

INTRODUCTION TO ARM CORTEX M3

The Cortex™-M3 is a 32-bit microcontroller. It has a 32-bit data path, a 32-bit register

bank, and 32-bit memory interfaces. The processor has a Harvard architecture, which

means that it has a separate instruction bus and data bus. This allows instructions and data

accesses to take place at the same time, and as a result of this, the performance of the

processor increases because data accesses do not affect the instruction pipeline.

This feature results in multiple bus interfaces on Cortex-M3, each with optimized usage

and the ability to be used simultaneously. However, the instruction and data buses share

the same memory space (a unified memory system).

For complex applications that require more memory system features, the Cortex-M3

processor has an optional Memory Protection Unit (MPU), and it is possible to use an

external cache if it’s required. Both little endian and big endian memory systems are

supported.

The Cortex-M3 processor includes a number of fixed internal debugging components.

These components provide debugging operation supports and features, such as

breakpoints and watch points

.

Registers:

The Cortex-M3 processor has registers R0 through R15

R0–R12: General-Purpose Registers:

R0–R12 are 32-bit general-purpose registers for data operations. Some 16-bit Thumb®

instructions can only access a subset of these registers (low registers, R0–R7).

R13: Stack Pointers
The Cortex-M3 contains two stack pointers (R13). They are banked so that only one is visible at

a time.

The two stack pointers are as follows:

• Main Stack Pointer (MSP): The default stack pointer, used by the operating system (OS) kernel

and exception handlers

• Process Stack Pointer (PSP): Used by user application code

The lowest 2 bits of the stack pointers are always 0, which means they are always word aligned.

R14: The Link Register
When a subroutine is called, the return address is stored in the link register.

R15: The Program Counter

The program counter is the current program address. This register can be written to control the

program flow.

Special Registers
The Cortex-M3 processor also has a number of special registers (see Figure 2.3). They are as

follows

• Program Status registers (PSRs)

• Interrupt Mask registers (PRIMASK, FAULTMASK, and BASEPRI)

 Control register (CONTROL)

INTRODUCTION TO KEILµ VISION 4

PROCEDURE TO USE KEIL UVISION

Step1: open the KEIL uvision4 window.

Step2: click on PROJECT and select NEW PROJECT.

Step3: create new folder and give file name and select SAVE.

Step4: In the SELECT DEVICE FOR TARGET “TARGET1’window double click on NXP.

Select the device as LPC1768 and click OK.

Step5: A window is displayed asking whether to add start up code. click NO.

Step6: click on FILE and select NEW, type the program IN EDIT WINDOW.

Step7: Go to FILE and save the file with .C extension and another file with .s extension

Step8: After the file is saved, click on TARGET1 in PROJECT WORK SPACE. right click

on source group1 and select add files to source group1.

Step9: select type of file as c source file and select the needed file then press ADD & then click

on close.

Step10: Go to PROJECT and select options for target “target1’’a dialog box is displayed

assign the frequency as 12 MHZ in xtal. in the same window select the output tab and select the

“CREAT HEX FILE”option.then click ok.

Step11: Go to PROJECT and select BULID TARGET option. Before debugging check

whether the project is built or not, that is whether there are any errors. if there is any error it

should be eliminated before Debugging. if there is no error then only target is created.

Step12: Again in the DEBUG menu select START/STOP debug session in the disassembly

window

Program Code will be displayed in the register space, Contents of registers are visible.

Notedown the register content

Write an ALP to find the sum of first 10 integer numbers

.C FILE

#include <LPC17xx.H>

extern void sumten(void); //Name of assembly routine

int main(void)

{

SystemInit();

sumten(); //calling asm code

while(1);

}

.S FILE

AREA sum,CODE,READONLY

EXPORT sumten

ENTRY

sumten

MOV R1,#10 ; load 10 to regester

MOV R2,#0 ; empty the register to store result

loop

ADD R2,R2,R1 ; add the content of R1 with result at R2

SUBS R1,#0x01 ; Decreament R1 by 1

BNE loop ; repeat till r1 goes 0

BX LR ; jumps back to C code

END

OUTPUT:

R2:0X037

Write an ALP to multiply two 16 bit binary numbers

.C FILE

#include <LPC17xx.H>

extern void multiply(void); //Name of assembly routine

int main(void)

{

SystemInit();

multiply(); //calling asm code

while(1);

}

.S FILE

AREA sum,CODE,READONLY

EXPORT multiply

ENTRY

multiply

MOV R1,#03 ; load 10 to register

MOV R2,#02 ; empty the register to store result

loop

MUL R2,R2,R1 ; add the content of R1 with result at R2

BX LR ; jumps back to C code

END

Output:

R2=0x06

 MAHARAJA INSTITUTE OF TECHNOLOGY, THANDAVAPURA

(Approved by the AICTE & Affiliated to Visvesvaraya Technological University, Belagavi)

(Certified by ISO 9001:2015 & ISO 21001:2018)

Department of Computer Science & Engineering

MCES LAB – PART B – UNRULED SIDE DIAGRAMS
(18CSL48)

 INSTRUCTIONS:

➢ Include all these diagrams neatly according to the respective programs.
➢ Write these diagrams on the unruled (left side) part of the record – beginning page of the

program.
➢ For example, “UART” diagram should be included on the left side of the record, where the

right side contains the beginning of the UART (Hello World) program.

 PROGRAM – 9: Hello World – UART

 PROGRAM – 10: DC Motor – No diagram

 PROGRAM – 11: Stepper Motor

 PROGRAM – 12: ADC Interfacing

 PROGRAM – 13: DAC – Triangle Wave

 PROGRAM – 14: 4x4 Keypad interfacing

 PROGRAM – 15: Ext. INT – No diagram

 PROGRAM – 16: Seven Segment Display interfacing

LPC

2148

