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Abstract 

Introduction: Cell penetrating peptides (CPPs) known as protein translocation domains 

(PTD), membrane translocating sequences (MTS) or Trojan peptides (TP) are able to 

cross biological membranes without clear toxicity using different mechanisms, and 

facilitate the intracellular delivery of a variety of bioactive cargos. CPPs could overcome 

mailto:azam.bolhassani@yahoo.com
mailto:A_bolhasani@pasteur.ac.ir
https://crossmark.crossref.org/dialog/?doi=10.1080/17425247.2019.1676720&domain=pdf


Acc
ep

ted
 M

an
us

cri
pt

 

 

some limitations of drug delivery and combat resistant strains against a broad range of 

diseases. Despite delivery of different therapeutic molecules by CPPs, they lack cell 

specificity and have a short duration of action. These limitations led to design of 

combined cargo delivery systems and subsequently improvement of their clinical 

applications.  

Areas covered: This review covers all our studies and other researchers in different 

aspects of CPPs such as classification, uptake mechanisms and biomedical 

applications.  

Expert opinion: Due to low cytotoxicity of CPPs as compared to other carriers and final 

degradation to amino acids, they are suitable for preclinical and clinical studies. 

Generally, the efficiency of CPPs was suitable to penetrate the cell membrane and 

deliver different cargos to specific intracellular sites. However, no CPP-based 

therapeutic approach has approved by FDA, yet; because there are some 

disadvantages for CPPs including short half-life in blood, and non-specific CPP-

mediated delivery to normal tissue. Thus, some methods were used to develop the 

functions of CPPs in vitro and in vivo including the augmentation of cell specificity by 

activatable CPPs, specific transport into cell organelles by insertion of corresponding 

localization sequences, incorporation of CPPs into multifunctional dendrimeric or 

liposomal nanocarriers to improve selectivity and efficiency especially in tumor cells.  

Keywords: Cell penetrating peptides; bioactive cargos; mechanism of action; 

biomedical application 

 

 

 

Article highlights 

 CPPs facilitate the intracellular delivery of a variety of bioactive cargos 

 CPPs lack cell specificity and have a short duration of action 

 Combination of other delivery systems with CPPs improve their clinical 

applications 

 It is important to predict which CPP is optimal for target of interest 
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Abbreviations 

ACPP: activatable CPP; AHNP: anti-Her-2/neu peptide mimetic; ALL: acute 

lymphoblastic leukemia; BBB: blood brain barrier; BH4: Bcl-2 homology domain 4; CAT: 

catalase; CdSe: cadmium selenide; CdTe: cadmium telluride; CPPDs: CPP-drugs; 

CXCR4: CXC chemokine receptor 4; DCPP: CPP-dendrimer; DDS: drug delivery 

system; DMD: Duchenne muscular dystrophy; DOX: doxorubicin; ELP: elastin-like 

polypeptide; GCV: ganciclovir; HDM-2: human double minute-binding protein; K-FGF: 

Kaposi’s sarcoma fibroblast growth factor 1; MDM-2: mouse double minute-binding 

protein; MMP: matrix metalloproteinase; MSC: mesenchymal stem cells; MT1-MMP: 

membrane type-1 matrix metalloproteinase; MTSs: membrane-translocating sequences; 

NBD: NF-κB essential modulator (NEMO)-binding domain; NPCs: nuclear pore 

complexes; PMO: phosphorodiamidate morpholino oligomers; PNA: peptide nucleic 

acid; POD: peptide for ocular delivery; PTD: protein transduction domains; siRNA: small 

interfering RNA; SOD1: superoxide dismutase 1 

 

1. Introduction 

Development of novel strategies in the design of bioactive and therapeutic molecules 

was broadly increased during the recent years. However, the cellular uptake of these 

therapeutic agents through biological membranes (e.g., nuclear or plasma membranes) 

was a major barrier for their clinical application. Several delivery systems such as viral 

and non-viral carriers were developed to overcome low permeability of membranes and 

to improve delivery of therapeutic molecules. Among these carriers, cell penetrating 

peptides (CPPs) known as protein transduction domains (PTDs) efficiently penetrate 

into the cells as well as deliver biologically active cargos [1, 2]. These peptides are 

small molecules (less than 30 amino acids) [3] which are classified in cationic, 

amphipathic and hydrophobic groups based on their physicochemical properties [4]. 

Many CPPs were derived from natural proteins, but other CPPs were either chimeric or 

completely synthetic. Mechanisms of CPP internalization into cells can occur through an 

endocytic pathway and/or through direct penetration [2]. Although, CPPs are an 
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effective approach for delivery of therapeutic peptides and proteins, but however there 

are some challenges to overcome in clinical trials containing toxicity of CPPs, stability of 

CPPs (i.e., protection against plasma enzymes), immune responses to CPPs, and 

tissue-specific targeting by CPPs (i.e., selectivity) [5, 6]. Up to now, numerous in silico 

CPP prediction algorithms were established to facilitate screening of peptides. There 

are 1699 unique CPP sequences that most of them are linear CPPs (94.5%) based on 

the CPP database site. The major researches on CPPs focus on synthetic peptides (~ 

54.8%) [7]. Two methods including CellPPD and CPPpred were applied to predict CPPs 

(Length: 5-30 amino acids) and design efficient CPPs including quantitative structure-

activity relationship models and support vector machines (SVM) [8]. Tang et al. showed 

that the machine learning model of SVM was suitable for predicting membrane 

penetrating capability (accuracy: ~95%). In fact, the use of amino acid position as a 

variable can be considered as a promising method for predicting the ability of CPPs in 

cell penetration [9]. For example, SVM-based models were developed to predict and 

design highly effective CPPs. It was possible to recognize CPPs from non-CPPs based 

on amino acid composition. However, certain amino acids such as Arg, Lys, Pro, Trp, 

Leu, and Ala were preferred to locate at specific sites [10]. In this review, we attempt to 

represent an overview of classifications, mechanisms, advantages and limitations, in 

vitro/ in vivo applications, and finally preclinical and clinical uses of CPPs for 

pharmaceutical development. 

2. Discovery of cell penetrating peptides 

The first CPPs were identified in 1988 and 1991 which derived from the transactivator 

protein (Tat) of human immunodeficiency virus type 1 (HIV-1) and the Drosophila 

antennapedia homeobox protein (pAntp), respectively [2, Figure 1]. In 1997, a short 

peptide carrier (MPG) containing hydrophilic and hydrophobic domains was synthesized 

to form non-covalent complexes with cargos. In 1998, Langel et al designed the first 

chimeric peptide carrier including the N-terminal fragment of the neuropeptide galanin 

linked to mastoparan (a wasp venom peptide) entitled as the Transportan peptide [11, 

12]. Up to now, more than 100 peptides were identified to deliver a variety of biologically 

active molecules (i.e., nucleic acids, proteins, peptides, drugs, etc.) into eukaryotic and 

prokaryotic cells [6, Table 1]. On the other hand, different preclinical and clinical trials of 
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CPP-based delivery are recently under investigation. In 2003, the first clinical trial 

(phase II) was performed by Cell Gate Inc. for topical delivery of cyclosporine linked to 

polyarginine (Figure 1). KAI pharmaceutical Ins. evaluated a fusion of Tat CPP with 

protein kinase C inhibitor peptide modulator for acute myocardial infarction and cerebral 

ischemia which entered phase IIb trials. A cell penetrating-based technology 

(TransMTSTM) was also developed for topical delivery of botulinum toxin and other 

macromolecules across skin by Revance Therapeutics Inc. which entered phase II 

trials. Other companies (e.g., Traversa Inc.) evaluated Tat-based non-covalent siRNA 

delivery at preclinical and clinical trials [12].  

3. Classification 

CPPs were classified based on a variety of their properties including physicochemical 

properties (i.e., cationic, amphipathic or hydrophobic), linkage with therapeutic 

molecules (i.e., covalent or non-covalent binding) and their origin (i.e., natural protein-

derived CPP, chimeric or synthetic) [4]. These subclasses were explained as following 

and summarized in Tables 1 and 2. 

3.1. Classification based on physicochemical properties 

CPPs were divided into three subgroups using their physicochemical properties such as 

cationic (~ 83%), amphipathic (~ 44%) and hydrophobic (~ 15%) peptides [13]. 

3.1.1. Cationic CPPs 

These peptides are short amino acid sequences containing histidine, arginine and lysine 

residues, e.g., Tat, poly arginine and poly lysine. The charge of lysine (K) and arginine 

(R) is positive, but lysine is less effective for cell penetration, alone likely due to the lack 

of guanidine group. At least eight positive charges are required for effective cellular 

uptake of cationic CPPs [14]. Although, charged residues are important for cellular 

penetration, other residues can also be critical. For example, mutation of W14 to F in 

Penetratin (RQIKIWFQNRRMKWKK) reduced its cellular uptake [15]. A special group of 

cationic CPPs are nuclear localization sequences (NLSs) harboring lysine-, arginine- or 

proline-rich motifs which enter the nucleus via the nuclear pore complexes (NPCs). 

NLSs are classified into monopartite (e.g., SV40: PKKKRKV) and bipartite (e.g., 
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nucleoplasmin: KRPAATKKAGQAKKKL) signals. Other NLSs are TFIIE- 

(SKKKKTKV), NF-B (VQRKRQKLMP), HATF-3 (ERKKRRRE), Oct-6 (GRKRKKRT) 

and SDC3 (FKKFRKF) [16]. However, NLSs are often covalently linked to a 

hydrophobic peptide sequence to make an amphipathic CPP with an efficient cell 

uptake. 

3.1.2. Amphipathic CPPs  

Amphipathic CPPs have lipophilic and hydrophilic regions for translocation across the 

cell membrane [14]. They are categorized into primary amphipathic CPPs (e.g., Pep-1, 

pVEC, MPG, penetratin, CADY, ARF or BPrPr), secondary amphipathic -helical CPPs 

(e.g., hCT18-32), -sheet amphipathic CPPs (e.g., VT5) and proline-rich amphipathic 

CPPs (e.g., bactenecin-7, SAP) [13, 17].  

Some primary amphipathic CPPs including MPG 

(GLAFLGFLGAAGSTMGAWSQPKKKRKV) and Pep-1 

(KETWWETWWTEWSQPKKRKV) are chimeric peptides obtained by covalently linking 

a hydrophobic domain to the SV40 NLS (PKKRKV) [13]. Membrane translocation of 

amphipathic CPPs depends on amphiphilicity not on positive charges. For example, 

replacing lysines with other polar residues in an amphipathic peptide (MAP) 

(KLALKLALKALKAALKLA) [i.e., the neutral MAP17 peptide: QLALQLALQALQAALQLA 

and the anionic MAP12 peptide: LKTLTETLKELTKTLTEL] retained its cellular uptake. 

Moreover, the studies showed that uptake of amphipathic CPPs was severely 

decreased by single point mutations and deletion (e.g., transportan and MAP mutants) 

[13].  

3.1.3. Hydrophobic CPPs   

Hydrophobic peptides (i.e., stapled or prenylated peptides, and pepducins) contain only 

apolar residues, e.g., the signal sequences from integrin β3 (VTVLALGALAGVGVG), 

Kaposi fibroblast growth factor (AAVALLPAVLLALLAP) and MAP 

(KLALKLALKALKAALKLA) [17]. Linear hydrophobic peptides include anionic and 

cationic pentapeptides such as VPALR, VSALK, PMLKE, IPMLK, VPTLQ, IPALK and 

VPTLK. The lack of sensitivity to sequence scrambling was determined for hydrophobic 
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peptides as compared to amphipathic and cationic CPPs [18]. The studies showed that 

some hydrophobic CPPs can directly translocate via cell membranes and thus eliminate 

the risk of endosomal entrapment [13]. 

 

3.2. Classification based on binding type with cargos  

Two main subclasses of CPPs were categorized based on their linkage with therapeutic 

molecules: a) Covalent bonded CPPs: CPPs conjugated to therapeutic molecules 

through different linkers especially disulfide or thioesters linkages (e.g., Penetratin, R8, 

Tat, HSV VP22, Transportan, SynB and Buforin I antimicrobial peptides, and polyproline 

peptides) [19, 20], and b) Non-covalent bonded CPPs: CPPs complexed with 

therapeutic molecules through non-covalent electrostatic and hydrophobic interactions 

(e.g., mainly primary or secondary amphipathic peptides). For instance, MPG and Pep-1 

are primary amphipathic peptides which form stable complexes with oligonucleotides or 

proteins/peptides, respectively [21, Figure 2 and Table 2]. 

 

3.3. Classification based on the source of the peptide 

CPPs were classified in three classes based on their origin including: a) natural CPPs 

derived from DNA-RNA-binding proteins, anti-microbial proteins, viral particle envelope 

proteins, transactivators of gene transcription, and plant circular skeletal proteins (e.g., 

Tat, penetratin, VP22); b) Chimeric CPPs generated by combination of natural peptides 

or of signal peptides with NLS peptides (e.g., transportan, Pep-1, MPG, TP10), and c) 

Synthetic or artificial CPPs designed based on the naturally-derived CPPs (e.g., 

polyarginine, MAP) [2]. It is important that the synthetic CPPs should be optimized to 

enhance their stability in blood circulation, increase cellular internalization, and escape 

endolysosomal degradation [22]. Indeed, the type of amino acid (mainly arginine and 

histidine substitution) can affect internalization efficiency of CPPs. The studies showed 

that the efficiency of cellular uptake was decreased by reducing the number of arginine 

residues. For example, penetratin-Arg showed higher penetration than that of 

penetratin-Lys [23, 24]. Moreover, arginine-replacing peptides (e.g., SR9, PR9 and 

HR9) were able to transport fluorescent proteins into the cells. HR9 peptide is more 

efficient than SR9 and PR9 peptides, because Histidine (H) motif has buffering ability 
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under physiological conditions (i.e., pH-responsive), and also endolysosome escape 

activity (i.e., proton-sponge effect) [22, 25].  

 

4. Antimicrobial peptides as a special class of CPPs 

Antimicrobial peptides (AMPs), known as host defense peptides, are short and 

commonly positive charge peptides which some of them have the ability to kill microbial 

pathogens directly, whereas others act indirectly by modulation of the host defense 

systems [26]. Several AMPs are able to translocate into cells without the permanent 

membrane permeabilization. They were used as effective vectors for intracellular 

translocation of various active molecules, e.g., Magainin 2 and Buforin 2 [27, 28]. Some 

AMPs have attracted a special interest because they can enter host cells without 

damaging their cytoplasmic membrane as well as kill pathogenic agents [28]. Although 

there are some similar properties between CPPs and AMPs, but their use in treatments 

especially cancer therapy differ due to their amino acid composition, cell membrane 

targeting ability, secondary structure manifestation, mode of cell membrane 

permeabilization, cytoplasmic destination and functional capabilities. While CPPs were 

involved with cell pore penetration and delivery of different cargos, AMPs were 

characterized by disruption/destabilization of cell membranes, channel/ pore formation, 

and enhancement of immune response. As observed, CPPs transports conjugated 

and/or bound drugs, chemicals, and chemotherapeutic drugs; but AMPs lacks cargo 

delivery ability, binds metals and dimerizes with peptides and proteins. Moreover, CPPs 

have no effects on immunity of the host; while AMPs enhance the innate immune 

response of host and promote chemokine immunomodulation [29]. Thus, it is interesting 

for combination of CPP and AMP properties, e.g., the design of antimicrobial cell 

penetrating peptides with bacterial cell specificity. For instance, Iztli peptide 1 (IP-1) was 

used because of both properties of cell penetrating peptides (CPP) and cationic 

antibacterial peptides (CAP). IP-1 could make pores in the presence of high electrical 

potential at the membrane of fungi/human cells as found in bacteria and mitochondria 

[30]. 

 

5. Structure-activity relationship of CPPs 
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The structure-activity relationship of CPPs interacting with lipid membrane was studied 

using fluorescence microscopy and spectroscopy techniques. These studies showed 

the role of secondary structure of peptides, the effect of lipid composition, and the 

membrane potential in peptide-lipid interactions [31]. A study showed that peptides with 

α-helical regions can more effectively enter cells. Thus, the efficiency of cargo delivery 

was improved by modification of the peptide structure to overcome some problems such 

as poor solubility, aggregation, toxicity and low synthesis amount [19]. CPPs adopt 

different conformations (i.e., structural polymorphisms) following the interaction with 

lipids under various experimental conditions including temperature, peptide/lipid ratios 

and buffer conditions (e.g., ionic strength, pH). For example, penetratin peptide adopted 

α-helical, -strand or -turn structures in model membranes. This peptide mainly 

showed -strand and random coil structures in the cytoplasm, and also -sheet in the 

nucleus [32, 33]. On the other hand, the role of tryptophan residue is critical for the 

cellular uptake in arginine-rich CPPs (e.g., RW9: RRWWRRWRR). Indeed, the number 

of Trp residues, their position in the helix, and the size of the hydrophobic surface in 

peptides were critical for their cell uptake. The highest internalization occurred for the 

peptides with three Trp residues that adopted α-helix structure in interaction with lipids 

[34]. Moreover, incorporation of Trp residues in basic peptide sequences could control 

the efficiency of CPP internalization through increasing the peptide interaction with 

negatively charged glycosaminoglycans (GAGs), and subsequently the internalized 

amounts by endocytosis [35]. 

Chemical/ structural modifications on CPPs led to the development of their stability, 

biocompatibility and safety. Generally, structural modifications of proteins and peptides 

include prodrug, analogous formation, modification of C- or N-terminals (e.g., polymer 

conjugation, post-terminal modification, site specific modification), conjugation with fatty 

acids (e.g., irreversible lipidization, reversible lipidization), combination of both site-

specific modification and lipidization, hydrophobic ion pairing, complexation with 

cyclodextrins, and current technologies (e.g., Nobex technology, Emisphere technology) 

[36]. For feasible delivery of proteins and peptides through oral route, their 

physicochemical properties (e.g., stability, hydrophobicity and molecular weight) as well 

as biological barriers (e.g., proteolysis in stomach and poor permeation into cells) 
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should be considered. These issues could be solved by modification of the 

physicochemical property or the use of a delivery system. The modification of the 

primary structure of a peptide through covalent or non-covalent binding led to the 

improvement of enzymatic stability and mucosal penetration [36]. Chemical modification 

could provide a more efficient uptake of cargoes across the epithelial barrier of the 

gastrointestinal tract [37]. Chemical glycosylation was suggested as a method to 

enhance protein stability and long-term bioavailability. Chemical modification of the 

peptide structure resulted in an increased skin permeability. Four peptide analogues 

(Arg0, Arg1, Arg2 and Arg3) dissolved in various propylene glycol and water co-solvents 

were studied in skin permeation and wrinkle reduction. Two peptides (Arg2 and Arg3) 

enhanced human skin permeation in vitro. On the other hand, the ability of four peptide 

analogues to reduce wrinkle formation showed that Arg3 was the most effective 

followed by Arg1, Arg0 and Arg2, respectively [38]. Recently, a novel family of cyclic 

CPPs containing only a single hydrophobic residue has been generated. The optimal 

CPP structure included four arginine residues and a hydrophobic residue with a long 

alkyl chain (e.g., a decyl group) in a cyclohexapeptide ring. The most active member of 

this family was CPP17 even at high doses of serum protein likely due to the lower 

protein binding. CPP17 could enter the cell by direct penetration at a relatively low 

concentration (≥ 5 μm) [39]. The affinity of CPPs for glycosaminoglycans (GAGs) was 

increased with the number of Trp residues, from 30 nM for a penetratin analog with 1 

Trp residue to 1.5 nM for a penetratin analog with 6 Trp residues for heparin (HI). The 

quantity of peptide internalized into CHO cells enhanced 2 times with 1 Trp residue, 10 

times with 2 Trp residues, and 20 times with 3 Trp residues, compared to +6 peptides 

with no Trp residues. Thus, Trp residues indicated molecular determinants in basic 

peptide sequences not only for direct membrane translocation but also for efficient 

endocytosis through GAGs [40]. A nonapeptide series containing only Arg, Trp or D-Trp 

residues at different positions was designed. The data indicated that to increase the 

uptake efficiency, Arg could be replaced by Trp in the nonapeptides. The presence of 

Trp in oligoarginines enhanced the uptake in cells expressing GAGs at their surface. 

Density functional theory (DFT) analysis showed that salt bridge-π interactions play a 

main role for the GAG-dependent entry mechanisms [41]. 
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6. Mechanism of cellular uptake 

The mechanism of the CPP uptake significantly varies based on cell type, linkage type, 

incubation time, dose and physiochemical properties (e.g., hydrophobicity and net 

charge) [42, Figure 3, Table 2]. The reports demonstrated that the cellular uptake of 

CPPs can occur through several approaches such as direct penetration, and clathrin/ 

caveolae-mediated endocytic uptake depending on the nature of the peptide/ cell 

membrane interaction [19]. 

6.1. Direct penetration 

Direct penetration as an energy-independent approach includes various mechanisms 

such as pore formation, inverted micelle formation, the membrane thinning model, and 

the carpet-like model. In these mechanisms, the first step is the interaction of positively 

charged CPPs with negatively charged components of membrane (i.e., HS: heparan 

sulfate) and the phospholipid bilayer. The second step of cellular uptake is dependent 

on the peptide sequence and dose as well as the lipid structure of the cell membrane. In 

general, direct penetration further occurs at high doses of CPPs especially primary 

amphipathic peptides (e.g., MPG or transportan) [43]. Rothbard et al. indicated that an 

increased potential of the cell membrane led to high internalization of CPPs [44]. The 

“inverted micelle” is another mechanism of the direct penetration as observed for 

penetratin peptide [45]. Indeed, after primary binding of positively charged residues of 

the CPP (i.e., lysine and arginine) to the negatively charged phospholipids of the 

membrane, the CPP traverses the cell membrane toward the cytoplasm forming pocket-

like micelles. Then, these micelles go across and invert the cell membrane for the 

release of the CPP and its cargo into the cells [46]. It seems that the interaction of 

hydrophobic amino acids (e.g., tryptophan) with the hydrophobic region of the 

membrane is important in formation of inverted micelles and the efficiency of cell 

penetration. Thus, the highly cationic CPPs (e.g., Tat peptide) cannot likely use this 

mechanism [43]. In the membrane thinning model and the carpet-like model, the 

interaction of cationic CPPs (e.g., Tat peptide at high concentrations) with negatively 

charged phospholipid led to a thinning and carpeting of the membrane, respectively [2, 

43]. Moreover, in pore formation model, the disruption of the lipid membrane occurs 
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through interaction of the side chains of basic residues in CPP with phospholipid 

phosphate groups. This model was observed for polyarginine peptides (Arg9) or 

Mastoparan X (a class of toxic peptides isolated from wasp venom). The peptide-to-lipid 

ratio can determine the size of pores for cell penetration [47]. 

 

6.2. Endocytosis  

Endocytosis contains two main mechanisms for the uptake of biomolecules or other 

cells: phagocytosis in special cells (e.g., macrophages), and pinocytosis in most cells 

such as macropinocytosis, clathrin-mediated endocytosis or caveolae/lipid raft-mediated 

endocytosis. The Antp, nona-arginine and Tat peptides simultaneously used three 

endocytic pinocytosis pathways. However, the endocytic uptake mechanism for CPPs is 

dependent on cargo type. For instance, Tat peptide conjugated to a protein used lipid 

raft-mediated endocytosis mechanism while Tat peptide conjugated to a fluorophore 

utilized clathrin-dependent endocytosis mechanism [6]. A study showed that Tat-

mediated delivery of cargos (more than 30 kDa) could proceed through energy-

dependent macropinocytosis with an increased endosomal escape into the cytoplasm 

[48]. Thus, the conjugates of polycationic and amphipathic peptides use a variety of 

internalization approaches [49]. On the other hand, macropinocytosis was associated 

with the formation of vesicles called macropinosomes. Dynamin protein was needed for 

this folding of the membrane [43]. Both Tat-fusion proteins (> 30 kDa) and Tat PTD (1-5 

kDa) entered cells by macropinocytosis [17]. In receptor-mediated endocytosis, clathrin-

coated vesicles (about a few hundred nanometers in diameter) and caveolin-coated 

vesicles (about 50-80 nm in diameter) were generated after binding the biomolecules to 

the membrane receptor leading to cellular uptake [43]. The studies showed that all three 

mechanisms of the endocytic pathways were independent on the CPP dose and 

sequence [50]. 

 

7. Effective factors in the uptake mechanism  

As mentioned above, the mechanisms of the CPP uptake change significantly due to 

different factors including the dose, hydrophobicity and net charge of the CPPs, cell 

type, temperature and time of incubation, the size and type of the cargo, and the linkage 
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method [17, Table 3]. For example, lowering temperature as well as depletion of cell 

energy effectively confirmed the endocytotic mechanism for the internalization of non-

covalent protein/ CPP complexes. A study indicated that Tat and transportan CPPs 

revealed higher efficiency of protein delivery than pVEC or penetratin CPPs [51]. On the 

other hand, the dose of CPP was important to trigger various cellular uptake pathways. 

For instance, endocytosis commonly occurred at low CPP concentrations. In contrast, 

direct penetration occurred at high concentrations especially for primary hydrophobic 

peptides and many cationic CPPs, but however, the threshold of concentration changes 

among different types of CPPs, cell lines, and cargos. It was observed that Tat linked to 

a large cargo was often entrapped within endocytic vesicles; while, Tat fused to a small 

cargo could escape from endosome and enter the cytosol. Thus, when the cargo is less 

than 10-20 kDa, the CPP conjugates can directly penetrate the cell membrane under 

special conditions [52]. The importance of positive charges (arginine residues versus 

lysine residues) and hydrophobic α-helical structures was proved in the cellular uptake 

mechanism, as well [53]. The arginine-rich CPPs used different forms of endocytosis as 

the uptake mechanism at the high peptide concentrations [52]. Administration dose of 

arginine (R)-rich CPPs has a major role in determining uptake method of these 

peptides. The researchers showed that there are at least two pathways for CPP 

internalization including endocytosis and direct translocation, and the latter mode of 

internalization is highly dependent on administration dose. In this line, other results also 

confirmed this finding, e.g., the cytosolic translocation (direct penetration) of Tat, 

Penetratin and R9 was enhanced when HeLa cells were treated at relatively high 

concentration of these peptides (> 10 μM) [54]. However, low and high concentrations 

depend on CPP, cargo and cell types. Usually, direct penetration can occur in more 

than 10-20 µM [55]. Moreover, Meloni et al. reported that increasing poly-arginine length 

improved the cellular uptake, the cytosolic release and subsequently the biological 

activity [56]. Indeed, dodeca- or hexadeca-arginine peptides indicated higher cellular 

internalization than octaarginine peptides [57]. The secondary amphipathicity of the 

peptides could also increase gene delivery [58]. Finally, the length and the conformation 

of the CPPs affect the uptake mechanism, e.g., efficient translocation of pVEC against 

scrambled pVEC into various cell lines [43]. Although, some CPP-fusion proteins/ 
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bioactive molecules are entrapped in the endosomal vesicles, several methods were 

used to facilitate endosomal escape such as chemical agents (e.g., chloroquine, 

calcium, sucrose, ammonium chloride and sodium azide). Moreover, DMSO was used 

as an effective penetration enhancer for drugs, anticancer agent and exogenous DNA 

delivered by Tat peptide [59]. However, it is essential to find chemical agents with lower 

cytotoxicity and increase the uptake potency of CPPs before clinical use [3]. Ma et al 

showed that the pretreatment with benzisothiazolinone (BIT) augmented the penetrating 

efficacy of Tat and Tat-protein conjugates [3]. Splicing correction by steric-blocking 

oligonucleotides (ON) could lead to major clinical applications but needs their effective 

delivery to cell nuclei. The conjugation of short oligolysine tails was utilized to transfer a 

correcting peptide nucleic acid (PNA) sequence [(Lys) 8-PNA-Lys)] in an endocytic 

mechanism of internalization. It was observed that a significant and sequence-specific 

splicing correction was achieved only in the presence of endosome-disrupting agents 

(e.g., chloroquine or 0.5M sucrose). These agents could overcome the limitations of 

endosomal trapping for splicing correction by PNA-oligolysine conjugates [60]. The use 

of CPP-based delivery was limited because of the poor delivery efficiency of CPP 

conjugated potent cargos. In this line, a study showed that the combination of glucose, 

sucrose and manntiol (GSM) in the presence of osmoprotectant (glycerol and glycine) 

could enhance CPP penetration as a novel strategy in vitro [61]. On the other hand, 

chemical linkage of CPPs to other delivery systems is an effective strategy to enhance 

the uptake of plasmid DNA (pDNA). For example, the conjugation of CPPs (e.g., Tat, 

penetratin and octaarginine) to thiolated chitosan/pDNA polyplexes improved 

transfection efficiency of both systems [62]. Other study indicated that the coupling of 

Tat to chitosan-thioglycolic acid (TGA)/pDNA nanoparticles increased cell penetration 

and also endosomal escape of nanoparticles [63]. Also, delivery of CPP-peptide nucleic 

acid (PNA) conjugate into the cells using a variety of treatments (e.g., photodynamic, 

chloroquine or Ca
2+ treatment) enhanced the release of CPP conjugate into the 

cytoplasm leading to the effective antisense effects of CPP-PNA conjugate. The 

delivery of the CPP-PNA conjugate and its nuclear antisense effects was improved by 

endosome-disruption treatment [64]. In addition, a fusion protein containing ten 

arginines fused to residues 253-412 of the translocation domain of Pseudomonas 
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aeruginosa exotoxin A (ETA) facilitated the endosomal escape of enhanced green 

fluorescent protein (i.e., CPP-ETA-EGFP) as a protein cargo into the cytosol indicating 

that the linkage of ETA to the CPP-containing protein fusion construct (CPP-EGFP) 

prevented lysosomal degradation using the delivery of construct from early endosomes 

to the ER lumen and then into the cytosol [65]. Another study showed that the C-

terminus of human papillomavirus (HPV) L2 protein has a conserved cationic CPP 

leading to the endosomal escape into the cytoplasm, and subsequently virus transport 

to the trans-Golgi network [66].  

8. Cytotoxicity of CPPs  

The potential toxicity of CPPs showed a major barrier to their clinical application [67]. 

The safety was related to CPP and cargo toxicity, clearance and immunogenicity [68]. It 

was observed that toxicity of CPPs is low at their effective doses [69]. Moreover, their 

cytotoxicity highly depends on the length and dose of cargo, and the coupling site of 

cargo within the CPP [67-71]. It seems that the peptide oligonucleotide conjugates 

showed very little cytotoxicity in therapeutic use [72]. Some studies indicated that the 

toxicity was dependent on cell type, CPP type and composition, physicochemical 

properties, and also dose/ frequency/ route of injection [68, 69, 73]. For example, Vives 

et al. reported that the short Tat peptide (aa 37-60) was non-toxic for HeLa cells up to 

100 µM concentration and 24 h incubation [74]. Harbour et al. showed that the Tat CPP 

alone was non-toxic in four different tumor cell lines (i.e., WERI retinoblastoma cells, 

MM-23 uveal melanoma cells, C33A cervical carcinoma cells and U2OS osteosarcoma 

cells), even at concentrations approximately 300 µM [75]. On the other hand, although 

penetratin peptide was non-toxic in keratocytes (CC50: 200 μM), but it decreased the 

survival in HeLa (CC50: 93 μM), Vero (CC50: 70 μM) and TM-1 (CC50: 50 μM) cells 

[76]. Furthermore, the YTA2 CPP (acetyl-YTAIAWVKAFIRKLRK-amide) was shown to 

deliver proteins into MDA-MB-231 breast cancer cells with high efficacy and without 

cytotoxicity even at high doses up to 10 µM concentration [77]. Some studies 

demonstrated that protein cargos such as GFP and HIV-1 Nef protein were effectively 

transfected into HEK-293T cells using Pep-1 and Cady-2 amphipathic CPPs at a molar 

ratio of 20:1 without toxicity through an endosomal pathway-independent mechanism 
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[5]. Pep-1 also showed no cytotoxicity in L929 cells at high doses [78]. In this line, M918 

peptide as a protein carrier was effectively translocated into HeLa and human breast 

cancer cells without cytotoxicity up to 25 µM concentration [79].  

Several amphipathic CPPs with antiviral effects were toxic in vitro likely due to pore 

formation in cell membranes (membrane perturbation triggering the temporal influx of 

calcium ions and the elevation of intracellular calcium concentration) such as bKLA 

peptide (b-KLALKLALKALKAALKLA-amide), amphipathic fragment of HIV-1 gp120 

and/or the fusogenic domains of viral entry or fusion proteins [67, 73]. The studies 

showed that there is a correlation between the high numbers of hydrophobic amino 

acids in the peptide sequence and the induction of toxicity. Holm et al. indicated that 

peptidomimetics containing retro-inversion CPPs composed of D-amino acids induced 

more cytotoxicity than those composed of L-amino acids due to higher stability against 

proteolytic enzymes in the cells [80]. However, it was observed that CPP injection 

systemically did not generate tissue damage at the doses of interest [67]. Generally, 

cationic CPPs were less toxic than amphipathic CPPs in vitro and in vivo [81]. 

 

 

9. Delivery of different cargos using CPPs 

CPPs were applied for in vitro and in vivo delivery of various therapeutic molecules, 

e.g., peptide, protein, DNA, siRNA, drugs, nanoparticles etc.  

9.1. Peptide and protein delivery 

The nature of the cell membrane limits the cellular uptake of drugs to small size (less 

than 600 Da), and to hydrophobicity. Thus, researchers attempt for effective delivery of 

proteins and peptides into the cells which have in vivo short half-life and poor 

bioavailability [82]. Recently, the use of CPPs could significantly facilitate the 

intracellular delivery of a variety of proteins and peptides through their covalent linkage 

to cargos [83, 84]. For example, delivery of a biologically active protein (β-

galactosidase) linked to Tat peptide (Tat-β-galactosidase) across the blood-brain barrier 

was improved after intraperitoneal administration [85]. On the other hand, delivery of the 

anti-apoptotic proteins (e.g., Bcl-xL) into cells was increased by their conjugation to 

CPPs. Cao et al. showed that the Bcl-xL protein linked to Tat CPP protected the 
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neurons in a murine middle cerebral artery occlusion model [86]. The ability to suppress 

upstream pathway of caspase activation in apoptosis is also crucial. A peptoid inhibitor 

for the apoptotic protease-activating factor (Apaf-1) was modified by its conjugation to 

penetratin and Tat. Both CPPs enhanced cellular uptake, but the penetratin conjugate 

was more effective at inhibiting apoptosis likely due to the toxicity of the Tat conjugate 

[50]. Mainly, CPP-mediated delivery of peptides and proteins was used to target tumors. 

A number of tumor suppressor p53-derived peptides were conjugated to CPPs in order 

to improve cell penetration. For example, injection of the p53-derived peptides 

conjugated with Tat or polyarginine (R11) to a peritoneal carcinomatosis mouse model 

increased mice survival. Moreover, the anti-tumor effects of a peptide inhibiting the 

activity of casein kinase 2 (P15) conjugated with Tat was observed in mice [84]. CPPs 

were also utilized to induce the generation of pluripotent stem cells as a safer carrier 

than viral vectors for human use. For instance, the fusion proteins harboring 

polyarginine CPP (R9) linked to the C-terminal of four proteins involved in cellular 

reprogramming (i.e., Oct4, c-Myc, Klf4 and Sox2) could be effectively transported into 

human fibroblasts for their transformation into pluripotent stem cells [87]. On the other 

hand, CPPs including pAntp, Tat, transportan and polyarginine were broadly used for in 

vitro and in vivo delivery of bioactive peptides. A comparison of the delivery efficiency of 

CPP conjugates revealed that polyarginine = transportan > pAntp > Tat. Also, cellular 

toxicity showed that pAntp < Tat < transportan < polyarginine [88]. Other studies 

indicated that hPP10 CPP was able to penetrate into primary cultured cells. Indeed, 

hPP10 could be considered as a novel vehicle to deliver exogenous proteins or drugs 

for clinical applications [89]. For example, the hPP10 CPP transported HPV16 E7-GFP 

fusion protein in HEK-293T cells (~ 63.66%) compared to TurboFect (~ 32.95%). In 

contrast, the transfection efficiency of hPP10 CPP was low (~ 17.51 and ~ 16.36% in 

TC-1 and A549 tumor cells, respectively) indicating the importance of cell type in vitro 

[90]. Another study also showed that hPP10 could mediate Cre fusion protein delivery 

and pDNA transfection simultaneously in the Cre/loxp system in vitro. Furthermore, 

hPP10 fused with an RNA-binding domain could deliver small interfering RNA into cells 

to silence the reporter gene expression [91]. On the other hand, hPP3 

(KPKRKRRKKKGHGWSR) derived from human nuclear body protein could enter cells 
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in vitro, at a concentration-, incubation time-, serum- and temperature-dependent 

manner [92]. It was interesting that a CPP (TIP1) derived from toll/interleukin-1 receptor 

(TIR) domain-containing adapter protein suppressed toll-like receptor-mediated 

downstream signaling and showed therapeutic potential for TLR-mediated autoimmune 

and inflammatory diseases [93]. Gros et al. improved a novel method for delivery of 

proteins, peptides and antibodies in vitro and in vivo, with no chemical conjugation 

between the cargo and CPP [21]. Indeed, the physical complexation was successfully 

used to deliver peptides and proteins into cells. A study indicated that the Pep-1 CPP 

was able to form hydrophobic interactions with the peptide or protein cargos, and 

transport these cargos into various cell lines [94]. Similarly, Cady-2 peptide showed a 

high efficacy for delivery of protein cargos (e.g., mRFP and GST-Cdk2), and a group of 

short peptides (~ 8-24 mer) into the cells [95]. On the other hand, M918 peptide (aa 1-

22) derived from the tumor suppressor protein p14ARF could efficiently transport 

proteins and peptide nucleic acids (PNA) using macropinocytosis mechanism into cells 

either as a covalent conjugate or a non-covalent complex with the cargo. This peptide 

was more effective than amphipathic peptides (e.g., TP10) for cargo delivery and also 

was non-toxic at high concentrations for in vivo therapies [79]. Recently, M918 CPP was 

utilized to enter efficiently HIV-1 Nef and Hsp20-Nef proteins as a candidate antigen into 

the mammalian cells [96].  

An in vivo study showed that co-injection of insulin with the penetratin peptide enhanced 

intestinal and nasal insulin bioavailability to 35 and 50%, respectively [97]. CPPs could 

also deliver enzymes (e.g., preventing the oxidative damage) into cells as a therapeutic 

approach for a variety range of diseases (e.g., ischemic injury). For instance, Tat 

peptide combined with glyoxalase, catalase and superoxide dismutase, and also LMWP 

CPP conjugated to L-asparaginase could prevent oxidative damage of neuronal cells, 

and treat oxidative damage of red blood cells in acute lymphoblastic leukemia [2]. 

Moreover, CyLoP-1 is a cysteine-rich CPP derived from nuclear localization sequence 

of snake toxin (crotamine) with both cell-penetrating and antimicrobial activities such as 

killing methicillin-resistant Staphylococcus aureus. Its cellular uptake was successfully 

performed in mammalian cells at very low doses. Indeed, the presence of cysteine 

residues in the peptide played an important role in biological activity of this peptide [98]. 
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On the other hand, the minimized sequence of Latarcin 1, a spider venom toxin (LDP: 

Latarcin-derived peptide) conjugated to nuclear localization sequence from Simian Virus 

T40 antigen (LDP-NLS) could effectively penetrate into HeLa cells without cytotoxicity 

as compared to LDP with very low uptake and high toxicity. LDP-NLS also successfully 

transported protein cargos with high molecular weight into the cells [99]. A novel 

technology described by Salerno et al named as CPP-adaptor system increased the 

intracellular delivery and endosomal escape of protein cargos. This strategy was 

designed as a CPP-adaptor fusion protein, Tat-calmodulin (Tat-CaM), which non-

covalently binds, delivers and releases different protein cargos (e.g., myoglobin, 

horseradish peroxidase and β-galactosidase) into the cells [100]. The pVEC, an 

amphipathic CPP (18 aa: LLIILRRRIRKQAHAHSK) derived from murine vascular 

endothelial-cadherin protein was also able to transport some proteins (e.g., avidin, 

streptavidin), and oligomers (e.g., hexameric PNA oligomer) in a non-covalent approach 

into several cell lines as well as bacteria and fungi for killing microbes [101, 102].  

Several groups showed CPP-mediated delivery of fusion proteins in vitro, but only a few 

studies successfully used CPPs as protein or peptide vectors in vivo [83]. Jo et al. used 

a CPP composed of a hydrophobic signal sequence derived from the fibroblast growth 

factor 4 to deliver a suppressor of cytokine signaling 3 protein (SOCS3) to immune 

cells, liver and other organs in mouse model which could effectively suppress the 

harmful effects of acute inflammation [103]. Moreover, Bleifuss et al. applied a CPP 

derived from the PreS2 domain of the human hepatitis virus B called as translocation 

motif (~ 12 amino acids) to increase the immunogenicity of antigen cargo in vaccine 

design [104]. On the other hand, the intraperitoneal injection of 30Kc19 peptide, the first 

CPP found in the hemolymph of insect (silkworm), into mice could deliver proteins into 

various tissues of animal model without cytotoxicity [105]. A synthetic guanidine-rich 

molecular carrier was used for intracellular and transdermal delivery of proteins, as well. 

For instance, a sorbitol-based carrier with eight guanidine units (Sor-G8) could form the 

non-covalent complex with GFP, albumin, concanavalin A and immunoglobulin G 

cargos. These non-covalent cargo-CPP complexes showed an efficient transdermal 

penetration into the mouse skin. The synthetic Sor-G8 carrier was significantly more 

effective than Arg8 in the transdermal delivery of proteins [106]. Another study tested 
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the transdermal delivery ability of IMT-P8, a novel human-derived CPP. IMT-P8 was 

able to transport effectively GFP and pro-apoptotic peptide (KLA) as IMT-P8-GFP and 

IMT-P8-KLA fusion constructs into mouse skin following topical application. Moreover, 

the uptake of IMT-P8-GFP was significantly higher than Tat-GFP in HeLa cell line [107]. 

Iduna known as RNF146 is a poly (ADP-ribose) (PAR)-dependent E3 ubiquitin ligase 

that can degrade PARylated proteins via PAR-dependent ubiquitination. The human 

Iduna-derived peptide was able to deliver macromolecules across the cell membrane. 

Koo et al. showed that the recombinant Iduna-conjugated EGFP (Iduna-EGFP) and its 

tandem-repeat form (d-Iduna-EGFP) efficiently penetrated Jurkat cells using lipid-raft-

mediated endocytosis mechanism. The recombinant d-Iduna-EGFP was more effective 

than Iduna-EGFP and could be localized in the cytoplasm and nucleus longer than Tat 

CPP. The effective uptake of the recombinant d-Iduna-EGFP was performed by various 

tissues such as the spleen, liver and intestine following intravenous injection in C57BL/6 

mice [107]. The studies showed that Pep-1 CPP was applied to deliver caspase 3 into 

the lung of mice, protein kinase A (PKA) into the distal lung epithelial cells of rat in order 

to repair the defect in a cellular signaling pathway. Moreover, Pep-1 peptide was used 

to determine the anti-tumor effects of antisense PNAs targeting cyclin B1 as well as to 

evaluate early embryonic development using the delivery of antibodies and proteins 

(e.g., p53) into immature bovine and mouse oocytes [108-111].  

9.2. Nucleic acid delivery  

The first application of CPPs was delivery of nucleic acids into the cells through 

electrostatic interactions [2]. Generally, CPPs possess several benefits such as: a) to 

protect nucleic acids from degradation; b) to internalize effectively in specific target 

cells; c) to improve the release of the cargos in the cytoplasm (e.g., antisense 

oligonucleotides, siRNA, miRNA) or the nucleus (e.g., plasmid DNA, splice-switching 

oligonucleotides), d) to show high biological activity at low doses, e) to exhibit no 

cytotoxicity, and f) to possess a good biosafety for in vivo therapeutic studies [112]. The 

researchers showed the importance of serum proteins or CPP conformation on the 

delivery of CPP/siRNA complexes into the cells. One of the main restrictions of CPPs is 

the lack of cell-type specificity. A common approach to overcome this problem was the 

incorporation of targeting ligands with CPPs to control cell-specific attachment. Fang et 
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al. found that the linkage of a vascular endothelial growth factor receptor-1 (VEGFR-1) 

targeting peptide to Tat internalized siRNA into tumor cells more effectively than Tat 

alone [113]. Improved and selective siRNA delivery was reported with other targeting 

ligands such as mannose, folate and RGD. For example, the nanoparticles coated with 

folate and penetratin increased siRNA delivery toward folate-expressing tumor cells [2]. 

CPPs were also combined with viral vectors (e.g., adenovirus gene vector) to infect a 

large number of cell types [2]. On the other hand, CPPs were easily conjugated 

covalently or complexed non-covalently with siRNAs. The covalent linkage of siRNAs to 

Transportan and Penetratin CPPs showed a silencing response in cells [20]. There are 

some studies about siRNA delivery using CPPs in vivo. For instance, the cholesterol-

Arg9 complex enhanced siRNA delivery against vascular endothelial growth factors 

(VEGF) in a mouse tumor model [114]. A small peptide derived from rabies virus 

glycoprotein (RVG, a ligand for acethylcholine receptor) modified with polyarginine 

(Arg9) was also demonstrated to transport siRNA into the central nervous system (CNS) 

for gene silencing in vitro and protection against the fatal viral encephalitis in a mouse 

model [115]. Dowdy et al. generated a Tat fusion protein with a double-stranded RNA-

binding domain (Tat-DRBD system) to deliver epidermal growth factor receptor (EGFR) 

and AKT serine/threonine kinase 2 (Akt2) siRNAs efficiently into intracranial 

glioblastoma tumor mouse model [116, 117]. 

The first report of non-covalent approach for the delivery of siRNAs was their stable 

complexes with the MPG peptide (derived from the hydrophobic fusion peptide of HIV-1 

gp41 plus the hydrophilic NLS of SV40 large T antigen) [118]. This peptide was used to 

deliver siRNAs targeting OCT-4 into mouse blastocytes and silencing cyclin B1 (a cell 

cycle regulator) for reduction of cell differentiation and proliferation, respectively [112]. 

Also, MPG peptide modified with cholesterol could increase the survival of mice against 

tumor growth [98]. On the other hand, a variant of MPG (MPGα: Ac-

GALFLAFLAAALSLMGLWSQPKKKRKV-Cya) containing five mutations in its 

hydrophobic domain as α-helical conformation could effectively deliver siRNA cargos 

[112]. Moreover, an amphipathic CPP named as Cady containing arginine and 

tryptophan residues could form stable complexes with siRNA, and mediate gene 

silencing efficiently in different suspension and cell lines such as human osteosarcoma 
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U2OS, THP1 monocytes, human umbilical vein endothelial and mouse 3T3C cells [119]. 

Cheng et al. developed siRNA delivery with a PEGylated PLGA nanoparticle (NP) using 

the synergistic activity of two different ligands such as folate (FOL) and penetratin 

(ANTP) that enhanced knockdown efficacy. ANTP/FOL-NP could enhance cell binding 

and uptake, protect siRNA, and improve siRNA release [120].  

Stearylation of CPPs was useful to improve the potency of siRNA delivery into cells. For 

instance, stearylated transportan (stearyl-TP10) effectively transported a splice-

correcting phosphorothioate 2’-O-methyl RNA (2’-OMe ON) into cells. In addition, a 

stearyl-TP10 analogue modified with trifluoromethylquinoline was used to increase 

endosomal escape and effective siRNA delivery in Jurkat cells and human umbilical 

vein endothelial cells (HUVEC) [121]. Among the stearylation of CPPs, STR-KV peptide 

(stearyl-HHHKKKVVVVVV) complexed with small interference RNA (siRNA) targeting 

the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) showed 80-87% gene 

knockdown efficiency in the cells with low cytotoxicity through a non-endocytic pathway 

[122]. Moreover, a novel fusion protein containing the tombusviral p19 protein linked to 

the “Tat” peptide (RKKRRQRRRR) could efficiently deliver siRNAs into the cytoplasm of 

human hepatoma cells eliciting potent gene knockdown activity without cytotoxicity 

[123]. Disulfide-constrained cyclic amphipathic peptides increased siRNA penetration 

into the cells through the formation of non-covalent peptide/siRNA complexes [124]. 

Recently, amphipathic peptides were developed to self-assemble with siRNAs as 

peptide-based nanoparticles and to transfect them into cells. A novel CPP named as 

RICK corresponding to the Retro-inverso form of the CADY-K peptide was designed. 

The data showed that RICK: siRNA self-assembly suppressed siRNA degradation and 

induced inhibition of gene expression. This novel approach can be considered for 

targeted anticancer treatment such as knock-down of cell cycle proteins [125]. On the 

other hand, the influence of the polyethylene glycol (PEG) grafting to RICK NPs was 

studied on their in vitro and in vivo siRNA delivery properties. Low PEGylation rates (≤ 

20%) of the NPs did not influence their cellular internalization capacity as well as their 

knock-down specificity in vitro as compared to the native RICK: siRNA NPs. After an 

intra-cardiac injection of the PEGylated NPs in mice, it was shown that 20% PEG-RICK 

NPs decreased significantly liver and kidney accumulation [126]. Moreover, a novel 
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family of short (15/16 mer) tryptophan (W)- and arginine (R)-rich Amphipathic Peptides 

(WRAP) could form stable nanoparticles and enroll siRNA molecules into cells. They 

had several advantages including the rapid encapsulation of the siRNA, the efficient 

siRNA delivery in several cell types, and the high gene silencing activity even in the 

presence of serum [127]. Some CPPs such as Tat, transportan and polyarginine were 

utilized with other non-viral vectors in a single nanocarrier to improve nucleic acid 

delivery [112]. Poor permeability of the cell membrane to DNA or oligonucleotides led to 

their low concentrations at their targets. To overcome this problem, CPPs (e.g., 

polylysine or polyarginine) could bind to DNA via electrostatic interaction and facilitate in 

vitro/ in vivo gene delivery. Moreover, the amphipathic peptides with pH-dependent 

fusogenic and endosomolytic activities (e.g., GALA, KALA and histidine-rich peptides) 

could enhance transfection efficiency along with poly-lysine/DNA complexes [20]. 

Another report indicated that the Tat peptide increased in vitro transfection of HIV-1 Nef 

gene (as Tat-Nef fusion DNA) and subsequently its expression in mammalian cells 

[128]. Hyndman et al. demonstrated that mixing the Tat with liposomes containing 

DOTAP/ Lipofectin and DNA led to generate the complexes that significantly increased 

in vitro transfection [129]. Morris et al. indicated that the non-covalent MPG CPP/DNA 

complexes could effectively entry cells using an endosomal pathway-independent 

mechanism. Indeed, the NLS of MPG was involved in both electrostatic interaction with 

DNA and nuclear targeting [130]. The internalization of MPG-based nanoparticles into 

COS-7 cells at an N/P ratio of 15:1 (peptide: DNA) was comparable with a commercial 

transfection reagent (polyethyleneimine) indicating high transfection efficiency of MPG 

at a certain ratio [131]. In general, the non-covalent linkage of the NLS to DNA improved 

gene delivery and its expression in cells [42]. Rittner et al. showed the efficacy of two 

novel basic amphiphilic peptides named as ppTG1 and ppTG20 to bind nucleic acids, 

destabilize cell membranes, and deliver gene in vitro/ in vivo [132].  

The studies showed that he amphipathic peptides including (LARL)6, GM225.1 

(GLFEALLELLESLWELLLEA), KALA (WEAKLAKALAKALAKHLAKALAKALKACEA) 

and the Hel peptide (KLLKLLLKLWLKLLKLLL) facilitated gene delivery in vitro, but their 

use was limited in vivo due to the toxicity and instability in serum [133]. Also, the 

PepFect14 (PF14) cationic peptide formed stable nanoparticles with DNA (size: 130-
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170 nm) which could be internalized through class A scavenger receptors and 

caveolae-mediated endocytosis [134]. On the other hand, two arginine-rich CPPs such 

as HR9 and IR9 were able to link non-covalently to plasmid DNA and deliver them into 

cells and in rotifers without cytotoxicity [135]. The reports represented that peptide 

modification could increase gene delivery, as well. For instance, stearic acid 

modification of various arginine-rich peptides including HIV-1 Tat (48-60), HIV-1 Rev 

(34-50), flock house virus (FHV) coat (35-49), (RxR)4 and oligoarginines (aa 4-16) 

improved their transfection efficiency through enhancing endosomal escape and nuclear 

delivery [112]. In this line, stearyl-TP10 increased DNA delivery in different cell lines as 

similar to lipofection [136]. Effective stearylated Transportan analogues termed as 

NickFects (NF) were designed to improve DNA transfection efficacy because of long 

shelf-life, lack of aggregation after reconstitution, high stability against enzymatic 

degradation, and higher bioactivity in vivo [58, 137]. Also, the modified CPPs with 

cysteine could improve their properties. For example, the branched Tat (BTat), a 

modified type of Tat (Cys-Tat-Cys-Tat-Cys) with disulfide bonds formed the complexes 

with plasmid DNA harboring GFP gene and showed higher transfection efficiency (~ 40-

fold) than the Tat/ DNA complexes [138]. Saleh et al. demonstrated that covalent 

linkage of membrane active peptide LK15 to Tat peptide improved its gene transfer 

likely due to the higher uptake of DNA [139]. Moreover, a modified bioreducible 

branched poly (nona-arginine) CPP (B-mR9) with cysteine residues (Cys-R9-Cys-R9-

Cys) could more effectively deliver nucleic acids through endocytosis or direct 

penetration as compared to its linear type [140]. However, inactivation of some CPP/ 

DNA complexes (e.g., Tat CPP/DNA complexes) in the bloodstream is important which 

may be due to their interactions with serum albumin. It was reported that at least eight 

Tat peptide moieties were necessary to obtain effective gene delivery [112]. 

On the other hand, CPPs were used to deliver oligonucleotides (ONs) [20]. The use of 

PNAs was common in CPP-mediated antisense delivery likely due to the peptide 

backbone of the PNA allowing the formation of CPP-PNA construct as a single 

polypeptide. PNAs were usually linked to CPPs through a disulfide bridge [53]. Both 

Transportan and Antp peptides were used to deliver an antisense PNA complementary 

to the human galanin receptor type 1 mRNA in vitro and in vivo, leading to modification 
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of the pain response [53, 141]. Moreover, penetratin modified with arginine residues in 

its N-terminal region conjugated with PNA ONs (R6Pen-PNA conjugates) was more 

effective than penetratin alone for promotion of splicing redirection [142]. The non-

covalent strategies were also generated by interaction of negatively-charged ONs with 

positively charged CPPs. For example, a novel generation of PNAs (HypNApPNAs) 

non-covalently combined with Pep-2 CPP led to the potent delivery of PNAs in vitro. 

Furthermore, the Pep-3 CPP could form stable complexes with both uncharged and 

charged PNAs promoting their cellular uptake in a variety of cell lines. In this line, 

PEGylation of Pep-3 significantly improved the delivery efficiency of cyclin B1 anisense 

ONs to block nervous tumor growth in mouse model [112]. On the other hand, VP22 

peptide was also applied to deliver oligonucleotides in vitro and in vivo. The complexes 

of VP22 with fluorescein-labeled oligonucleotides (i.e., vectosomes) were effectively 

internalized by cells and disrupted by light to release the antisense activity. In addition, 

suppression of the c-Raf1 protein expression was observed by anti-c-raf1 vectosomes 

potently activated by light leading to reduction of the tumor growth in mice [143].  

The recent studies showed new application of CPPs for genome modification. The 

engineered site-directed nucleases, transcription activator-like effector nucleases, and 

the clustered regularly interspaced short palindromic repeat-associated nuclease Cas9 

(CRISPR/Cas9) were used as cargos for manipulating genes and genomes of 

organisms. For instance, a recombinant Cas9 protein conjugated through the Cys-

terminal residue to poly-arginine (Arg9) resulted in the generation of a cell-permeable 

Cas9-mR9 chimeric protein. This chimeric protein was combined with a molecular 

complex formed by single guide-RNA and poly-Arg (sgRNA: 9R) to modify the genome 

of several human cell types [144]. 

9.3. Drug delivery 

Large molecule drugs (e.g., antibody) have better targeting specificity, prolonged 

circulation time in the blood and less cytotoxicity effects as compared to small molecule 

drugs [145]. However, intracellular delivery of drugs is a major problem [146]. Common 

strategies in drug delivery contain self-assembly, PEGylation, stimulus sensitivity (e.g., 

pH or temperature), enhanced permeability and retention, and the use of cell-

penetrating moieties or of the prodrugs [147]. In recent years, it was shown that CPPs 
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have ability to deliver drugs into cells [148]. CPPs were conjugated to small molecules 

(e.g., drugs and imaging agents) to increase their intracellular delivery [69]. However, 

CPP-mediated delivery was not tissue- or cell-type specific, thus other agents were 

added in the drug delivery system for specific targeting purposes [69]. The poor 

membrane permeability of drugs was an important issue in drug design. Intracellular 

delivery of drugs by CPP was proved to be an important step for overcoming drug 

resistance [149]. In fact, conjugation of peptide-based drugs (e.g., Shepherdin and p53-

derived peptides) with CPPs led to efficiently their internalization into the cells as a 

promising approach for cancer therapy [150]. It was reported that penetratin crossed the 

blood brain barrier (BBB) within 10 min and its permeability was 2-3-fold higher than Tat 

and SynB1 peptides [151]; thus, penetratin can be used as a suitable CPP for 

facilitating drug delivery in the brain. 

 

9.3.1. CPPs with NLS 

Macromolecules are actively translocated across the nuclear membrane via nuclear 

pore complexes (NPCs) [150]. Herein, nuclear proteins need the short sequences of 

NLS composed of one (monopartite) or two (bipartite) clusters of basic amino acids for 

the nuclear import pathway [152]. However, nuclear delivery of anti-cancer agents using 

systemic injection is a major challenge [153]. Recently, synthetic NLS peptides were 

utilized to increase DNA delivery into cells. The best NLS sequence is the SV40 large T-

antigen NLS (126-PKKKRKV-132) [154]. It was observed that the combination of NLS 

and cationic metal complexes resulted in the generation of a novel type of ternary 

delivery systems with high efficiency [17]. On the other hand, signal sequences or 

membrane-translocating sequences (MTSs) of peptides were recognized by acceptor 

proteins that transport the pre-protein from the translation machinery into the 

intracellular organelles. MTSs coupled to NLSs could accumulate in the nuclei [133, 

154]. A CPP containing 16 residues from the Kaposi’s sarcoma fibroblast growth factor 

1 (K-FGF) MTS coupled to the NF-κB NLS (10 residues) or the SV40 T-antigen NLS (12 

residues) showed similar efficiency with endogenous NF-κB for nuclear translocation, 

and consequently inhibited the inflammatory response of NIH-3T3 cells to tumor 

necrosis factor-alpha (TNF-α) or lipopolysaccharide [154]. Another study demonstrated 
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that only one NLS linked to the end of a plasmid possesses the most effective nuclear 

translocation and gene expression as compared to multiple NLSs [152, 155].  

9.3.2. Nanocarriers  

Different nanocarriers were utilized to enhance the stability of drugs and reduce adverse 

effects. Among the most common drug carriers were liposomes and micelles for 

delivery of water-soluble drugs and poorly soluble drugs, respectively [146]. Recently, 

CPPs including Tat peptide were successfully used to deliver different nanoparticulate 

pharmaceutical carriers (e.g., nanoparticles, liposomes and micelles) into the cells 

[156]. The studies showed that the synergistic or combined effects of CPPs with other 

carriers for delivery of protein/peptide drugs increased their therapeutic effects in 

various disorders especially cancer [5]. 

9.3.2.1. Nanoparticles 

Using modification of the surface of nanoparticles with CPPs, the cell permeability of 

nanoparticulate-based therapeutics was increased [146]. The study of CPP-mediated 

nanoparticulate delivery indicated that the dextran-coated superparamagnetic iron oxide 

particles (CLIO) coupled to Tat peptide (aa 48-57) generated an effective labeling of the 

cells (e.g., immune cells) for in vivo magnetic resonance imaging (MRI) goals [156]. Tat 

peptide (aa 48-57) was also conjugated to FITC-doped silica nanoparticles (FSNPs) for 

bioimaging purposes in human lung adenocarcinoma cell lines (e.g., A-549), and in vivo 

bioimaging in the brain of rats [146]. 

9.3.2.2. Liposomes  

Liposomes are synthetic phospholipid vesicles (size: ~ 50-1000 nm) which can be 

loaded with some soluble drugs in water [156], and used to increase the half-life of 

drugs and to reduce their cytotoxicity [157]. A main disadvantage of liposomes is their 

slow cell penetration [157]. It was reported that long-circulated PEGylated liposomes 

have the ability to remain in the blood for a long time and to accumulate in different 

pathological regions (e.g., tumors). In addition, antibodies or cell surface-binding 

specific molecules were attached to the water-exposed head of PEG chains for specific 

cell targeting [146]. On the other hand, Tat or penetratin peptides conjugated on 



Acc
ep

ted
 M

an
us

cri
pt

 

 

liposomes significantly increased their cellular delivery [157]. Indeed, Tat peptide-

modified liposomes (e.g., Tat peptide-lipoplexes) increased the delivery of genes to 

tumor cells after intratumoral injection without influencing the normal adjacent brain cells 

[156, 157]. Gorodetsky et al. showed that liposomes complexed with an amphiphilic 

Haptide (i.e., a 19-21-mer cell-binding peptide) could enhance the cellular uptake of 

drugs in a non-receptor-mediated process [158, 159]. Another study indicated that the 

translocation of liposomes using Tat, penetratin or Antp peptides was proportional to the 

number of peptide molecules linked to the liposomal surface. Thus, kinetics of the 

uptake was dependent on peptide- and cell-type [146, 156]. Moreover, the conjugation 

of CPPs such as octaarginine to liposomes enhanced the liposome uptake using airway 

cells upon inhalation [146, 156]. Although, the cell penetration was increased by CPP-

liposome complexes with lower toxicity than DOTAP-containing liposomes; but 

however, the rapid intracellular release of the encapsulated drugs should be improved 

to obtain the pharmacological efficacy [157]. 

9.3.2.3. Micelles  

Polymeric micelles represented an efficient type of drug carrier. Micelles are colloidal 

dispersions (~ 5-100 nm) that have ability to enhance the solubility and bioavailability of 

poorly soluble pharmaceuticals [146]. Their cell penetration could be increased by 

CPPs. For example, Tat peptide-bearing micellar system was used to target anticancer 

drugs to solid tumors [156]. 

10. Specific targeting of CPPs 

An ideal drug delivery system (DDS) should specifically penetrate into the target cells, 

and accumulate in the specific tissue [42]. CPPs are effective tools for drug delivery into 

cells; but they do not have specificity to cell type [46]. Most CPPs were non-specifically 

linked to membranes of all cell types due to overall expression of heparin sulfate 

proteoglycan [69]. Recent efforts were performed using the activatable CPPs (ACPPs), 

the stimuli-responsive CPPs, and the specific localization sequences to deliver toward 

the proper cellular organelles [68]. There are different subcellular localization 

sequences with distinct properties that target a cytosolic protein to a specific organelle 

such as the endoplasmic reticulum (ER), nucleus, mitochondria, and chloroplast [150]. 
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Recent use of CPPs was focused on development of NLS, pH/ temperature-sensitive 

targeted delivery, and synergistic effects of targeting ligands and CPPs [17]. In fact, 

some nanoparticle delivery systems were designed to activate CPPs, and drug release 

under specific conditions such as hyperthermy (40-42◦C), low pH (< 6), light (UV), and 

interaction with specific enzymes (matrix metalloproteinases, thrombin and legumain) in 

tumor tissue [5]. Among amino acids used in CPPs, histidine is an essential amino acid 

with a protonable imidazolyl group which is needed for many enzymatic activities. For 

example, the replacement of tryptophan (W) by histidine (H) in the antimicrobial peptide 

sequence R2W2RW2R2 increased the antibacterial activity [160].  

10.1. Activatable CPPs  

Activatable CPPs (ACPPs) were used to visualize enzymatic reactions as molecular 

imaging probes [14]. They contain a polycationic CPP (D-Arg9) linked to an inhibitory 

polyanion (D-Glu9) via a cleavable linker. When this hairpin structure is unbroken, the 

charge is neutral and mainly covers the attachment of the CPPs [161]. The first ACPP 

was a protease-activatable CPP, thus a proteolytic cleavage released the activated 

peptide for cargo delivery to target cells [68]. Activatable CPPs were improved by 

transiently masking/covering the basic residues or shielding the overall peptide with 

polyethylene glycol (PEG). Different stimuli such as UV, pH and enzymes were used to 

remove masking moieties from CPPs leading to the recovery of intact CPP activity, 

depending on the target site [162]. ACPPs were directed toward extracellular enzymes 

such as matrix metalloproteinases, elastases and thrombin for in vivo detecting their 

localized enzymatic activity and also for accumulating cargo at the site of target [161]. 

ACPPs were used to monitor the activity of a family of zinc-dependent endopeptidases 

(matrix metalloproteinase: MMP) in tumors [17, 163]. These ACPPs with high 

permeability were sensitive to MMP, and were used to deliver anticancer drugs due to 

high level of MMP expression in tumor cells. In this line, a conjugate of ACPP with 

antitumor drug doxorubicin (DOX) sensitive to MMP-2/9 showed high efficiency to 

deliver antitumor drugs in HT-1080 tumor cells (overexpressing MMPs) as compared to 

MCF-7 tumor cells (under-expressing MMPs) [14, 164]. Moreover, the peptide 

sequence DPRSFL from the proteinase activated receptor 1 (PAR-1) was incorporated 

into an ACPP (DPRSFL-ACPP) for evaluation of thrombin activity in atherosclerosis. 
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This ACPP as a probe was composed of 9-D-Arg and 9-D-Glu separated by a protease 

cleavable linker for thrombin cleavage, and accumulation of the DPRSFL-ACPP 

cleavage product in advanced atherosclerotic lesions in mice [17]. ACPP was utilized to 

deliver selectively imaging molecules to tumor cells. The fluorescence and gadolinium-

labeled ACPPs conjugated to dendrimers (ACPPDs) were developed to detect tumors 

during surgery. In addition to the improved target specificity of ACPPs, their major 

advantage against CPPs was the reduction of cytotoxicity likely because of the masked 

polycationic charge systemically [14]. 

10.2. Stimuli-responsive peptides 

A nanoparticular drug delivery system is able to accumulate by the passive targeting via 

the enhanced penetration or by the active targeting through antibodies. In this line, the 

intracellular delivery could be mediated by especial ligands (e.g., folate, transferrin) or 

by CPPs (e.g., Tat or polyArg) [165]. Indeed, the CPPs were incorporated into ‘‘smart’’ 

DDS. At the first step of delivery, the non-specific CPP function was sterically protected 

by an organ/tissue-specific ligand (i.e., a polymer or targeting antibody). Then, for 

accumulating in the site of target, the protective segment attached to the surface of the 

DDS through a stimulus-sensitive bond was detached under local 

environmental/pathological conditions (i.e., abnormal pH or temperature) to reveal the 

CPP, and subsequently targeted delivery of the carrier and its cargo inside cells [6, 

146]. For example, Tat-modified stimuli-sensitive polymeric micelles could significantly 

interact with cells under acidified conditions to develop gene delivery and tumor specific 

stimuli-sensitive drug delivery systems [156]. 

10.2.1. pH-sensitive CPPs 

Different systems were designed to develop drug delivery into tumors based on acidic 

environment. Many chemical linkers (e.g., hydrazine, or amide bonds) could be 

hydrolyzed under poor acidic conditions but were stable under neutral or poor alkaline 

conditions [145]. Another strategy was based on the use of materials that undergo 

conformation change in response to acidic conditions such as the imidazole group of 

histidine (pKa: 6.5) which is positively charged in the tumor microenvironment [145]. In 

addition, Kale et al designed the smart Tat-modified liposomes with the pH-sensitive 
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hydrazone bond and Tat modified on the surface of PEGylated long-circulating 

liposomes. The polyethylene glycol (PEG) chains protected the surface-attached Tat 

peptide at normal pH. Upon the exposure to the acidic environment of solid tumors, the 

hydrazone bond could be degraded and subsequently Tat moieties were exposed to 

deliver drug into tumor cells. Indeed, the liposome-attached Tat peptide residues were 

exposed and the penetration of the liposomes was enhanced into tumor cells leading to 

more effective gene delivery [166]. Moreover, Torchilin et al designed the pH-

responsive, Tat-modified long-circulating liposomes and micelles. These long-circulating 

PEG-coated liposomes and micelles were targeted actively to a specific organ through 

the linkage of an antibody to PEG-phosphatidylethanolamine (PEG-PE) at their surface. 

PEG-PE is degradable at low pH due to a pH-sensitive bond between PEG and PE. The 

carriers were further modified with Tat-short PEG-PE derivatives. At normal 

physiological conditions, the longer PEG chains shield Tat on the shorter PEG chains. 

At lower pH, the longer PEG chains were cleaved from the complexes, thus Tat was 

exposed to enhance cellular uptake [166-168]. Recently, a multifunctional 

immunoliposomal nanocarrier was designed including a pH-sensitive PEG-PE 

component, Tat peptide and tumor cell-specific nucleosome-specific antibody 

(mAb2C5). This nanocarrier could potentially reduce non-specific interaction with non-

target cells, effectively accumulate at tumor cells, and deliver anti-cancer drugs into 

cells [17]. Furthermore, histidine was broadly used to develop pH-responsive drug 

delivery systems [169]. Tu et al. produced membranolytic peptides with pH-dependent 

cytotoxicity by changing lysine and arginine residues with histidine in PTP-7 

(FLGALFKALSKLL), L5 (PAWRKAFRWAWRMLKKAA) and Citropin 

(GLFAVIKKVASVIGGL) [170]. Zhang et al. also replaced all the lysines in TK peptide 

(AGYLLGKINLKKLAKL(Aib)LLIL-NH2) with histidines into TH peptide 

(AGYLLGHINLHHLAHL(Aib)HHIL-NH2), and showed that TH-conjugated camptothecin 

(TH-CPT) effectively enter cells in acidic environment [171]. Similarly, Jiang et al. 

improved dual-functional liposomes (HA-R6H4-L) with pH-responsive CPPs (R6H4: rich 

in arginines and histidines) and active targeting by hyaluronic acid (HA) for tumor-

targeted drug delivery and decreased drug toxicity. Moreover, paclitaxel (PTX)-loaded 
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HA-R6H4-L had the strongest antitumor activity against mouse hepatic tumor model 

[172].  

10.2.2. Antibody targeting strategy 

Active targeting uses a homing tool including an antibody or a ligand (e.g., 

oligonucleotides, peptides, vitamins or sugars) leading to attach a drug complex to 

tumor cells via receptors or antigens on the tumor cell surface. The efficiency of 

targeting depends on the specificity and affinity of the homing tools as well as the 

delivery of required dose for inducing considerable effect [46]. In 2013, the potency of 

efficient drug delivery was proven by fusion to a single-chain variable fragment (scFv) 

antibody directed towards a mutated K-ras in HCT116 tumor cells with high selectivity. 

In 2014, an antibody targeting strategy (i.e., a heparin conjugated anti-carcinoembryonic 

antigen (CEA) monoclonal antibody) and genetically engineered fusion technique (i.e., a 

CPP-fused chimeric protein: Tat-gelonin toxin inhibiting protein synthesis) were also 

utilized to treat colorectal cancer with low toxicity to normal tissues. Indeed, for 

obtaining the selectivity, the monoclonal antibody was linked to fusion construct through 

reversible electrostatic interaction [81]. It was observed that single-chain FVs (scFVs) 

antibody fragments accumulate slowly in tumors and eliminate rapidly from circulation 

leading to the limitation of their efficacy. Thus, CPPs (e.g., penetratin) were used to 

direct scFV uptake out of circulation, increase rapid internalization into tumors, distribute 

homogenously the antibody fragment, and improve tumor retention [50].  

10.2.3. Temperature-sensitive CPPs  

The studies showed that Elastin-like polypeptide (ELP) passively accumulated in solid 

tumors after hyperthermia (between 39°C and 42°C) [14, 17]. Despite an increased 

response at high temperature, ELP could not often penetrate in blood vessels and cell 

membranes due to a relatively large size. The addition of CPPs to these carriers has 

significantly increased their delivery and antitumor activity [46]. For example, Walker et 

al. conjugated ELP to the anticancer drug doxorubicin (DOX) and used three different 

CPPs (Bac, Tat and SynB1) for suppressing tumor growth in mice. Tumor eradication 

under hyperthermic conditions with SynB1-ELP-DOX was two-fold higher than 

treatment with free doxorubicin at similar dose [173]. Moreover, the ELP-based drug 
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delivery system conjugated with a lactoferrin-derived L12 peptide was thermally 

targeted to tumor cells leading to suppression of their proliferation and reduction of 

systemic toxicity. It was reported that Tat-ELP-L12 along with heat effectively inhibited 

tumor cell proliferation, and induced cell death by necrosis or apoptosis mechanisms, in 

vitro [17].  

10.2.4. Disulfide linkage 

Disulfide linkage was broadly used to bind small molecule drugs to CPPs [81]. In one 

study, the low molecular weight protamine (LMWP) as a CPP was coupled to L-

asparaginase through the formation of disulfide linkage. The LMWP-L-asparaginase 

encapsulated into red blood cells (RBCs) was used to treat acute lymphoblastic 

leukemia (ALL) [174]. Wender et al also showed that R8 CPP conjugated to the drug 

Taxol using a disulfide linkage was cleaved in the reducing environment of the cytosol, 

releasing the drug. All Taxol-transporter conjugates increased the sensitivity of human 

ovarian carcinoma cells resistant to Taxol in vitro with low toxicity as compared to Taxol 

[175].  

 

 

 

11. Application of CPPs in preclinical trials   

Over 2000 papers were published on the use of CPPs in preclinical trials. However, no 

CPP or CPP conjugate has achieved to the clinics [6]. Herein, we showed preclinical 

studies on CPPs in different aspects. 

11.1. Antimicrobial activity of mitochondria-penetrating peptides (MPPs) 

Mitochondria are a major target for different therapeutic approaches, but mitochondrial 

matrix- targeting sequences were relatively ineffective for delivering cargos to the 

mitochondria due to the impermeable structure of the hydrophobic inner membrane 

[150]. However, lipophilicity and positive charge are two major issues in molecules 

accumulated in the mitochondria [176]. Peptide-based mitochondrial agents have 

several advantages such as biocompatibility and easy modification with cargos, e.g., 

peptide-based antioxidants [176]. To design the effective MPPs, specific thresholds of 

https://www.sciencedirect.com/topics/medicine-and-dentistry/krukenberg-tumor
https://www.sciencedirect.com/topics/medicine-and-dentistry/paclitaxel


Acc
ep

ted
 M

an
us

cri
pt

 

 

charge (cationic residues) and lipophilicity were identified to deliver a variety of bioactive 

cargos into mitochondria [50]. The potent delivery of a peptide-based antioxidant to 

mitochondria containing the aromatic and cationic residues indicated that this motif is 

effective for mitochondrial delivery [176]. For instance, the human antimicrobial peptide 

Histatin 5 as a CPP found in human saliva could be used for the selective delivery of 

cargos into fungal and protozoan mitochondria. Its antimicrobial activity is due to the 

ability to accumulate within the mitochondria and suppress F1F0-ATPase [177, 178] 

indicating a decrease in mitochondrial membrane potential and in bioenergetic collapse 

of the parasite. Histatin 5 could be conjugated to leishmanicidal agent and translocated 

into the parasitic mitochondria as a therapeutic agent with dual antimicrobial activity 

[50]. 

11.2. Vaccine    

CPPs are important for delivery of antigens into cellular compartments (i.e., antigen 

presenting cells: APCs) in vaccine development especially DNA- and protein/ peptide-

based vaccines [50, 179, 180, Table 4]. Different cargos were attached to CPPs for 

intracellular delivery in vaccine development [180]. Generally, the incorporation of CPPs 

in vaccine delivery systems may improve antigen uptake by APCs and thus it can be 

considered as a safe alternative or additive to classical adjuvant formulations. CPPs 

were suggested as a promising agent for vaccine delivery. CPPs were often fused with 

antigens to achieve efficient cell membrane translocation, enhancing antigen uptake, 

processing and presentation by APCs. CPPs were also incorporated into several DNA 

vaccine candidates to facilitate the transport of genetic material through nuclear and 

plasma membranes [181]. Indeed, CPPs provided effective means to facilitate 

intracellular delivery of antigens and induce a cytotoxic T lymphocyte (CTL) immune 

response [180]. In a study, our group used Pep-1 for in vitro and in vivo delivery of 

HPV16 E7 protein as a tumor antigen. Our data indicated that E7/Pep-1 nanoparticles in 

a certain molar ratio of 1: 20 induced Th1 immune responses and protected mice 

against TC-1 tumor cells similar to the group immunized with E7 emulsified with Freund 

adjuvant (~ 80% tumor-free mice) [182]. Moreover, priming with HIV-1 MPER-V3 DNA/ 

MPG nanoparticles at N/P ratio of 1:10 followed by MPER+V3 peptides as boosting 

could direct T cell immune responses toward a Th1-type [183]. In this line, HPV16 E7 
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DNA/ MPG in nanoparticle formulation at an N/P ratio of 10:1 elicited an effective Th1 

cellular immune response and completely protected mice against tumors, as well [184]. 

In another study, the induction of cell-mediated immune response (Th1-biased 

response) against HCV core and HCV coreE1E2 antigens was stronger in mice 

immunized  with coreE1E2 DNA/MPG and then core DNA/MPG nanoparticles as 

compared to coreE1E2 and core DNA constructs alone [185]. In addition, the use of Tat 

CPP fused to Nef antigen (Tat-Nef) in heterologous prime-boost strategy along with 

Cady-2 CPP significantly induced the Nef-specific T cell responses for development of 

HIV-1 vaccine [186].  

In general, CPPs were used to deliver antigenic peptides or proteins, induce adaptive 

immune responses and activate both CD8+ and CD4+ T cells [187]. For example, the 

EBV ZEBRA protein-derived CPPs (Z12, Z13 or Z14) linked to antigenic cargos (e.g., 

gp100 and TRP2 tumor antigens) were improved as a strong system to break self-

tolerance and to elicit therapeutic anti-tumor immune responses in vivo [188, 189]. 

Increased antigen (Ag)-specific immune responses were also reported by linking other 

tumor antigens (e.g., carcinoembryonic antigen, TRP2, survivin, p53, HPV16 E7, MUC-

1 or HER2/neu) to a CPP [187]. Wang et al. demonstrated that the linkage of TRP2 Ag 

to CPPs could prolong antigen presentation by dendritic cells (DCs) [190]. On the other 

hand, the herpes simplex virus (HSV-1) VP22 CPP could facilitate intercellular 

spreading of the attached cargo. For example, DNA vaccination with VP22 linked to 

HPV16 E7 or E6 (VP22-E7 or VP22-E6) significantly induced CD8+ T cell responses 

and anti-tumor immunity against the E7-expressing tumors in mice [180]. These findings 

were confirmed in DNA vaccines expressing VP22 fused to antigens from other 

diseases including bovine herpesvirus 1, influenza virus and porcine reproductive and 

respiratory syndrome virus [180]. A finding showed that DNA vaccines encoding E7 

conjugated to Tat or Antp (Tat-E7 or Antp-E7) could not elicit potent CD8+ T cell 

responses as observed by HSV-1 VP22-E7 DNA vaccine [191].  

The efficacy of several CPPs (e.g., MPG, Cady-2, Pep-1, P28 and hPP10) was studied 

to improve DNA- or protein-based therapeutic vaccines against HPV infection. The data 

showed that E7 DNA + MPG prime/E7 protein + P28 boost-based nanovaccines 

significantly induced Th1 immune responses, and completely protected mice against 
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TC-1 tumor cells. Indeed, P28 and MPG peptides were effective protein and gene 

delivery systems, respectively [192]. Moreover, the NT-gp96 fused to E7 (NT-E7 fusion 

DNA as an antigen) in combination with IP-10 chemokine and PEI600-Tat delivery 

system significantly increased the efficiency of HPV DNA vaccines against HPV-related 

cancers [193]. On the other hand, CPP-antigen-based DC vaccination could enhance 

CTL responses against cancer and infectious diseases without receptor targeting. For 

example, penetratin or poly-arginine (R9) CPPs linked to the CD4 or CD8 specific OVA 

epitope-pulsed DCs successfully induced T cell proliferation and immune responses 

against OVA expressing tumor cells and reduced tumor size in mice. Moreover, mature 

Tat-Her2/neu-pulsed DCs elicited Her2/neu-specific CD8＋and CD4+ T cell responses in 

a breast tumor model [194]. As known, the p53 protein is a potent tumor antigen in both 

mouse and human cancer vaccines. A study showed that immunization with Tat-p53-

pulsed DCs in HLA-A-0201/Kb transgenic mice induced antigen-specific CD4+ T cell 

responses [180]. In addition, a major use of CPPs is the ability to deliver synthetic 

multiple epitopes in peptide vaccines [180]. For instance, Dakappagari et al. showed 

that immunization with a multi-epitope peptide harboring Pep-1 linked to three HLA-A2 

restricted epitopes of Her-2/neu peptides induced higher CTL responses than the 

multiepitope peptide alone in HHD HLA-A2 transgenic mice [195]. The 

immunostimulatory properties of HIV-1 Nef DNA and protein constructs were evaluated 

using small heat shock protein 20 (sHsp20) and Freund's emulsion as an adjuvant, and 

four CPPs (HR9, MPG, M918, and penetratin) as a gene or protein carrier in BALB/c 

mice. The data indicated that a heterologous Hsp20-Nef DNA + MPG prime/ rHsp20-

Nef protein+M918 boost regimen significantly elicited higher levels of IgG2a, IgG2b, 

IFN-gamma, and Granzyme B directed toward Th1 responses in a long period (3 

months) after the last immunization compared to other groups. These findings 

demonstrated that the simultaneous use of M918 and MPG CPPs as protein and gene 

carriers improves HIV-1 Nef-specific B- and T-cell immune responses as a promising 

approach for development of HIV-1 monovalent vaccine [196]. Similarly, other data 

showed that HR9, and Cady-2 could form stable nanoparticles with HCV NS3 and heat 

shock protein 27 (Hsp27)-NS3 genes, and proteins, respectively and enhance their 

delivery into HEK-293T cells in a non-covalent approach. Furthermore, the heterologous 
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Hsp27-NS3 DNA+HR9 prime/rHsp27-NS3+Cady-2 protein boost elicited a higher Th1 

cellular immune response with a predominant IgG2a, IgG2b, IFN-γ profile and strong 

Granzyme B secretion than those induced by other groups. Briefly, the combination of a 

natural adjuvant (Hsp27) and CPPs (HR9 and Cady-2) could significantly stimulate 

effective immune responses as a promising approach for development of HCV 

therapeutic vaccines [197]. 

11.3. Imaging agents  

Quantum dots (QDs, size: 1-6 nm) as fluorescence probes with high intensity were used 

not only for in vitro/ in vivo imaging studies, but also for disease diagnosis (e.g., cancer) 

[198]. The most important QDs are Cadmium Selenide (CdSe) and Cadmium telluride 

(CdTe) [14]. However, delivery of QDs into cells is difficult due to the cell membrane 

barrier. The mixture of CPPs with QDs could solve this problem [198]. Indeed, the CPP-

mediated delivery was used to label cells with QDs such as CPP-modified QD-loaded 

polymeric micelles [156]. The uptake mechanism of the non-covalent CPP-QD 

complexes into cells was through endocytosis [198]. Tat-QD conjugates could label 

mouse endothelial cells in vitro and reveal tumor neovascularization in vivo [156]. Tat 

peptide was used to deliver QDs into rat brain tissue, as well [14]. An arginine-rich CPP 

(SR9) facilitated the delivery of QDs into A549 cells in a non-toxic approach [14]. In 

addition, the non-covalent mixture of CPPs (e.g., G(SG)4TP10 or F(SG)4TP10) with 

CdSe/ZnS QD increased the membrane permeability more effectively than QD alone 

[198]. On the other hand, labeling of QDs using octaarginine (R8) could be used for in 

vivo imaging [14]. Generally, the cellular uptake of the QD-CPP complexes depends on 

the dose of QD and CPP as well as the cell type [14]. Except to QDs, a H2O2 targeting 

mechanism was developed based on activatable CPPs (H2O2-ACPP) to monitor the 

oxidative burst of promyelocytes in vitro, and lung inflammation in vivo [161]. Moreover, 

ACPPs were used to detect the pathological process of stroke in vivo as gelatinase-

specific non-invasive probes [163]. 
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11.4. Treatment  

Several studies have focused on the use of CPPs for delivering bioactive agents into 

tissues as well as on the study of their therapeutic applications in a variety of disorders 

[46]. 

11.4.1. Neurodegenerative diseases 

A variety of strategies have been developed to increase BBB penetration and access 

drugs to the brain including neurosurgery-based strategies, pharmacology-based 

strategies, and physiology-based strategies. However, there are some problems for 

these approaches such as the risk of infection and neurosurgical costs as well as drug 

accumulation in non-target sites due to its high lipophilicity [157]. Therefore, novel and 

non-invasive approaches are required to overcome these problems such as the use of 

CPPs. For example, the brain uptake of doxorubicin conjugated to D-penetratin or SynB 

CPP was increased by in situ brain perfusion in rats and mice [199]. As known, prion 

diseases are fatal neurodegenerative disorders in humans which are caused by a 

misfolded prion protein (PrPsc) instead of its normal isoform (PrPc). Recently, a CPP 

composed of 28 amino acids was determined in PrPc which possess a region for 

specific interaction with the PrPsc to prevent further conversion of PrPc to PrPsc [50]. 

Moreover, it was observed that an increase in the anti-apoptotic Bcl-XL protein in rodent 

brain led to increase the resistance against ischemic injury. The studies indicated that a 

Tat-HA-Bcl-XL or Tat-Bcl-XL fusion protein reduced the infarct volume and increased 

neuroprotective effects in mice [86, 200, 201]. On the other hand, Yang et al. showed 

that the intranasal delivery of a NF-κB peptide inhibitor fused to Tat CPP (Tat-NBD) 

effectively diminished NF-κB signaling, microglial activation and Hypoxic-ischemic (HI) 

brain injury in animal models [202]. Moreover, the Bcl-2 homology domain 4 (BH4) of 

Bcl-XL fused to Tat CPP (Tat 48-57-BH4) was able to reduce neural cell death in vitro by 

regulating the efflux of intracellular calcium, and also improve the survival of ALS 

transgenic mice after chronic treatment [203].  

 

11.4.2. Cardiovascular Diseases 

The intracellular delivery of GATA4 transcription factor using VP22 CPP showed a 

positive effect after myocardial infarction in Lewis rats by improved myocardial function 
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[50]. In another study, treatment with the Antp-NBD peptide was able to improve cardiac 

function in mice lacking dystrophin and its homolog utrophin. Previous studies indicated 

that two fusion proteins containing Pep-1 CPP linked to zinc superoxide dismutase 

(Pep-1-SOD1) or catalase (Pep-1-CAT) could transduce the myocardium and protect it 

against ischemia-reperfusion (IR)-induced damage. Furthermore, the combination of 

Pep-1-SOD1 and Pep-1-CAT was more effective than each peptide by increasing 

expression of the anti-apoptotic Bcl-2 protein, removing Reactive oxygen species (ROS) 

and subsequently protecting the heart against IR injury [203]. 

 

11.4.3. Bacterial sepsis 

CPP-mediated modulation of the immune response was observed to overcome bacterial 

sepsis. Herein, CPPs were used to deliver anti-apoptotic proteins as a treatment for 

sepsis. It was reported that in vivo injection of the Bcl-xL or its BH4 domain conjugated 

to Tat reduced sepsis-induced lymphocyte apoptosis and immune system depletion as 

well as improved survival following sepsis [50]. 

 

11.4.4. Duchenne muscular dystrophy 

CPPs have been recently used to deliver phosphorodiamidate morpholino oligomer 

(PMO) into mouse models of Duchenne muscular dystrophy (DMD) which possess a 

nonsense mutation in the dystrophin gene [50]. Activation of NF-κB signaling was 

reported in DMD patients, thus NF-κB was proposed as a possible molecular target for 

treatment of this disorder [203]. Peterson et al. showed that mice treated with a peptide 

inhibitor of NF-κB containing NBD fused to the Antennapedia PTD (Antp-NBD) 

improved motor performance and progressive weakness of skeletal muscles [204]. 

 

11.4.5. Cancer therapy 

Tumor-targeted drug delivery systems are an important approach for cancer treatment 

[205]. Recently, CPPs were used to deliver chemotherapeutic drugs (e.g., Taxol, 

cyclosporine A and methotrexate) and pro-apoptotic proteins into resistant cells and 

improve their activity [50]. For example, the VP22-p53 chimeric protein induced 

apoptosis in p53-negative human osteosarcoma cells [206]. Moreover, targeting the 
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tumor tissue was performed through specific tumor-related biomarkers which showed 

some problems such as the heterogeneity of the tumor tissues and the development of 

resistance [160]. To overcome these problems, multifunctional CPPs were developed 

with their physicochemical properties [160]. For enhanced cytosolic delivery of the 

anticancer drug Bleomycin (BLM), R8-modified fusogenic DOPE liposomes (R8-DOPE-

BLM) were developed to induce cell death and DNA damage in vitro [14]. Another 

strategy to target tumor is the use of tumor homing domains linked to CPPs (e.g., PEGA 

homing domain conjugated to the pVEC CPP). Indeed, the homing domain was 

naturally cell impermeable but its linkage to the CPP led to the effective and selective 

uptake into tumor in mice [50]. Different types of cancer were treated with irinotecan, a 

prodrug that is converted into its active metabolite SN38 (7-ethyl-10-

hydroxycamptothecin) by the action of liver carboxylesterases. However, SN38 cannot 

be administered directly due to its high insolubility [203]. Meyer-Losic et al generated 

DTS-108, a novel water-soluble compound including SN38 linked to a highly charged 

oligopeptide of human origin named as DPV1047 which significantly released high 

levels of SN38 after intravenous injection in dogs [207]. On the other hand, peptides 

and protein domains derived from cyclin-dependent kinases inhibitors (i.e., p21, p16Ink, 

p27kip or p15) conjugated to CPPs (e.g., p27kip-Tat or p16Ink-penetratin) suppressed 

tumor growth in vivo [208].  

 

11.4.6. Transplant rejection 

A key factor in transplant rejection is the proto-oncogene c-Myc expressed in different 

tissues including liver, lung and cornea. Recently, CPPs have been used for treatment 

of transplant rejection. Hosseini et al. showed the ability of a novel compound named as 

AVI-5126 peptide (formulation: c-Myc antisense PMO linked to an arginine-rich CPP) to 

prevent corneal rejection in rat [209]. 

 

11.4.7. Ocular medication 

Recently, a cell penetrating peptide for ocular delivery (POD CPP acting as a NLS) was 

designed to deliver small molecules such as fluorescent dyes (e.g., GFP) into retinal 

cells in vitro and in vivo. The studies showed that the HIV Tat and HSV VP22 CPPs 
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were able to deliver recombinant proteins to human embryonic retinoblasts in vitro but 

not in vivo. Thus, POD-fusion proteins were more effective for penetration of 

macromolecules in the retina as compared to Tat- fusion proteins or VP22- fusion 

proteins for therapeutic applications [5]. 

 

12. Application of CPPs in clinical trials 

In spite of the large number of preclinical and clinical trials that are currently underway, 

no CPP has approved by US Food and Drug Administration (FDA) [46]. A reason is the 

slow release of the free drug to compete with its clearance. Up to now, few CPP-linked 

drugs have entered the clinic for both topical and systemic administration [5, 210]. The 

first compound that entered phase II clinical trial was a cyclosporine A (CsA)-

polyarginine conjugate (PsorBan1; CellGate, Inc.) for the topical treatment of psoriasis 

[203]. AZX-100 is a CPP that mimics heat shock protein 20 function (HSP20) entered 

phase II clinical trial leading to relaxation of smooth muscle and prevention of dermal 

scarring after topical application [6]. Most clinical trials have involved HIV Tat CPP, but 

none of them were approved by the FDA [5, 51, 183, Table 5]. For example, a peptide 

inhibitor of c-Jun N-terminal kinase conjugated to Tat (termed as XG-102 in clinical trial) 

was used to protect against apoptotic cell death in cerebral ischemia [5]. Moreover, 

Phase I clinical trial studies of azurin-derived p28 CPP in treating patients with 

progressive central nervous system (CNS) tumors and refractory disease were reported 

[NCT00914914, 46, 203]. Phase II clinical studies of DTS-108 were also performed in 

patients with metastatic colon or rectal cancer for intravenous application [46]. On the 

other hand, a Phase I clinical trial for an HIV vaccine based on HIV-1 Tat and V2-

deleted Env proteins was conducted by Istituto Superiore di Sanita and Novartis (ISS P-

002) [6]. In 2016, a Phase I/II clinical trial of TransMTS1-botulinum toxin A (RT002) for 

the treatment of glabellar lines confirmed its safety and efficacy (NCT02303002) as well 

as a currently ongoing Phase II study of the treatment of cervical dystonia 

(NCT02706795) [203]. An initial Phase Ib/II clinical trial to evaluate the safety and 

efficacy of a CPP-PMO conjugate (AVI-5126: (R-Ahx-R) 4AhxB-PMO targeted to human 

c-myc) for the ex-vivo treatment of vein tissue in coronary artery bypass grafts has 

started in Poland and Ukraine and designed to prevent inappropriate cell proliferation 
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that can occur after the grafting procedure [211]. Kinali et al also studied the safety and 

efficacy of intramuscular administration of AVI-4658, a CPP-PMO designed to induce 

the expression of dystrophin locally in treated muscles in Phase I/II clinical study of 

DMD patients (NCT00159250). A Phase I/II clinical trial in 2015 assessed the safety 

and efficacy of repeated doses of systemic intravenous AVI-4658 in DMD patients 

(NCT00844597) and the compound was well tolerated. A Phase III clinical trial was 

started, as well (NCT02255552) [203, 212].  

 

13. Conclusion 

The efficiency of CPPs to penetrate the cell membrane and deliver different cargos to 

specific intracellular sites is a suitable approach for delivery of chemotherapeutics. 

Although many preclinical studies showed the promising results through the CPP-

mediated delivery of therapeutic molecules in treating cancer and other diseases, no 

CPP-based therapeutic approach has approved by FDA, yet. Some disadvantages for 

CPPs are their short half-life in blood, and non-specific CPP-mediated delivery to 

normal tissue. These problems could be improved by coupling CPPs to other carriers 

(e.g., liposomes), and the use of endogenous (e.g., specific enzymes or pH value) and 

exogenous stimuli (e.g., mild heat), respectively for increasing CPP-mediated 

therapeutic efficacy. Indeed, the stimuli could enhance the release of cargos and/or the 

specific accumulation of CPP-delivered drugs to minimize toxic effects in normal tissues 

and improve treatment efficiency.  

 

14. Expert opinion 

Due to low cytotoxicity of CPPs as compared to other carriers and final degradation to 

amino acids, they are suitable for preclinical and clinical studies. It was observed that 

cationic CPPs were less toxic than amphipathic CPPs in vitro and in vivo. Up to now, a 

large number of these peptides have been identified with different sequences. CPPs 

were divided into three subgroups using their physicochemical properties such as 

cationic (~ 83%), amphipathic (~ 44%) and hydrophobic (~ 15%) peptides. They have 

various uptake mechanisms to transport different cargos at a low micromole range. 

However, it is important to predict which CPP is optimal for target of interest. Up to now, 
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numerous in silico CPP prediction algorithms were established to facilitate screening of 

peptides. There are 1699 unique CPP sequences that most of them are linear CPPs 

(94.5%) based on the CPP database site. The major researches on CPPs focus on 

synthetic peptides (~ 54.8%). The mechanism of the CPP uptake significantly varies 

based on cell type, linkage type, incubation time, dose and physiochemical properties 

(e.g., hydrophobicity and net charge). The cellular uptake of CPPs can occur through 

several approaches such as direct penetration, and clathrin/ caveolae-mediated 

endocytic uptake depending on the nature of the peptide/ cell membrane interaction. 

Direct penetration as an energy-independent approach includes various mechanisms 

such as pore formation, inverted micelle formation, the membrane thinning model, and 

the carpet-like model. Direct penetration further occurs at high doses of CPPs especially 

primary amphipathic peptides (e.g., MPG or transportan). An increased potential of the 

cell membrane led to high internalization of CPPs. Endocytosis contains two main 

mechanisms for the uptake of biomolecules or other cells: phagocytosis in special cells 

(e.g., macrophages), and pinocytosis in most cells such as macropinocytosis, clathrin-

mediated endocytosis or caveolae/lipid raft-mediated endocytosis. Lowering 

temperature as well as depletion of cell energy effectively confirmed the endocytotic 

mechanism for the internalization of non-covalent protein/ CPP complexes. The nature 

of the cell membrane limits the cellular uptake of drugs to small size (less than 600 Da), 

and to hydrophobicity. Thus, researchers attempt for effective delivery of proteins and 

peptides into the cells which have in vivo short half-life and poor bioavailability. The 

studies showed that the synergistic or combined effects of CPPs with other carriers for 

delivery of protein/peptide drugs increased their therapeutic effects in various disorders 

especially cancer. Some methods were used to develop the functions of CPPs in vitro 

and in vivo including the augmentation of cell specificity by activatable CPPs, specific 

transport into cell organelles by insertion of corresponding localization sequences, 

incorporation of CPPs into multifunctional dendrimeric or liposomal nanocarriers to 

improve selectivity and efficiency especially into tumor cells. In general, further studies 

are required to overcome some problems related to CPPs for using in clinical trials. 

Recently, CPPs were proposed for delivery of antigens into APCs in vaccine 

development. These CPPs were used to deliver DNA, peptide and protein into the cells 
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such as Pep-1, MPG, VP22, Tat, Cady-2, P28, hPP10, penetratin, and poly-arginine. In 

this line, it seems that CPPs complexed with antigen are more effective than CPPs 

linked to antigen due to direct penetration and the lack of endosomal escape. On the 

other hand, recently, a combination of small molecules was discovered to push the 

highly efficient intracellular delivery of native proteins, independent of any transduction 

peptide. This process was termed as ‘‘iTOP’’ for induced transduction by NaCl-mediated 

hyperosmolality in combination with a transduction compound (i.e., propanebetaine). It 

was observed that iTOP allows the highly efficient delivery of recombinant cytoplasmic 

and nuclear proteins into a broad variety of primary cell types [354]. Thus, it will be 

interesting to compare the efficiency of iTOP method with cell penetrating peptides for 

protein delivery. 
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Figure Legends 

 

Figure 1: Schematic model of discovery and clinical trials of several main CPPs; PKC, 

Protein kinase C; PepM and PepR: CPPs derived from two domains of the dengue virus 

for delivery of nucleic acids into cells. 
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Figure 2: Classifications of CPPs based on Applications and Linkage 

 

Figure 3: Mechanisms of CPP uptake across the cellular membrane: Different uptake 

mechanisms were proposed to explain the internalization of free or cargo-conjugated 

CPPs. CPPs along with small cargoes may enter cells quickly via direct translocation in 

addition to the endocytic pathway. Uptake of large molecules attached to these peptides 

tended to be mediated by macropinocytosis in an energy-dependent manner with 

slower rates for larger compounds.  
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Table 1: Physicochemical properties of CPPs 
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n 

NLS 
CGYGPKKKRKVG

G 
13 1 4 +4.9 Good 10.82 

1377.6

6 

SV40 

NLS 

peptide 

[16

] 

NLS PKKKRKV 7 1 4 +5 Good 11.79 883.14 

SV40 

NLS 

peptide 

[22

3] 

 

LDP-NLS 

KWRRKLKKLRPK

KKR- 

KV 

17 4 8 +12 Good 12.63 
2276.9

1 
Latarcin1 

[99

] 

LDP KWRRKLKKLR 10 3 4 +7 Good 12.45 
1411.7

9 
Latarcin1 

[99

] 

 

hCT(9–

32) 

 

LGTYTQDFNKFHT

FPQT- 

AIGVGAP 

 

24 

 

--- 

 

1 

 

+0.1 

 

Poor 

 

7.74 

 

2610.8

7 

A 

hormone 

secreted 

by the 

C cells of 

the 

thyroid 

[22

4] 

DPV3 
RKKRRRESRKKRR

RES 
16 8 

 

 

4 

 

 

+10 

 

 

Good 

 

 

12.34 

 

 

2212.5

8 

Human 

heparin 

binding 

proteins 

and/or anti-

DNA 

antibodies 

[22

5] 

Secretin 

HSDGTFTSELSRLR

DSA- 

RLQRLLQGLV 

27 4 --- +1.1 Good 10.28 
3056.3

9 
Human 

[22

6] 

 

LL-37 

LLGDFFRKSKEKIG

KEFK- 

RIVQRIKDFLRNLV

PRTES 

 

37 

 

5 

 

6 

 

+6 

 

Good 

 

11.15 

 

4493.2

6 

Human 

Cathelicid

in Family 

[22

7] 

Lactoferri

n 

sequences 

SQPEATKCFQWQR

NMRK-

VRGPPVSCIKRDSP

IQI 

 

34 

 

4 

 

3 

 

+4.9 

 

Good 

 

10.85 

 

3985.6

3 

 

derived 

from 

human 

lactoferrin 

[22

8] 

 

RGD 

 

GRGDSY 

 

6 

 

1 

 

--- 

 

0 

 

Good 

 

6.59 

 

653.64 

Various 

circulating 

proteins 

[22

9] 

Sweet 

arrow 

peptide 

(SAP) 

 

(VRLPPP)3 

 

18 

 

3 

 

--- 

 

+3 

 

Good 

 

12.4 

 

1997.4

8 

N-

terminal 

domain of 

γ-zein 

[17

] 

hLF 

KCFQWQRNMRKV

RGP- 

PVSCIKR 

22 4 3 +6.9 Good 11.75 
2718.2

9 

Antimicro

bial 

peptides 

[17

] 

 

Bac7 (1-

24) 

 

RRIRPRPPRLPRPRP

RPL- 

PFPRPG 

 

24 

 

9 

 

--- 

 

+9 

 

Good 

 

13 

 

2938.5

4 

Bacteneci

n family 

of 

antimicro

bial 

peptides 

[23

0] 
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Buforin 

IIb 

 

RAGLQFPVG[RLLR

]3 

 

21 

 

7 

 

--- 

 

+7 

 

Good 

 

12.88 

 

2560.1

5 

histone 

H2A-

derived 

antimicro

bial 

peptide 

 

[23

1] 

 

sC18 

 

GLRKRLRKFRNKI

KEK 

 

16 

 

4 

 

5 

 

+8 

 

Good 

 

12.17 

 

 

2070.5

4 

 

derived 

from 

cationic 

antimicro

bial 

protein, 

found in 

rabbit 

leukocytes 

[23

2] 

Protegrin

-1 

RGGRLCYCRRRFC

VCVG-R 
18 6 --- +5.7 Good 10.7 

 

2160.6

3 

 

Isolated 

from 

porcine 

leukocytes 

[19

9, 

233

] 

 

BPrPp 

(1–28) 

 

MVKSKIGSWILVL

FVA- 

MWSDVGLCKKRP 

 

28 

 

1 

 

4 

 

+3.9 

 

Poor 

 

10.67 

 

3192.9

5 

The N-

terminus 

of the 

unprocess

ed 

bovine 

prion 

protein 

[23

4] 

 

DPRSFL 

 

DPRSFL 

 

6 

 

1 

 

--- 

 

0 

 

Good 

 

6.68 

 

733.81 

Proteinase 

activated 

receptor 

1 (PAR-1) 

[23

5] 

VP22 

NAATATRGRSAAS

RPTQ- 

RPRAPARSASRPRR

PVQ 

34 9 --- +9 Good 13 
3656.0

5 

Herpes 

simplex 

virus 

(HSV) 

[23

6] 

transcript

ion factor 

(267–300) 

VP22 

 

DAATATRGRSAAS

RPTE-

RPRAPARSASRPRR

PVE 

 

34 

 

9 

 

--- 

 

+6 

 

Good 

 

12.2 

 

3659.0

1 

 

 

Herpes 

simplex 

virus 

(HSV) 

 

[23

6] 

vT5 

DPKGDPKGVTVTV

TVT- 

VTGKGDPKPD 

26 --- 4 0 Good 6.91 
2608.8

9 

Viral 

proteins 

[23

7] 

FGF PIEVCMYREP 10 1 --- -1.1 Good 4.15 
1236.4

6 

Cellular 

and viral 

proteins 

[23

8] 

 

 

C105Y 

 

 

CSIPPEVKFNKPFV

YLI 

 

 

17 

 

 

--- 

 

 

2 

 

 

+0.9 

 

 

Poor 

 

 

8.93 

 

 

1994.4 

 

The 

residues 

359–374 

of 

1-

antitrypsin 

 

 

 

[23

9] 
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p28 

LSTAADMQGVVT

DGM- 

ASGLDKDYLKPDD 

28 --- 2 -4 Good 3.41 
2914.1

8 
Azurin 

[17

] 

PFV PFVYLI 6 --- --- 0 Poor 3.84 750.92 C105Y 
[24

0] 

SG3 
RLSGMNEVLSFRW

L 
14 2 --- +1 Poor 10.39 1708 

A 

randomize

d peptide 

library 

[24

1] 

Pep-7 
SDLWEMMMVSLA

CQY 
15 --- --- -2.1 Poor 0.67 

1807.1

5 

CHL8 

peptide 

phage 

clone 

[24

2] 

 

CyLoP-1 

 

CRWRWKCCKK 

 

10 

 

2 

 

3 

 

+4.8 

 

Good 

 

10.56 

 

1396.7

6 

Natural 

cationic 

polypeptid

e 

crotamine 

[24

3] 

MK2i 

WLRRIKAWLRRIK

ALN- 

RQLGVAA 

23 5 2 +7 Good 12.71 
2789.3

8 

MAPKAP 

Kinase 2 

(MK2) 

[24

4] 

Influenza 

HA-2 

GLFGAIAGFIENG

WEGM- 

IDGWYG 

23 --- --- -3 Poor 0.57 
2460.7

2 

Chimeric 

from 

Influenza 

HA 

[24

5] 

Influenza 

HA-2 (1–

20) 

KALA 

sequence 

 

WEAKLAKALAKA

LAHL-

AKALAKALKACE

A 

 

 

29 

 

 

--- 

 

 

6 

 

 

+4 

 

 

Good 

10.4 
3003.6

5 

A 

segment 

of 

influenza 

virus 

hemagglut

inin 

 

[24

6-

249

] 

 

p28 

 

LSTAADMQGVVT

DGM- 

ASGLDKDYLKPDD 

 

28 

 

--- 

 

2 

 

-4 

 

Good 

 

3.41 

 

2914.1

8 

Protein 

derived 

from 

cupredoxi

n family 

[25

0] 

CPP-C PIEVCMYREP 10 1 --- -1.1 Good 4.15 
1236.4

6 

Specific 

Domain 

of FGF12 

[23

8] 

Bax-

inhibiting 

peptides 

(BIP) 

 

VPTLK 

 

5 

 

--- 

 

1 

 

+1 

 

Good 

 

10.1 

 

556.7 

 

Natural 

 

[13

] 

 

PTD-5 

 

RRQRRTSKLMKR 

 

12 

 

5 

 

2 

 

+7 

 

Good 

 

12.71 

 

1615.9

6 

Protein 

Transducti

on 

Domain 

 

[25

1] 

q-NTD 
KGRKKRRQRRRPP

Q 
14 6 3 +9 Good 12.81 

1847.1

9 

Protein 

derived 

[25

2] 

FHV coat 

(35–49) 

RRRRNRTRRNRRR

VR-amide 
15 11 --- +12 Good 14 

2163.5

2 

Flock 

house 

virus coat 

[23, 

216

] 
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proteins 

 

KLA 

sequence 

Acetyl-

KLALKLALKALKA

ALKL-A-amide 

 

18 

 

--- 

 

5 

 

+5 

 

Good 

 

14 

 

1918.5 

 

KLA 

peptide
1
 

 

[24

7, 

253

-

255

] 

Transloca

tion motif 

(TLM) 

 

PLSSIFSRIGDP 
12 1 --- 0 Good 7.08 

1288.4

5 

Derived 

from the 

hepatitis 

B virus 

[10

4] 

Substance 

P and 

analogs 

 

RPKPQQFGLM-

amide 

 

10 

 

1 

 

1 

 

+3 

 

Good 

 

14 

 

1200.4

6 

 

 

Neuropept

ide 

[24

7, 

256

, 

257

] 

Crotamin

e 

 

YKQSHKKGGKKG

SG 
14 --- 5 +5.1 Good 10.9 

1489.6

8 

Rattle 

snake 

toxin 

derived 

from 

NrTP6 

[25

8-

260

] 

R9 RRRRRRRRR 9 9 --- +9 Good 13 
1423.6

9 
Designed 

[26

1] 

ppTG1 

GLFKALLKLLKSL

WKL- 

LLKA 

20 --- 5 +5 Poor 11.28 
2296.9

6 
Designed 

[13

2] 

KALA 

WEAKLAKALAKA

LA- 

KHLAKALAKALK

ACEA 

30 --- 7 +5 Good 10.56 
3131.8

3 
Designed 

[13

2] 

Pen-Arg 
RQIRIWFQNRRMR

WRR 
16 7 --- +7 Good 12.88 

2358.7

9 
Designed 

[26

2] 

R6H4 RRRRRRHHHH 10 6 --- +6.4 Good 12.8 
1503.6

0 
Designed 

[17

2] 

CADY 

GLWRALWRLLRSL

WR- 

LLWRA 

20 5 --- +5 Poor 12.7 
2622.1

7 
Designed 

[26

3] 

KAFAK 

KAFAKLAARLYRK

ALA- 

RQLGVAA 

23 3 3 +6 Good 11.91 2487 Designed 
[26

4] 

Pep-1 

KETWWETWWTE

WSQP- 

KKKRKV-Cya*** 

24 1 5 +2.9 Good 9.92 
3185.6

1 
Designed 

[26

5] 

ppTG20 
GLFRALLRLLRSL

WRLL-LRA 
20 5 --- +5 Poor 12.7 

2437.0

3 
Designed 

[13

2] 

BR2 
RAGLQFPVGRLLR

RLLR 
17 5 --- +5 Good 12.7 

2021.4

6 

 

Designed 
[26

6] 

R4 RRRR 4 4 --- +4 Good 12.58 642.76 Designed 
[26

7] 



Acc
ep

ted
 M

an
us

cri
pt

 

 

R6 RRRRRR 6 6 --- +6 Good 12.8 955.13 Designed 
[26

7] 

R10 RRRRRRRRRR 10 10 --- +10 Good 13.05 
1579.8

8 
Designed 

[26

7] 

R12 RRRRRRRRRRRR 12 12 --- +12 Good 13.14 
1892.2

5 
Designed 

[26

7] 

MPG 

GALFLGWLGAAGS

TM- 

GAPKKKRKV 

24 1 4 +5 Good 11.76 
2444.9

4 
Designed 

[26

8] 

HR9 

CHHHHHRRRRRRR

R- 

RHHHHHC 

21 9 --- +9.9 Good 12.4 
3001.3

8 
Designed 

[26

9] 

Pep-3 

ac-

KWFETWFTEWPK

KR- 

K-Cya 

15 1 4 +3 Good 10.67 
2097.4

2 
Designed 

[27

0] 

4K KKKK 4 --- 4 +4 Good 11.15 530.7 Designed 
[27

1] 

MPG β 

ALFLGFLGAAGST

MGA- 

WSQPKKKRKV 

26 1 4 +5 Poor 11.76 
2750.2

7 
Designed 

[18

3] 

R8 

(8-

Arginine) 

 

RRRRRRRR 
8 8 --- +8 Good 12.94 1267.5 Designed 

[21

5] 

8-Lysine KKKKKKKK 8 --- 8 +8 Good 11.52 
1043.3

9 
Designed 

[27

1] 

6K KKKKKK 6 --- 6 +6 Good 11.37 787.05 Designed 
[27

1] 

10K KKKKKKKKKK 10 --- 10 +10 Good 11.63 
1299.7

4 
Designed 

[50

] 

12K KKKKKKKKKKKK 12 --- 12 +12 Good 11.71 
1556.0

8 
Designed 

[27

1] 

5RQ RRQRR 5 4 --- +4 Good 12.58 770.89 Designed 
[27

1] 

8RQ RRQRRQRR 8 6 --- +6 Good 12.8 
1211.3

9 
Designed 

[27

1] 

11RQ RRQRRQRRQRR 11 8 --- +8 Good 12.94 
1651.8

9 
Designed 

[27

1] 

MPGNL

S 

GALFLGFLGAAGS

TM- 

GAWSQPKSKRKV 

27 1 3 +4 Poor 11.68 
2766.2

3 
Designed 

[26

3] 

R15 
RRRRRRRRRRRRR

RR 
15 15 --- +15 Good 13.25 

2360.8

1 
Designed 

[27

2] 

H8R15 

HHHHHHHHRRRR

RR- 

RRRRRRRRR 

23 15 --- +15.8 Good 13.25 
3475.9

2 
Designed 

[27

2] 

H16R8 

HHHHHHHHHHHH

HHH- 

HRRRRRRRRRRRR

RRR 

31 15 --- +16.6 Good 13.25 
4555.0

4 
Designed 

[27

2] 

NYAD-41 
ISFDELLDYYGESG

S 
15 --- --- -4 Good 0.57 

1694.7

4 
Designed 

[27

3] 
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AcD4 

GYGYGYGYGYGY

GYG- 

YKKRKKRKKRKK

RKQ- 

QKQQKRRK 

 

 

38 

 

6 

 

12 

 

+18 

 

Good 

 

11.16 

 

4767.5

1 

 

Designed 

 

[27

4] 

           

RICK                             
KWLLRWLSRLLR

WLAR  WLG                            
19 4 1 +5 Poor 

12.5
8 

2523.
08  Designed 

[12

5] 

WRAP 
LLWRLWRLLWRL

WRLL 
16 4 - +4 Poor 

12.5
8 

2292.
86 Designed 

[12

7] 

MAP 

KLALKLALKALKA

ALK- 

LA 

18 --- 5 +5 Good 11.28 
1877.4

5 
Chimeric 

[27

5] 

           

Chimeric 

dermasep

tin S4 and 

SV40 

‘S413-PV’ 

 

ALWKTLLKKVLK

APKK-KRKVC 

 

 

21 

 

 

1 

 

 

8 

 

 

+8.9 

 

 

Good 

 

 

11.44 

 

 

 

2480.2 

 

 

 

Chimeric 

 

 

[27

6] 

           

Transport

an 

GWTLNSAGYLLG

KINL- 

KALAALAKKIL 

27 --- 4 +4 Poor 10.77 
2841.4

4 
Chimeric 

[27

7] 

 

*Green: hydrophobic uncharged residues, like F, I, L, M, V, W, A and P; Red: acidic residues, like D, E; Blue: 

basic residues, like R, K, H; Black: other residues, like G, S, T, C, N, Q and P 

** Calculated by Pepcalc.com [76] 

*** Cya: Cysteamine 

1: The term KLA peptide, also denoted MAP (model amphipathic peptides) designates a group of peptides 

derived from the α-helical amphipathic model peptide [87].  
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Table 2: Mechanisms of action for a variety of CPPs 

Car

go 
CPP Sequence 

Formul

ation 

Approa

ch 

Classific

ation 

Internaliz

ation 

mechanis

m 

Origin 
Re

f. 

Gen

e 

ppTG1 GLFKALLKLLKSLWKLLLKA 
Noncov

alent 

Amphip

athic 

Endocytosi

s 

Syntheti

c 

[13

2] 

KALA 
WEAKLAKALAKALAKHLAKALAKAL

KACEA 

Noncov

alent 

Amphip

athic 

Endocytosi

s 

Syntheti

c 

[13

2] 

ppTG2

0 
GLFRALLRLLRSLWRLLLRA 

Noncov

alent 

Amphip

athic 

Endocytosi

s 

Syntheti

c 

[13

2] 

Influen

za HA-

2 

GLFGAIAGFIENGWEGMIDGWYG 
Noncov

alent 

Amphip

athic 

Endocytosi

s 

Chimeri

c from 

Influenz

a 

[27

8] 

Secreti

n 
HSDGTFTSELSRLRDSARLQRLLQGLV 

Noncov

alent 
Cationic 

Based on 

receptor 
Human 

[22

6] 

TAT 

(47-57) 
YGRKKRRQRRR 

Noncov

alent 
Cationic 

Direct 

penetration 

HIV 

TAT 

Protein 

[13

8] 

MPG 
GALFLGFLGAAGSTMGAWSQPKKKR

KV 

Noncov

alent 

Amphip

athic  

Clathrin-

dependent 

endocytosi

s 

Chimeri

c (HIV 

Gp41-

SV40 

NLS) 

[12

] 

Loligo

mer (TPPKKKRKVEDPKKKKK)
-
8 

Noncov

alent 
Cationic 

Endocytosi

s 

Syntheti

c 

[27

9] 

Hel KLLKLLLKLWLKLLKLLL 
Noncov

alent 

Cationic 

Amphip

athic 

Endocytosi

s 

Syntheti

c 

[28

0] 

VP22 
DAATATRGRSAASRPTERPRAPARSAS

RPRRPVE 

Covalen

t 

Amphip

athic 

Endocytosi

s 

Herpes 

simplex 

V 

[28

1] 

TP10 AGYLLGKINLKALAALAKKIL 
Noncov

alent 

Amphip

athic 

Endocytosi

s 

Chimeri

c 

[19

] 

C105Y CSIPPEVKFNKPFVYLI 
Covalen

t 

Hydroph

obic 

Clathrin- 

and 

caveolin-

independe

nt 

Syntheti

c 

[23

9] 

R8 RRRRRRRR 
Noncov

alent 
Cationic 

Direct 

penetration 

Syntheti

c 

[12

1] 

LL-37 
LLGDFFRKSKEKIGKEFKRIVQRIKDFL

RNLVPRTES 

Noncov

alent 

Amphip

athic 

Pore 

formation 

Human 

antimicr

obial 

protein 

[22

7] 

Scp01-

b 

VSRRRRRRGGRRRRGGGSYARVRRR

GPRRGYARVRRRGPRR 

Noncov

alent 

Amphip

athic 

Endocytosi

s 

Syntheti

c 

[28

2] 

B-mR9 CRRRRRRRRRCRRRRRRRRRC 
Noncov

alent 
Cationic 

Endocytosi

s, Direct 

penetration 

Syntheti

c 

[14

0] 

siR MPG GALFLGFLGAAGSTMGAWSQPKKKR Noncov Amphip Clathrin- Chimeri [20
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NA KV alent athic  dependent 

endocytosi

s 

c (HIV 

Gp41-

SV40 

NLS) 

, 

11

2] 

Penetra

tin 

(pAntp

) 

RQIKIWFQNRRMKWKK 
Covalen

t 

Amphip

athic 

Endocytosi

s 

Antenna

pedia 

[28

3] 

Transp

ortan 

GWTLNSAGYLLGKINLKALAALAKKI

L 

Covalen

t 

Amphip

athic 

Endocytosi

s, Direct 

penetration 

Chimeric
 

(Galanin 

and 

mastopa

ran)
 

[20

] 

PepFec

t 14 
AGYLLGKLLOOLAAAALOOLL-NH2 

Noncov

alent 

Amphip

athic 

Endocytosi

s 

Syntheti

c 

[12

1] 

PepFec

t 6 

AGYLLGK(εNH
QN

)INLKALAALAKKI

L-NH2 

Noncov

alent 

Amphip

athic 

Endocytosi

s 

Syntheti

c 

[12

1, 

28

4] 

R9 RRRRRRRRR 
Noncov

alent 
Cationic 

Direct 

penetration 

Syntheti

c 

[46

] 

Tat- 

DRBD 
TAT-TAT-HA-TAT-DRBD 

Noncov

alent 
Cationic 

Macropino

cytosis 

Chimeri

c 

(dsRNA 

binding 

domain 

(DRBD) 

fused to 

a Tat-

based 

PTD) 

[11

7] 

STR-

KV 
stearylation- HHHKKKVVVVVV 

Noncov

alent 

Amphip

athic 

Direct 

penetration 

Syntheti

c 

[12

2] 

CADY GLWRALWRLLRSLWRLLWRA 
Noncov

alent 

Amphip

athic 

Direct 

penetration 

Syntheti

c 

[28

5] 

TP10 AGYLLGKINLKALAALAKKIL 
Noncov

alent 

Amphip

athic 

Endocytosi

s 

Chimeri

c 

[28

6] 

TAT 48-

60 
CYGRKKRRQRRR 

Covalen

t 
Cationic 

Direct 

penetration 

HIV 

TAT 

Protein 

[28

7] 

EB1 LIRLWSHLIHIWFQNRRLKWKKK 
Noncov

alent 

Amphip

athic 

Endocytosi

s 

Syntheti

c 

(analog 

of 

penetrati

n) 

[28

8] 

ON-

PN

A 

MPG 
GALFLGFLGAAGSTMGAWSQPKKKR

KV 

Noncov

alent 

Amphip

athic  

Clathrin-

dependent 

endocytosi

s 

Chimeri

c (HIV 

Gp41-

SV40 

NLS) 

[28

9] 
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LL-37 
LLGDFFRKSKEKIGKEFKRIVQRIKDFL

RNLVPRTES 

Noncov

alent 

Amphip

athic 

Pore 

formation 

Human 

cathelici

din 

family 

[22

7] 

Pep-3 ac-KWFETWFTEWPKKRK-Cya 
Covalen

t 

Amphip

athic 

Direct 

penetration 

Chimeri

c 

[27

0] 

TP10 AGYLLGKINLKALAALAKKIL 
Covalen

t 

Amphip

athic 

Endocytosi

s 

Chimeri

c 

[29

0] 

M918 MVTVLFRRLRIRRACGPPRVRV 
Noncov

alent 

Amphip

athic 

Endocytosi

s 

Syntheti

c 

[79

] 

Transp

ortan 

GWTLNSAGYLLGKINLKALAALAKKI

L 

Covalen

t 

Amphip

athic 

Endocytosi

s, Direct 

penetration 

Chimeri

c
 

(Galanin 

and 

mastopa

ran)
 

[14

1] 

Prot

ein 

and 

pept

ide 

Bac7 (1-

24) 
RRIRPRPPRLPRPRPRPLPFPRPG 

Noncov

alent 

Amphip

athic 

Receptor-

mediated/ 

pore 

formation 

Bactene

cin 

family 

[23

0] 

TAT48-

60 
GRKKRRQRRRPPQ 

Covalen

t 
Cationic 

Direct 

penetration 

HIV 

TAT 

Protein 

[84

] 

R9 RRRRRRRRR 
Covalen

t 
Cationic 

Direct 

penetration 

Syntheti

c 

[84

] 

CPP-C PIEVCMYREP 
Covalen

t 

Hydroph

obic 

Endocytosi

s 

Derived 

Form 

FGF12 

[23

8] 

BIP VPTLK 
Covalen

t 

Hydroph

obic 

Endocytosi

s 
Natural 

[29

1] 

Penetra

tin-

pAntp 

(43-58) 

RQIKIWFQNRRMKWKK 
Covalen

t 
Cationic 

Endocytosi

s 

Antenna

pedia 

[29

2] 

HR9 CHHHHHRRRRRRRRRHHHHHC 
Noncov

alent 
Cationic 

Direct 

penetration 

Syntheti

c 

[13

5] 

VP22 
DAATATRGRSAASRPTERPRAPARSAS

RPRRPVD 

Covalen

t 

Amphip

athic 

Using 

actin 

cytoskelet

on 

Herpes 

simplex 

V 

[23

6] 

M918 MVTVLFRRLRIRRACGPPRVRV 

Covalen

t or 

non-

covalent 

comple

x 

Amphip

athic 

Macropino

cytosis 

Protein-

derived 

peptides 

[79

] 
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Pep-1 KETWWETWWTEWSQPKKRKV 

Noncov

alent 

 

Amphip

athic 

Direct 

penetration 

Chimeri

c 

[18

2] 

CADY

-2 

Ac-GLWWRLWWRLRSWFRLWFRA-

Cya 

Noncov

alent 

Amphip

athic 

Direct 

penetration 

Chimeri

c 

[95

] 

pVEC LLIILRRRIRKQAHAHSK 
Covalen

t 

Amphip

athic 

Direct 

penetration 

 

Murine 

vascular 

endothel

ial-

cadherin 

protein 

[10

1] 

CyLoP

-1 
CRWRWKCCKK 

Noncov

alent 
Cationic 

Endocytosi

s, Direct 

penetration 

NLS of 

snake 

toxin 

[98

] 

LDP- 

NLS 
KWRRKLKKLRPKKKRKV 

Noncov

alent 
Cationic 

Endocytosi

s 

Chimeri

c 

(Latarci

n-

derived 

peptide 

conjugat

ed with 

NLS) 

[99

] 

Sor-G8 
sorbitol-based molecule with 8 guanidine 

units 

Noncov

alent 

Electrost

atic and 

hydroge

n 

bonding 

Macropino

cytosis 

Syntheti

c 

[10

6] 

AA3H 
MASIWVGHRG 

 

Covalen

t 

Hydroph

obic 

Endocytosi

s 

Derived 

from N-

terminal 

sequenc

es of 

annexin 

[29

3] 

Iduna 

(RNF1

46) 

RRRKIKR 
Covalen

t 
Cationic 

Endocytosi

s 

Derived 

from 

PolyAD

P-

ribosylat

ion 

[10

8] 
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Table 3: Physicochemical properties that influence the CPP uptake pathway 

 

Entrance 

Pathway 
Temperatures Concentrations Internalization Energy 

Cargo 

size 

Direct 
low temperatures 

(approximately 4
o
C) 

high 

concentrations* 

electrostatic 

attraction 

Energy-

independent 

Small 

cargo 

Endocytosis 
high temperatures 

(approximately 37
o
C) 

low  

concentrations* 

electrostatic 

attraction 

Energy-

dependent 

Large 

cargo 

* Low and high concentrations depend on CPP, cargo and cell types. Usually, direct penetration can occur in more 

than 10-20 µM  
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Table 4: Preclinical vaccination studies using CPPs 

CPP Cargo 
Therapeutic 

Use 
Model Ref 

MPG HCV core Hepatitis C virus 
BALB/c 

Mice 
[185] 

MPG HCV coreE1E2 Hepatitis C virus 
BALB/c 

Mice 
[185] 

CL22 TAAs (tumor-associated antigens) Cancer 
C57BL/6 

Mice 
[294] 

TAT Chicken ovalbumin (OVA) Cancer 
C57BL/6 

Mice 
[295] 

TAT Murine tyrosinase-related protein 2 (Trp2) Cancer 
C57BL/6 

Mice 
[296] 

VP22 
Amastin-enhanced 

green fluorescent protein (EGFP) 
Leishmaniasis 

BALB/c 

Mice 
[297] 

TAT 
Leishmania homolog of receptors for activated 

C kinase (LACK) 
Leishmaniasis 

C57BL/6 

Mice 
[298] 

TAT p53 Cancer 
C57BL/6 

Mice 
[299] 

TAT Her2/neu Cancer 
FVB/N 

Mice 
[300] 

TAT Carcinoembryonic antigen Cancer 
C57BL/6 

Mice 
[301] 

Penetratin CD4 or CD8 specific OVA epitope Cancer 
C57BL/6 

Mice 
[302] 

Penetratin SIINFEKL (AntpSIIN) Cancer 
C57BL/6 

Mice 

[303, 

304] 

VP22 Human papillomavirus type 16 E7 Cancer 
C57BL/6 

Mice 
[305] 

Pep-1 HPV16 E7 Cancer 
C57BL/6 

Mice 
[182] 

VP221–267 HPV-16 E7 Cancer 
C57BL/6 

Mice 

[191, 

306] 

MPG HPV16 E7 Cancer 
C57BL/6 

Mice 
[184] 

PEI600-Tat HPV16 E7 Cancer 
C57BL/6 

Mice 
[193] 

MDV-1 

UL49 
HPV-16 E7 Cancer 

C57BL/6 

Mice 
[191] 

VP22 C-terminal OprF 
Pseudomonas 

aeruginosa 

BALB/c 

Mice 
[307] 

TAT Nef HIV-1 
BALB/c 

Mice 
[186] 

MPG HIV-1 MPER/V3 HIV-1 
BALB/c 

Mice 

[183, 

308] 

pVP22 NP (nucleoprotein) gene Influenza 
BALB/c  

Mice  
[309] 

https://www.sciencedirect.com/topics/immunology-and-microbiology/bagg-albino-mouse
https://www.sciencedirect.com/topics/immunology-and-microbiology/bagg-albino-mouse
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Table 5: Preclinical and clinical trials of CPPs in treatment 
 

CPP Cargo Therapeutic Use Preclinical Clinical Ref. 

R7 Cyclosporine A
 

Psoriasis 
 

- 

Phase IIb 

discontinued 

2003 

[310, 311] 

(R-Ahx-

R)4 
PMO 

Cardiovascular disease 

Coronary artery bypass 

 

- 

Phase II 

discontinued 

2009 

[312] 

TAT PKC-δ inhibitor Myocardial infarction 
 

- 

Phase II 

completed 

2011 

[313] 

TAT PKC-ε inhibitor 

Pain: postherpetic 

neuralgia, spinal cord 

injury, postoperative 

 

 

- 

Phase II 

completed 

2011 

[314] 

p28 p28 

Recurrent or progressive 

central nervous system 

(CNS) tumors 

 

- 

Phase I 

completed 

2014 

[315] 

TAT JBD20 Hearing loss 
 

- 

Phase II 

completed 

2014 

[316] 

TAT JBD20 Hearing loss 

 

- 

 

Phase III 

compeleted in 

2016 

ClinicalTrials.gov 

ID: 

NCT02561091 

NCT02809118 

TAT 
botulinum toxin 

A 
Glabellar lines 

 

- 

Phase I/II 

completed 

2016 

[317] 

TAT JBD20 Inflammation 
 

- 

Phase I 

completed 

2012 

[318] 

TAT JBD20 

Intraocular 

inflammation 

and pain 

 

- 

Phase III 

completed 

2016 

[319, 320] 

TAT PKC-ε inhibitor Ischemia 

 

- 

 

Phase I [84, 321] 

TAT 
Botulinum toxin 

A 
Cervical dystonia 

 

- 

 

Phase II [322] 

TAT 
Botulinum toxin 

A 

Excessive underarm  

sweating 

 

- 
Phase II [84, 321] 

PTD HA–Bcl-XL Cerebral ischemia 

 

Mice 

 

 

- [86] 

PTD FNK Cerebral ischemia 
Gerbils 

 

 

- 
[200] 

TAT 
JBD20 (D-JNKI-

1) 
Cerebral ischemia 

Mice 

 
- [323] 

TAT δ PKC inhibitor Cerebral IR injury Rats - [324] 

TAT NBD 
Perinatal infection in HI 

brain injury 
Neonatal Rats - [202] 

TAT 48–57 BH4 ALS hSOD1
G93A

 Mice - [325] 
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TAT 
JBD20 (D-JNKI-

1) 

Alzheimer Disease 

(AD) 
TgCNRD8 Mice - [326] 

Antp NBD 

Duchenne muscular 

dystrophy (DMD) 

 

Mice - [204, 327] 

PEP-1 SOD1 Myocardial IR injury Rats - [328, 329] 

PEP-1 CAT Myocardial IR injury Rats - [328, 329] 

TAT 48–60 BH4 Myocardial IR injury Mice - [330] 

RI-TAT p53C Cancer Mice - [331] 

DPV1047 

(Vectocell) 
SN38 Cancer 

Beagle dog, 

Mice and Rats 
- [207] 

MPG-8 siRNA Cancer Mice - [332] 

TAT-

DRBD 
siRNA Cancer Mice - [333] 

(R-Ahx-

R)4 
PMO 

Corneal transplant 

rejection 
Rats - [209] 

TAT 

Antibody 

(Tumoricidal 

immunoglobulins 

as Fab fragment) 

Tumor therapy 3T3-L1 cells - [68, 84, 334] 

TAT 

Β-gal, RNase A, 

Horseradish 

peroxidase, 

Pseudomonas 

exotoxin A 

domain III 

Heterologous protein 

delivery 

Hela cells/ 

BALB/c mice 
- [68, 84, 334] 

SynB Doxorubicin Cancer Rats  and Mice - [199, 335] 

D-

penetratin 
Doxorubicin Cancer 

In situ brain 

perfusion 
- [199] 

SynB1 

Antibiotic 

benzyl-penicillin 

(B-Pc) 

CNS infections 
In situ brain 

perfusion 
- [336] 

SynB Dalargin Brain uptake Mice - [337] 

TAT BH4 Bacterial sepsis Mice - [338] 

TAT 
Bcl-xL 

 
Bacterial sepsis Mice - [338] 

R8-

modified 

fusogenic 

DOPE 

liposomes 

 

         Bleomycin 

(BLM) 
Cancer 

BALB/c mice 

bearing 4T1 

tumors 

- [339] 

TAT 

anti- Her-2/neu 

peptide mimetic, 

AHNP 

Breast Cancer 
Breast  cancer 

cells 
- [340] 

 

TAT 

 

SpA (the B 

domain of 

staphylococcal 

protein A) 

 

Cancer 

 

murine F9 

teratocarcinoma-

bearing mice 

 

- 

 

[341] 

pVEC-

PEGA 

homing 

domain 

Chlorambucil Cancer 
Breast cancer 

cell lines 
- [342] 

VP22 p53 Cancer p53-negative - [206] 
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human 

osteosarcoma 

cells 

Penetratin PNC-28 Cancer Nu/Nu mice - [343, 344] 

R9 LDP Glioma therapy 
Carcinoma cell 

lines 
- [345] 

Penetratin p16Ink Cancer 
Tumor-bearing 

mice 
- [208] 

TAT P15 Cancer 

C57BL6 mice 

bearing day 7-

established solid 

tumors 

 [346] 

TAT Chitosan/Dox Cancer 
Tumor bearing 

mouse 
- [347] 

TAT–

DRBD 

epidermal 

growth factor 

receptor (EGFR) 

siRNA 

Cancer 

Intracranial  

glioblastoma 

cancer mouse 

models 

- [333] 

TAT–

DRBD 

AKT 

serine/threonine 

kinase 2 (Akt2) 

siRNA 

Cancer 

Intracranial  

glioblastoma 

cancer mouse 

models 

- [333] 

iRGD 

PEG-PLA 

nanoparticles 

loaded with 

paclitaxel 

Cancer 

Nude mice 

bearing 

intracranial C6 

glioma 

- [348] 

tLyp-1 

PEG-PLA 

nanoparticles 

loaded with 

paclitaxel 

Glioma therapy 

Mice bearing 

intracranial C6 

glioma 

- [349] 

Penetratin 

single-chain FVs 

(scFVs) antibody 

fragments 

Cancer 

mice bearing 

human colon 

cancer 

xenografts 

- [350] 

POD 

(peptide 

for ocular 

delivery) 

siRNA 
Ocular Medication 

 

Human 

embryonic 

retinal cells 

- [351] 

VP22 
Recombinant    

proteins 

Ocular Medication 

 

Human 

embryonic 

retinoblasts in 

vitro and retinal 

tissues in vivo 

- [352] 

TAT 
Recombinant  

proteins 

Ocular Medication 

 

Human   

embryonic 

retinoblasts in 

vitro and retinal 

tissues in vivo 

- [353] 

JDB20: The 20- amino-acid JNK-binding motif (JBD20) of JNK-interacting protein-1/islet-brain 1; PMO: 

phosphorodiamidate morpholino oligomers 

 

 

 




