?

$$(A^*)$$
 \vec{a} , \vec{b} , \vec{c} are orthogonal in pairs

(B)
$$\left[\vec{a}\ \vec{b}\ \vec{c}\right] = \left|\vec{b}\right|$$

$$(C^*) \left[\vec{a} \ \vec{b} \ \vec{c} \right] = \left| \vec{c} \right|^2$$

(D)
$$\left| \vec{b} \right| = \left| \vec{c} \right|$$

Clearly $\vec{a} \cdot \vec{c} = 0$ and $\vec{b} \cdot \vec{c} = 0$ Also $\vec{a} \cdot \vec{b} = 0 \Rightarrow A$ [Sol.

$$\vec{a} \times \vec{b} = \vec{c}$$

$$\vec{b} \times \vec{c} = \vec{a}$$

dot with
$$\vec{b} \implies \vec{a} \cdot \vec{b} = 0$$
; dot with $\vec{c} \implies \vec{a} \cdot \vec{c} = 0$

dot with
$$\vec{c} \implies \vec{a} \cdot \vec{c} = 0$$

$$\Rightarrow$$
 $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$

Again
$$\begin{vmatrix} \vec{a} & |\vec{b}| = |\vec{c}| \\ |\vec{b}| & |\vec{c}| = |\vec{a}| \end{vmatrix} \Rightarrow \frac{|\vec{a}|}{|\vec{c}|} = \frac{|\vec{c}|}{|\vec{a}|} \Rightarrow |\vec{a}| = |\vec{c}| \& |\vec{b}| = 1$$

$$\Rightarrow \ \vec{a} \times \vec{b} \ . \ \vec{c} \ = \left| \vec{a} \right| \ \left| \vec{b} \right| \ \left| \vec{c} \right| \ = \left| \vec{a} \right|^2 = \left| \vec{c} \right|^2$$

(children will assume $\vec{a} = \hat{i}$; $\vec{b} = \hat{j}$ and $\vec{c} = \hat{k}$ but in this case all the four will be correct which will be wrong)] [12th, 09-11-2008]

DPP. NO.- 7

- Q.1 The altitude of a parallelopiped whose three coterminous edges are the vectors, $\vec{A} = \hat{i} + \hat{j} + \hat{k}$; $\vec{B} = 2\hat{i} + 4\hat{j} \hat{k}$ & $\vec{C} = \hat{i} + \hat{j} + 3\hat{k}$ with \vec{A} and \vec{B} as the sides of the base of the parallelopiped, is
 - (A) $2/\sqrt{19}$
- (B) $4/\sqrt{19}$
- $(C^*) 2\sqrt{38}/19$
- (D) none

[Hint: $h = \frac{2[\vec{A} \vec{B} \vec{C}]}{|\vec{A} \times \vec{B}|} & |\vec{A} \times \vec{B}| = \sqrt{\vec{a}^2 b^2 - (\vec{a} \cdot \vec{b})^2}$]

Q.2 Consider \triangle ABC with $A \equiv (\overline{a})$; $B \equiv (\overline{b})$ & $C \equiv (\overline{c})$. If $\overline{b} \cdot (\overline{a} + \overline{c}) = \overline{b} \cdot \overline{b} + \overline{a} \cdot \overline{c}$; $|\overline{b} - \overline{a}| = 3$; $|\overline{c} - \overline{b}| = 4$ then the angle between the medians \overrightarrow{AM} & \overrightarrow{BD} is

$$(A^*) \pi - \cos^{-1}\left(\frac{1}{5\sqrt{13}}\right)$$

$$(B) \pi - \cos^{-1} \left(\frac{1}{13\sqrt{5}} \right)$$

$$(C)\cos^{-1}\left(\frac{1}{5\sqrt{13}}\right)$$

(D)
$$\cos^{-1}\left(\frac{1}{13\sqrt{5}}\right)$$

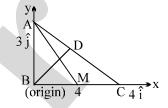
[Hint: $\vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{c} = \vec{b} \cdot \vec{b} + \vec{a} \cdot \vec{c}$

or
$$\vec{b} \cdot (\vec{a} - \vec{b}) - \vec{c} \cdot (\vec{a} - \vec{b}) = 0$$

or
$$(\vec{b} - \vec{c}) \cdot (\vec{a} - \vec{b}) = 0$$

⇒ BC & AB are perpendicular

Now find angle between AM & BM



Q.3 If A (-4, 0, 3); B (14, 2, -5) then which one of the following points lie on the bisector of the angle between \overrightarrow{OA} and \overrightarrow{OB} ('O' is the origin of reference)

$$(A)(2,1,-1)$$

$$(C)(10, 2, -2)$$

$$(D^*)(1,1,2)$$

[Hint: $\overrightarrow{OA} = -4\hat{i} + 3\hat{k}$; $\overrightarrow{OB} = 14\hat{i} + 2\hat{j} - 5\hat{k}$

$$\hat{a} = \frac{-4\hat{i} + 3\hat{k}}{5}$$
; $\hat{b} = \frac{14\hat{i} + 2\hat{j} - 5\hat{k}}{15}$

$$\vec{r} = \frac{\lambda}{15} \left[-12\hat{i} + 9\hat{j} + 14\hat{i} + 2\hat{j} - 5\hat{k} \right]$$

$$\vec{r} = \frac{\lambda}{15} \left[2\hat{i} + 2\hat{j} + 4\hat{k} \right]$$

$$\vec{r} = \frac{2\lambda}{15} [\hat{i} + \hat{j} + 2\hat{k}]$$
 \Rightarrow answer is (D) with $\lambda = \frac{15}{2}$]

Q.4 Position vectors of the four angular points of a tetrahedron ABCD are A(3, -2, 1); B(3, 1, 5); C(4, 0, 3) and D(1, 0, 0). Acute angle between the plane faces ADC and ABC is

$$(A^*) \tan^{-1} (5/2)$$

(B)
$$\cos^{-1}(2/5)$$

(C)
$$\csc^{-1}(5/2)$$

(D)
$$\cot^{-1}(3/2)$$

C(4,0,3)

D(1,0,0)

B(3,1,5)

[Sol. $\vec{V}_1 = 0\hat{i} + 3\hat{j} + 4\hat{k}$

[12th & 13th 11-3-2007]

$$\vec{V}_2 = \hat{i} + 2\hat{j} + 2\hat{k}$$

$$\vec{V}_3 = -2\hat{i} + 2\hat{j} - \hat{k}$$

$$\vec{n}_1 = \vec{V}_1 \times \vec{V}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 3 & 4 \\ 1 & 2 & 2 \end{vmatrix}$$

$$\vec{n}_1 = (-2)\hat{i} - (0-4)\hat{j} + (0-3)\hat{k}$$

$$\vec{n}_1 = -2\hat{i} + 4\hat{j} - 3\hat{k}$$

$$\vec{n}_2 = \vec{V}_2 \times \vec{V}_3 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 2 \\ -2 & 2 & -1 \end{vmatrix}$$

$$\vec{n}_2 = (-2-4)\hat{i} - (-1+4)\hat{j} + (2+4)\hat{k}$$

$$\vec{n}_2 = -6\hat{i} - 3\hat{j} + 6\hat{k} = -3(2\hat{i} + \hat{j} - 2\hat{k})$$

$$\cos \theta = \frac{\vec{n}_1 \cdot \vec{n}_2}{|\vec{n}_1| |\vec{n}_2|} = \frac{-4 + 4 + 6}{\sqrt{29} \cdot 3} = \frac{2}{\sqrt{29}}$$

hence
$$\tan \theta = \frac{5}{2}$$
 \Rightarrow $\theta = \tan^{-1} \left(\frac{5}{2}\right)$]

Q.5 The volume of the tetrahedron formed by the coterminus edges \vec{a} , \vec{b} , \vec{c} is 3. Then the volume of the parallelepiped formed by the coterminus edges $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$, $\vec{c} + \vec{a}$ is

$$(C*)36$$

[Sol. $\frac{1}{6}[\overline{a}\,\overline{b}\,\overline{c}] = 3 \implies [\overline{a}\,\overline{b}\,\overline{c}] = 18$

volume of the required parallelepiped = $[\overline{a} + \overline{b} \ \overline{b} + \overline{c} \ \overline{c} + \overline{a}] = \{(\overline{a} + \overline{b}) \times (\overline{b} + \overline{c})\} \cdot (\overline{c} + \overline{a})$ = $2[\overline{a} \ \overline{b} \ \overline{c}] = 36$

Q.6 Given unit vectors \vec{m} , \vec{n} & \vec{p} such that angle between \vec{m} & \vec{n} = angle between \vec{p} and $(\vec{m} \times \vec{n}) = \pi/6$ then $[\vec{n}\ \vec{p}\ \vec{m}] =$

$$(A^*) \sqrt{3}/4$$

(B)
$$3/4$$

[Hint: $[\vec{n}\,\vec{p}\,\vec{m}] = \sin\theta\cos\phi = \sin\frac{\pi}{6}.\cos\frac{\pi}{6} = \frac{1}{2}.\frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{4}$]

 \vec{a} , \vec{b} and \vec{c} be three vectors having magnitudes 1, 1 and 2 respectively. If Q.7 $\vec{a} \times (\vec{a} \times \vec{c}) + \vec{b} = 0$, then the acute angle between $\vec{a} \& \vec{c}$ is:

$$(A^*) \pi/6$$

(B)
$$\pi/4$$

(C)
$$\pi/3$$

(D)
$$5\pi/12$$

[Hint: $\vec{a} \times (\vec{a} \times \vec{c}) + \vec{b} = 0$; $|\vec{a}| = |\vec{b}| = 1$; $|\vec{c}| = 2$

$$\vec{a} \times \vec{d} = -\vec{b}$$
 \Rightarrow $(\vec{a} \times \vec{d})^2 = \vec{b}^2 = 1$

or
$$|\vec{a}|^2 |\vec{d}|^2 - (\vec{a} \cdot \vec{d})^2 = 1$$

or
$$(\vec{a} \times \vec{c})^2 - 0 = 1 \implies |\vec{a}|^2 |\vec{c}|^2 - (\vec{a} \cdot \vec{c})^2 = 1$$

$$\Rightarrow$$
 $4-2\cos^2\theta=1 \Rightarrow \cos^2\theta=\frac{3}{4}; \quad \theta=\pi/6$

 $(\vec{a}.\vec{c})\vec{a} - (\vec{a}.\vec{a})\vec{c} = -\vec{b}$ [Alternative:

$$(\lambda \vec{a} - \vec{c})^2 = 1$$
 or $\lambda^2 \vec{a}^2 + \vec{c}^2 - 2\lambda \vec{a} \cdot \vec{c} = 1$ (where $\lambda = \vec{a} \cdot \vec{c}$)

$$\Rightarrow \qquad \lambda^2 + 4 - 2\lambda^2 = 1 \qquad \text{or} \qquad \lambda^2 = 3$$

or
$$\lambda^2 = 3$$

$$\vec{a}^2 \ \vec{c}^2 \cos^2 \theta = 3$$

$$\cos^2\theta = 3/4$$

$$\vec{a}^2 \vec{c}^2 \cos^2 \theta = 3$$

$$\cos^2 \theta = 3/4$$

$$\theta = \pi/6$$

If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = 4\hat{i} + 3\hat{j} + 4\hat{k}$ and $\vec{c} = \hat{i} + \alpha\hat{j} + \beta\hat{k}$ are linearly dependent vectors & $|\vec{c}| = \sqrt{3}$, then Q.8 (A) $\alpha = 1, \beta = -1$ (B) $\alpha = 1, \beta = \pm 1$ (C) $\alpha = -1, \beta = \pm 1$ (D*) $\alpha = \pm 1, \beta = 1$

[Hint:
$$\alpha^2 + \beta^2 + 1 = 3$$
 \Rightarrow $\alpha^2 + \beta^2 = 2$; and $\begin{vmatrix} 1 & 1 & 1 \\ 4 & 3 & 4 \\ 1 & \alpha & \beta \end{vmatrix} = 0$]

Q.9 A vector of magnitude $5\sqrt{5}$ coplanar with vectors $\hat{i}+2\hat{j}$ & $\hat{j}+2\hat{k}$ and the perpendicular vector $2\hat{i}+\hat{j}+2\hat{k}$ is

$$(A) \pm 5 \left(5\hat{i} + 6\hat{j} - 8\hat{k}\right)$$

(B)
$$\pm \sqrt{5} \left(\hat{5i} + 6\hat{j} - 8\hat{k} \right)$$

(C)
$$\pm 5\sqrt{5} \left(5\hat{i} + 6\hat{j} - 8\hat{k}\right)$$

$$(D^*) \pm (\hat{5i} + 6\hat{j} - 8\hat{k})$$

[Hint: Unit vector coplanar with \vec{a} & \vec{b} and perpendicular to vector \vec{c} is $\pm \frac{(\vec{a} \times \vec{b}) \times \vec{c}}{|(\vec{a} \times \vec{b}) \times \vec{c}|}$

Paragraph for questions nos. 10 to 12

Consider three vectors $\vec{p} = \hat{i} + \hat{j} + \hat{k}$, $\vec{q} = 2\hat{i} + 4\hat{j} - \hat{k}$ and $\vec{r} = \hat{i} + \hat{j} + 3\hat{k}$ and let \vec{s} be a unit vector, then $Q.10_{\text{vectors}}$ \vec{p} , \vec{q} and \vec{r} are

- (A) linearly dependent
- (B) can form the sides of a possible triangle
- (C*) such that the vectors $(\vec{q} \vec{r})$ is orthogonal to \vec{p}
- (D) such that each one of these can be expressed as a linear combination of the other two

[Hint: $\underbrace{(\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - 4\hat{\mathbf{k}})}_{(\vec{\mathbf{g}} - \vec{\mathbf{r}}) \cdot \vec{\mathbf{g}}} \cdot (\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}) = 1 + 3 - 4 = 0 \implies (C)$ [12th, 23-9-2007]

since $[\vec{p}\vec{q}\vec{r}] = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 4 & -1 \\ 1 & 1 & 3 \end{vmatrix} = (12+1)-1(6+1)+1(2-4)=13-7-2=4 \implies A, B, D \text{ are wrong}]$

Q.11_{vectors} if $(\vec{p} \times \vec{q}) \times \vec{r} = u\vec{p} + v\vec{q} + w\vec{r}$, then (u + v + w) equals to (A) 8 (B*) 2 (C) - 2

$$(B^*)2$$

$$(C) - 2$$

(D)4

[Hint: $(\vec{p} \times \vec{q}) \times \vec{r} = (\vec{p} \cdot \vec{r}) \vec{q} - (\vec{q} \cdot \vec{r}) \vec{p}$

$$= -3$$

[12th, 23-9-2007]

$$\Rightarrow$$
 $u = -(\vec{q} \cdot \vec{r}) = -(2+4-3) = -3$

$$v = \vec{p} \cdot \vec{r} = 1 + 1 + 3 = 5$$
 & $w = 0$.

&
$$\mathbf{w} = 0$$

Hence u = -3, v = 5, $w = 0 \Rightarrow u + v + w = 2$ Ans. 1

$$u + v + w = 2$$
 Ans.

Q.12_{vectors} the magnitude of the vector $(\vec{p} \cdot \vec{s})(\vec{q} \times \vec{r}) + (\vec{q} \cdot \vec{s})(\vec{r} \times \vec{p}) + (\vec{r} \cdot \vec{s})(\vec{p} \times \vec{q})$ is

[Sol. \vec{p} , \vec{q} and \vec{r} are non-coplanar therefore $\vec{q} \times \vec{r}$, $\vec{r} \times \vec{p}$ and $\vec{p} \times \vec{q}$ are also non-coplanar

Hence, $\vec{s} = l(\vec{q} \times \vec{r}) + w(\vec{r} \times \vec{p}) + n(\vec{p} \times \vec{q})$

[12th, 23-9-2007]

$$\therefore \qquad l = \frac{\vec{\mathbf{s}} \cdot \vec{\mathbf{p}}}{[\vec{\mathbf{p}} \vec{\mathbf{q}} \vec{\mathbf{r}}]}, \qquad w = \frac{\vec{\mathbf{s}} \cdot \vec{\mathbf{q}}}{[\vec{\mathbf{p}} \vec{\mathbf{q}} \vec{\mathbf{r}}]} \qquad \& \qquad n = \frac{\vec{\mathbf{s}} \cdot \vec{\mathbf{r}}}{[\vec{\mathbf{p}} \vec{\mathbf{q}} \vec{\mathbf{r}}]}$$

Hence, $\vec{s}[\vec{p}\vec{q}\vec{r}] = (\vec{s}\cdot\vec{p})(\vec{q}\times\vec{r}) + (\vec{s}\cdot\vec{q})(\vec{r}\times\vec{p}) + (\vec{s}\cdot\vec{r})(\vec{p}\times\vec{q})$

$$\therefore \qquad \left| (\vec{s} \cdot \vec{p})(\vec{q} \times \vec{r}) + (\vec{s} \cdot \vec{q})(\vec{r} \times \vec{p}) + (\vec{s} \cdot \vec{r})(\vec{p} \times \vec{q}) \right| = |\vec{s}[\vec{p} \vec{q} \vec{r}]| = [\vec{p} \vec{q} \vec{r}] \quad (as \ |\vec{s}| = 1)$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 2 & 4 & -1 \\ 1 & 1 & 3 \end{vmatrix} = (12+1)-1(6+1)+1(2-4)=13-7-2=4 \text{ Ans.}$$

One or more than one is/are correct:

 $Q.13_{25}$ Given the following information about the non zero vectors \vec{A}, \vec{B} and \vec{C}

(i)
$$(\vec{A} \times \vec{B}) \times \vec{A} = \vec{0}$$

(ii)
$$\vec{B} \cdot \vec{B} = 4$$

(iii)
$$\vec{A} \cdot \vec{B} = -6$$

(iv)
$$\vec{B} \cdot \vec{C} = 6$$

Which one of the following holds good?

$$(A^*) \vec{A} \times \vec{B} = \vec{0}$$

$$(\mathbf{B}^*) \vec{\mathbf{A}} \cdot (\vec{\mathbf{B}} \times \vec{\mathbf{C}}) = 0 \qquad (\mathbf{C}) \vec{\mathbf{A}} \cdot \vec{\mathbf{A}} = \mathbf{8}$$

(C)
$$\vec{A} \cdot \vec{A} = 8$$

$$(D^*) \vec{A} \cdot \vec{C} = -9$$

[Sol. Given $|\vec{A}| |\vec{B}| \cos \theta = -6$; $|\vec{B}| = 2$ (given) [12th 15-10-2006]

$$\vec{B} \cdot \vec{C} = |\vec{B}| |\vec{C}| \cos \phi = 6$$

 $(\vec{A} \times \vec{B}) \times \vec{A} = 0$ and

$$(\vec{A} \cdot \vec{A})\vec{B} - (\vec{B} \cdot \vec{A})\vec{A} = 0$$

$$(\vec{A} \cdot \vec{A})\vec{B} = -6\vec{A} \qquad \dots (1)$$

 \vec{A} and \vec{B} are collinear and θ between \vec{A} and \vec{B} is $\pi \Rightarrow \vec{A} \times \vec{B} = 0 \Rightarrow \vec{A}$ is correct *:* .

$$\Rightarrow$$
 $\vec{A} \cdot (\vec{B} \times \vec{C}) = (\vec{A} \times \vec{B}) \cdot \vec{C} = 0 \Rightarrow B \text{ is correct}$

also $\vec{A} \cdot \vec{B} = -6$ and $|\vec{B}| = 2$

$$\therefore \qquad |\vec{A}| |\vec{B}| \cos \pi = -6$$

$$|\vec{A}| \cdot (2) = 6 \implies |\vec{A}| = 3 \implies \vec{A} \cdot \vec{A} = 9 \implies C \text{ is not correct}$$

again $\vec{A} \cdot \vec{C} = ?$

dot with \vec{C} the equation (1)

$$9(\vec{B}\cdot\vec{C}) = -6\vec{A}\cdot\vec{C}$$

9)(6) =
$$-6(\vec{A} \cdot \vec{C})$$
 \Rightarrow $\vec{A} \cdot \vec{C} = -9$ \Rightarrow (D) is correct]

- Q.14_{vec} Let \vec{a} , \vec{b} , \vec{c} are non zero vectors and $\vec{V}_1 = \vec{a} \times (\vec{b} \times \vec{c})$ and $\vec{V}_2 = (\vec{a} \times \vec{b}) \times \vec{c}$. If $\vec{V}_1 = \vec{V}_2$ then which of the following hold(s) good?
 - (A) \vec{a} and \vec{b} are orthogonal

 (B^*) \vec{a} and \vec{c} are collinear

(C) \vec{b} and \vec{c} are orthogonal

 $(D^*)\vec{b} = \lambda(\vec{a} \times \vec{c})$ when λ is a scalar.

[Sol.
$$\vec{V}_1 = \vec{V}_2$$
 [12th, 28-09-2008]

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$$

$$(\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c} = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{b} \cdot \vec{c})\vec{a}$$

$$\vec{a} \cdot \vec{b})\vec{c} = (\vec{b} \cdot \vec{c})\vec{a}$$

$$\Rightarrow$$
 either \vec{c} and \vec{a} are collinear or \vec{b} is perpendicular to both \vec{a} and \vec{c} \Rightarrow $\vec{b} = \lambda(\vec{a} \times \vec{c}) \Rightarrow \mathbf{B}, \mathbf{D}$

Q.15_{vec} If \vec{A} , \vec{B} , \vec{C} and \vec{D} are four non zero vectors in the same plane no two of which are collinear then which of the following hold(s) good?

(A)
$$(\vec{A} \times \vec{B}) \cdot (\vec{C} \times \vec{D}) = 0$$

$$(\mathbf{B}^*)\,(\vec{\mathbf{A}}\!\times\!\vec{\mathbf{C}})\!\cdot\!(\vec{\mathbf{B}}\!\times\!\vec{\mathbf{D}})\neq 0$$

$$(C^*)$$
 $(\vec{A} \times \vec{B}) \times (\vec{C} \times \vec{D}) = \vec{0}$

(D)
$$(\vec{A} \times \vec{C}) \times (\vec{B} \times \vec{D}) \neq \vec{0}$$

			DPP-1				
Q.1	В	Q.2 A	Q.3 D	Q.4	A	Q.5	В
Q.6	В	Q.7 D	Q.8 B	Q.9	D	Q.10	A
Q.11	A	Q.12 C					
			DDD 2				
Q.1	В	Q.2 D	DPP-2 Q.3 C	Q.4	A	Q.5	D
	В	Q.7 C			C		A
Q.6	В	Q.7 C	Q.8 D	Q.9	C	Q.10	А
			DPP-3				
Q.1	D	Q.2 B	Q.3 D	Q.4	A	Q.5	D
Q.6	В	Q.7 C	Q.8 B	Q.9	В	Q.10	D
Q.11	A	Q.12 A					
			DDD 4				
0.1	A	0.0	DPP-4	0.4		0.7	
Q.1	A	Q.2 B	Q.3 C	Q.4	A	Q.5	A
Q.6	В	Q.7 A	Q.8 C	Q.9	В	Q.10	C
Q.11	D	Q.12 A					
			<u>DPP-5</u>				
Q.1	В	Q.2 C	Q.3 B	Q.4	C	Q.5	В
Q.6	D	Q.7 D	Q.8 C	Q.9	В	Q.10	\mathbf{C}
Q.11	A						
			DPP-6				
Q.1	D	Q.2 B	Q.3 A	Q.4	D	Q.5	A
Q.6	В	Q.7 C	Q.8 C	Q.9	A	Q.10	D
Q.11	C	Q.12 A	Q.13 D	Q.14	В	Q.15	A, C
			DPP-7				
Q.1	C	Q.2 A	Q.3 D	Q.4	A	Q.5	C
Q.6	A	Q.7 A	Q.8 D	Q.9	D	Q.10	\mathbf{C}
Q.11	В	Q.12 A	Q.13 A, B, D	Q.14	B, D	Q.15	B, C