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pulse length (25  ms) led to further cytotoxicity and 
lower transfection in HEK293T and COS-7 cells than 
other conditions. Moreover, the high voltage (700 V) 
increased the cell cytotoxicity, and decreased electro-
transfection efficiency in DCs. On the other hand, the 
best conditions of electroporation along with heat 
treatment could significantly augment the transfection 
efficiency in all the cells. These data will be useful for 
gene delivery in other cells with the same properties 
using physical methods.
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Introduction

Effective and safe delivery of DNA, RNA, and protein 
is a critical issue in biomedical and clinical studies 
(Zheng et al. 2017; Wang and Bodovitz 2010; Carlo 
and Lee 2006). Although, viruses are considered as 
a gold standard for gene delivery, but they possess 
various disadvantages, e.g., cytotoxicity, high cost, 
the potential of mutagenesis/tumorigenesis/immu-
nogenicity, and size restriction (Kim and Eberwine 
2010; Roth et  al. 2018; Gallego-Pérez et  al. 2017). 
These drawbacks led to the development of non-viral 
techniques. In the last four decades, electroporation 
was suggested as an effective, easy, low cost and safe 
strategy for delivery of different exogenous molecules 

Abstract  Physical methods are widely utilized to 
deliver nucleic acids into cells such as electro-trans-
fection or heat shock. An efficient gene electro-trans-
fection requires the best conditions including voltage, 
the pulse length or number, buffer, incubation time 
and DNA form. In this study, the delivery of pEGFP-
N1 vector into two adherent cell lines (HEK-293  T 
and COS-7) with the same origin (epithelial cells), 
and also mouse bone marrow-derived dendritic cells 
(DCs) was evaluated using electroporation under dif-
ferent conditions alone and along with heat treatment. 
Our data showed that the highest green fluorescent 
protein (GFP) expression in HEK-293 T and COS-7 
cells was observed in serum-free RPMI cell culture 
medium as electroporation buffer, voltage (200  V), 
the pulse number (2), the pulse length (15  ms), the 
circular form of DNA, and 48 h after electro-transfec-
tion. In addition, the highest GFP expression in DCs 
was detected in serum-free RPMI, voltage (300  V), 
the pulse number (1), the pulse length (5  ms), and 
48 h after electro-transfection. The use of sucrose as 
electroporation buffer, the pulse number (2), and the 

Supplementary Information  The online version 
contains supplementary material available at https://​doi.​
org/​10.​1007/​s10616-​022-​00524-4.

K. Kardani · A. Milani · A. Bolhassani (*) 
Department of Hepatitis and AIDS, Pasteur Institute 
of Iran, Tehran, Iran
e-mail: azam.bolhassani@yahoo.com; A_bolhasani@
pasteur.ac.ir

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



	 Cytotechnology

1 3
Vol:. (1234567890)

into tissues and cells compared to viral vector-medi-
ated gene delivery (Bolhassani et  al. 2014; Kotnik 
et al. 2019; Neumann et al. 1999; Jung et al. 2014). 
Gene electro-transfer was utilized mainly for DNA-
based vaccines against inflammation, infectious dis-
eases, multiple sclerosis and cancer, and also gene 
therapy (Sardesai and Weiner 2011; Zhao et al. 2010; 
Heller and Heller 2010).

Electroporation is generally performed through 
delivery of single or sequential electrical pulses to 
a cuvette containing biological sample suspended 
in electroporation buffer (Kotnik et  al. 2019; Puci-
har et  al. 2011). The electro-transfection efficiency 
(eTE) is usually determined based on the percent-
age of cells receiving biological molecules and also 
cell viability. In general, two different wave forms 
of a pulse including exponential decay and square-
wave can be produced in electroporation setting. The 
square-wave electroporation was more suitable for 
biomolecule delivery in mammalian cell lines due to 
the control of voltage, duration of pulses, and genera-
tion of fast repeating pulses. Various factors influence 
the efficacy of electro-transfection including cuvette 
type, the number and amplitude of pulses, intervals 
between multiple pulses, cell type, conductivity and 
composition of electroporation buffer (Bolhassani 
et  al. 2014; Kotnik et  al. 2019; Pucihar et  al. 2011; 
Yao et al. 2009; Djuzenova et al. 1996; Jordan et al. 
2008; Cemazar and Sersa 2007; Escoffre et al. 2009). 
Electroporation buffer is an important factor respon-
sible for cell viability after electroporation (Sherba 
et al. 2020). Thus, electroporation conditions should 
be optimized for different cell types. On the other 
hand, Takizaki et  al. reported that gene transfection 
could be enhanced by heat treatment as a physical 
method (2017).

Among various mammalian cell lines, human 
embryonic kidney 293  T (HEK-293  T) cells are 
widely applied to express the recombinant proteins, 
anticancer agents, and vaccine constructs (Graham 
et  al. 1977; Hu et  al. 2018; Lin et  al. 2014). HEK-
293 T cell line has the potency of effective transfec-
tion of plasmid DNA, translation, and processing 
of the recombinant proteins (Thomas and Smart, 
2005). In addition, African green monkey kidney 
(COS-7) cell line was applied for propagation of the 
recombinant SV40 viruses, rotavirus and polyoma-
virus (Asano et al. 1985; Gluzman 1981; Díaz et al. 
2012; Prezioso et  al. 2017), and also biological, 

immunological and cell signaling studies (D’Agostino 
et al. 2014; Valizadeh et al. 2016; Sakurai et al. 2017). 
On the other hand, dendritic cells (DCs) are the most 
powerful antigen presenting cells (APCs) in immune 
system (Cohn and Steinman 1973; O’Neill 2004). 
DCs are divided into three groups based on their dif-
ferentiation stage such as precursors, immature, and 
mature DCs (Maraskovsky et  al. 2000; Inaba et  al. 
1992a, b; Scheicher et  al. 1992; Inaba et  al. 1992a, 
b). DCs loaded with proteins or peptides and/or trans-
fected with plasmid DNA were widely utilized in 
cell-based vaccines (Bolhassani et al. 2019; Soleym-
ani et al. 2019). Thus, optimizing the expression effi-
ciency of a recombinant protein in these cells is criti-
cal using different gene delivery systems.

In this study, we electro-transfected the green fluo-
rescent protein (GFP)-expressing plasmid (pEGFP-
N1) in two adherent cell lines (HEK-293  T and 
COS-7) with the same origin and immature DCs, and 
optimized some electroporation conditions for achiev-
ing the highest level of GFP expression, and also cell 
viability. These optimized conditions can be applied 
to express biologically active molecules in the cells 
for different purposes. Moreover, the heat effects were 
investigated to increase the transfection efficiency of 
plasmid DNA into cells after electroporation.

Materials and methods

Plasmid preparation

At first, the E. coli DH5α strain was transformed with 
pEGFP-N1 vector. Then, the single clone was grown 
in Luria–Bertani (LB) medium, and the plasmid was 
purified by ion exchange chromatography using DNA 
extraction mini-kit (Qiagen) according to the manu-
facturer’s instructions. Next, the purity and concentra-
tion of pEGFP-N1 vector was estimated by NanoDrop 
spectrophotometer. To attain the linearized pEGFP-
N1 vector, this plasmid was digested by NotI restric-
tion enzyme, and purified from agarose gel using gel 
extraction mini-kit (Qiagen).

Preparation of HEK‑293 T and COS‑7 cells

Human embryonic kidney (HEK-293  T; ATCC: 
CRL-3216™), and COS-7 (CRL-1651) cell lines 
were prepared from the cell bank at Pasteur Institute 
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of Iran. HEK-293  T and COS-7 cell lines were cul-
tured in RPMI 1640 medium (Gibco) containing 10% 
heat-inactivated fetal bovine serum (FBS, Gibco), and 
penicillin (100 U/ml)/streptomycin (0.1 mg/ml). Both 
cell lines were cultured at 37  °C with 95% relative 
humidity in a 5% CO2 incubator.

Preparation of mouse bone marrow‑derived DCs

For extraction of DCs from mouse bone marrow, 
inbred BALB/c male mice were provided from the 
breeding stocks maintained at Pasteur Institute of Iran 
under specific pathogen-free conditions. All proce-
dures were performed according to approved proto-
cols and in accordance with recommendations for the 
proper use and care of laboratory animals (Approval 
ID: IR.PII.REC.1398.061; Approval Date: 2020-02-
18). Mice were sacrificed and their bone marrows 
were extracted. After washing and lysis of red blood 
cells using ACK buffer, the cells were cultured in 
RPMI 1640 medium supplemented with FBS 10%, 
GM-CSF (20 ng/ml), and IL-4 (10 ng/ml). The cul-
ture medium containing cytokines was refreshed 
every two days. The cells were harvested on day 5. 
DCs were identified by a FACScan Flow Cytometer 
(Becton Dickinson) using anti-CD86, anti-CD11c and 
anti-CD83 antibodies (BD Pharmingen; Strome et al. 
2002).

Gene delivery in HEK‑293 T and COS‑7 cells using 
electroporation

Various parameters such as electroporation buffer, 
voltage, the pulse length, and the form of plasmid 
DNA (linear or circular) were studied to optimize 
gene delivery along with cell viability in two individ-
ual experiments. Electroporation buffer and the pulse 
length conditions were evaluated in the first experi-
ment (Table 1), and voltage and the form of plasmid 
DNA (pDNA) conditions were investigated in the 
second experiment (Table 2) as follows.

In the first experiment, the efficiency of two dif-
ferent buffers including serum-free RPMI 1640 and 
sucrose was evaluated to determine the best buffer 
conditions. The 300  mM saccharose (sucrose) solu-
tion was prepared by dissolving pure saccharose pow-
der in sterile water and kept at 4 °C. The cell density, 
voltage and pDNA concentration were set on 2 × 106 
cells/ml, 200  V and 5  μg, respectively. Further-
more, two pulses of 15 ms (2 × 15 ms) and of 25 ms 
(2 × 25  ms) with one second interval were investi-
gated. Before electro-transfection using Gene Pulser 
II Electroporation System (Bio-Rad, Richmond, CA), 
the mixture of cells and pDNA was transferred into 
the electroporation cuvette (0.4 cm, BioRad) and the 
cuvette was incubated on ice for 5  min. After puls-
ing, the cuvette was incubated on ice for 10  min. 
Next, fresh RPMI 1640 culture medium containing 

Table 1   Evaluation of buffer and pulse length in the first experiment (for HEK-293 T and COS-7 cells)

Treatment Plasmid form Concentration of 
DNA (μg)

Buffer Cell density 
(cells/ml)

Voltage (V) Pulse length (ms) Intervals 
(second)

1 Circular 5 RPMI 2 × 106 200 2 × 15 1
2 Circular 5 RPMI 2 × 106 200 2 × 25 1
3 Circular 5 Sucrose 2 × 106 200 2 × 15 1
4 Circular 5 Sucrose 2 × 106 200 2 × 25 1

Table 2   Evaluation of voltage and plasmid form in the second experiment (for HEK-293 T and COS-7 cells)

Treatment Plasmid form Concentration of 
DNA (μg)

Buffer Cell density 
(cells/ml)

Voltage (V) Pulse length (ms) Intervals 
(second)

1 Circular 5 RPMI 2 × 106 200 2 × 15 1
2 Circular 5 RPMI 2 × 106 100 2 × 15 1
3 Linear 5 RPMI 2 × 106 200 2 × 15 1
4 Linear 5 RPMI 2 × 106 100 2 × 15 1
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10% FBS, and penicillin (100 U/ml)/streptomycin 
(0.1 mg/ml) was added to the samples in 6-well plate. 
Finally, the cells were incubated in a 5% CO2 incuba-
tor at 37 °C for 48 h. In the second experiment, based 
on the above results, other electroporation condi-
tions such as voltage (200 V or 100 V) and plasmid 
DNA form (circular or linear) were studied. Herein, 
the pulse length and electroporation buffer were con-
sidered 2 × 15  ms and RPMI medium, respectively. 
Transfection efficiency was investigated by measur-
ing the percentage of GFP-expressing cells using 
flow cytometry (Partec, Germany) and fluorescent 
microscopy.

Gene delivery in mouse bone marrow‑derived DCs 
using electroporation

DCs were only transfected with the circular form of 
pDNA. Some parameters such as voltage, number of 
pulses, and incubation time were optimized for gene 
delivery in DCs. The effects of voltage and number 
of pulses were evaluated for transfection efficiency 
in the first experiment (Table 3). After obtaining the 
results, the effects of voltage and incubation times 
were studied in the second experiment (Table  4) as 
follows.

In the first experiment, after five days of cultur-
ing DCs, the immature DCs were harvested, and 

centrifuged at 200  ×  g for 5  min. The cells were 
resuspended in 200  μl of serum-free RPMI-1640 
medium at a density of 2 × 106 cells/ml, and added 
to the cuvettes after mixing with 2  μg of pDNA. 
The pulse length was set on 5 ms with one second 
interval. The effects of voltage (700 V and 300 V), 
and number of pulses (one or two times) were stud-
ied on the transfection efficiency. The electropora-
tion was performed using Gene Pulser II Electropo-
ration System (Bio-Rad, Richmond, CA). Then, the 
transfected DCs were diluted in 2  ml RPMI 1640 
supplemented with 10% FBS and penicillin (100 U/
ml)/streptomycin (0.1 mg/ml), and transferred into a 
12-well plate. Finally, the cells were incubated in a 
humidified 5% CO2 incubator at 37 °C for 48 h. In 
the second experiment, based on the above results, 
the effects of voltage and incubation time after elec-
troporation were studied on transfection efficiency. 
Hence, the cell density, pDNA concentration, buffer 
and pulse length were set on 2 × 106 cells/ml, 2 μg, 
serum-free RPMI 1640 and 1 × 5  ms, respectively. 
The voltages were 300 V and 400 V. The electropo-
ration procedure was performed similar to the first 
experiment. The cells were incubated under stand-
ardized conditions (5% CO2, 37  °C, and 95% rela-
tive humidity) for 24 h and 48 h after electropora-
tion. Transfection efficiency was investigated using 
flow cytometry and fluorescent microscopy.

Table 3   Evaluation 
of voltage and number 
of pulses in the first 
experiment (for dendritic 
cells)

Treatment Concentration 
of DNA (μg)

Buffer Cell density 
(cells/ml)

Voltage (V) Pulse 
length 
(ms)

Intervals 
(second)

1 2 RPMI 2 × 106 700 1 × 5 1
2 2 RPMI 2 × 106 700 2 × 5 1
3 2 RPMI 2 × 106 300 1 × 5 1
4 2 RPMI 2 × 106 300 2 × 5 1

Table 4   Evaluation of 
voltage and incubation time 
after electro-transfection in 
the second experiment (for 
dendritic cells)

Treatment Concentration 
of DNA (μg)

Buffer Cell den-
sity (cells/
ml)

Voltage (V) Pulse 
length 
(ms)

Intervals 
(second)

Incubation 
time (hours)

1 2 RPMI 2 × 106 300 1 × 5 1 24
2 2 RPMI 2 × 106 300 1 × 5 1 48
3 2 RPMI 2 × 106 400 1 × 5 1 24
4 2 RPMI 2 × 106 400 1 × 5 1 48
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The heat effects on efficiency of electro‑transfection

The cell plate was covered with parafilm and fully 
incubated in a water bath at 42 °C for 2 h after elec-
tro-transfection (with the optimized conditions). 
Then, the cell plate was incubated at 37 °C for 48 h. 
Transfection efficiency was investigated using flow 
cytometry and fluorescent microscopy.

Cell viability

The cytotoxic effects of electroporation and heat 
treatment on HEK-293 T cells, COS-7 cells, and DCs 
were investigated using MTT assay (Davoodi et  al. 
2019).

Statistical analysis

The data were analyzed by Prism software using 
t-test and at statistical significance of 0.05. Data were 
represented as mean ± standard deviation (SD). Two 
independent experiments were performed to obtain 
reproducibility. Indeed, each experiment such as gene 
delivery or MTT was performed two times. Moreo-
ver, we used two replicates (duplicates) for each con-
dition (in gene delivery) or MTT in each independent 
experiment.

Results

Preparation of pDNA

The pEGFP-N1 eukaryotic vector was prepared with 
high purity. Moreover, the pEGFP-N1 vector was 
correctly linearized by digestion with NotI restric-
tion enzyme as a clear band of ~ 4700 bp on agarose 
gel (Supplementary Fig. 1). The concentration of the 
purified circular and linear pDNA was determined by 
NanoDrop spectrophotometry.

Electro‑transfection of pDNA into HEK‑293 T and 
COS‑7 cells

In the first experiment, the serum-free RPMI 
medium and 2 pulses of 15 ms (2 × 15 ms) showed 
higher DNA delivery than sucrose and 2 pulses of 
25  ms (2 × 25  ms), respectively. The percentage of 
GFP expression was shown in Fig.  1A and B for 
HEK-293  T and COS-7 cells, respectively. In the 
second experiment, the circular form of pDNA and 
200  V indicated higher GFP expression than the 
linear form of pDNA and 100 V, respectively. The 
percentage of GFP expression was shown in Fig. 2A 
and B for HEK-293 T and COS-7 cells, respectively. 
Generally, the best transfection efficiency (under 
electroporation conditions: circular DNA, RPMI 

Fig. 1   Evaluation of electroporation buffer and pulse length in 
HEK-293 T and COS-7 cells using flow cytometry (A, B); The 
cell viability after electroporation under different conditions 

for HEK-293 T and COS-7 cells using MTT assay (C, D); ns 
non-significant; ***p < 0.001; **p < 0.01; *p < 0.05
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buffer, 200 V & 2 × 15 ms) was about 77.91% ± 5.05 
and 60.04% ± 3.23 for HEK-293 T and COS-7 cells, 
respectively. The fluorescent microscopy image was 
shown for the best electroporation conditions, as 
well (Fig. 3A and B).

Electro‑transfection of pDNA into DCs

The mouse bone marrow-derived DCs were suc-
cessfully harvested after 5-day culture in medium 
containing GM-CSF and IL-4 cytokines for gene 
electro-transfection. The expression levels of CD86, 
CD11c, and CD83 in immature DCs were 53.3%, 
60.9%, and 15.6%, respectively (as previously 
described by our group: Bolhassani et  al. 2019). 
In the first experiment, the 300 V and one pulse of 
5 ms showed higher DNA delivery than the 700 V 
and two pulses of 5  ms, respectively (Fig.  4A). In 
the second experiment, the 300  V and incubation 
time of 48 h indicated higher GFP expression than 
the 400 V and incubation time of 24 h, respectively 
(Fig. 4B). As observed, the voltage change showed 
a significant effect on transfection efficiency (700 V 
vs 300  V; p < 0.05) as compared to the number of 
pulse (two pulses vs one pulse, p > 0.05) in differ-
ent conditions. The best transfection efficiency 
was about 30.15% ± 5.21 for DCs. The fluorescent 
microscopy image was shown for the best elec-
troporation conditions, as well (Fig. 3C).

Heat treatment after electroporation

After determination of the optimal electroporation 
conditions for DNA delivery in HEK-293  T cells, 
COS-7 cells and DCs, the cells were incubated at 
42  °C for 2 h after electroporation. The transfection 
efficiency was about 90.13% ± 2.06, 71.02% ± 2.80 
and 43.25% ± 3.11 for HEK-293 T cells, COS-7 cells 
and DCs, respectively (Fig. 5A). The transfection effi-
ciency was significantly higher in all the cells under 
the combined electroporation and heat treatment 
than the electroporation conditions, alone (p < 0.05; 
Fig.  5A). The GFP expression was higher in HEK-
293  T cells than that in COS-7 cells (p < 0.05; 
Fig.  5A). Moreover, the GFP expression was higher 
in COS-7 cells than that in DCs (p < 0.01; Fig. 5A). 
The fluorescent microscopy image was shown for 
the combined electroporation and heat treatment 
(Fig. 3D–F).

Cell viability

MTT assay was performed to investigate the viability 
of electroporated cells versus non-electroporated cells 
(control) in both experiments for three cell types, 
individually. In both experiments, the cell viability 
rate was between 20 and 60% as compared to control 
(95–100%; p < 0.001, Figs. 1, 2, and 4C, D). The cell 
viability was almost constant after heat treatment, as 
well (p > 0.05; Fig. 5B).

Fig. 2   Evaluation of voltage and DNA form in HEK-293  T 
and COS-7 cells using flow cytometry (A, B); The cell viabil-
ity after electroporation under different conditions for HEK-

293 T and COS-7 cells using MTT assay (C, D); ns non-signif-
icant; ***p < 0.001; **p < 0.01; *p < 0.05
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Discussion

Electroporation is a non-viral delivery system for 
increasing the cellular uptake of exogenous biomol-
ecules (RNA, DNA and proteins) in vitro and in vivo 
(Latella et  al. 2016; Thakore et  al. 2015; Son et  al. 
2016; Liu et  al. 2015; Daud et  al. 2008; Greaney 
et al. 2020; Ogunremi et al. 2013; De Keersmaecker 

et  al. 2020; Jansen et  al. 2020). About four decades 
ago, Neumann and colleagues showed the first elec-
tro-transfection of herpes simplex thymidine kinase 
(TK) gene into mouse lyoma cells (Neumann et  al. 
1982). In 2004, the first clinical trial using electropo-
ration was started to deliver interleukin-12 pDNA in 
metastatic melanoma cells (Daud et  al. 2008). This 
approach was successful in a wide-range of clinical 

Fig. 3   The fluorescent 
microscopy image of 
the cells under the best 
electroporation conditions 
(A–C), and the combined 
electroporation and heat 
conditions (D–F): HEK-
293 T cells (A, D), COS-7 
cells (B, E) and DCs (C, F)
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Fig. 4   Evaluation of pulse number & voltage (A), and volt-
age & incubation time after electroporation (B) in DCs using 
flow cytometry; The cell viability after electroporation under 

different conditions for DCs using MTT assay (C, D); ns non-
significant; ***p < 0.001; **p < 0.01; *p < 0.05

Fig. 5   The transfection efficiency of plasmid DNA into HEK-
293  T cells, COS-7 cells and DCs using the combined elec-
troporation and heat treatment as compared to electroporation, 

alone (A); Cell viability after the combined electroporation and 
heat treatment as compared to electroporation, alone (B); ns 
non-significant; *** p < 0.001; **p < 0.01; *p < 0.05
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trials (Heller and Heller 2015; Meijerink et al. 2021; 
Mpendo et al. 2020). Recently, the efficacy of thera-
peutic DNA vaccine (GX-188E) injected intramus-
cularly by electroporation was proved for inducing 
regression of cervical intraepithelial neoplasia (CIN3) 
in patients (Choi et  al. 2020). However, every cell 
type needs different electro-transfection conditions 
that should be optimized experimentally (Ovcharenko 
et  al. 2005). For instance, the delivery of large bio-
molecules (e.g., nucleic acids) was dependent on 
electrical forces established during pulsing (Venslaus-
kas and Šatkauskas 2015). Our study describes the 
optimization of pEGFP-N1 electro-transfection into 
HEK-293  T cells, COS-7 cells and DCs under dif-
ferent conditions including strength of electric field, 
duration and number of electric field, and electropo-
ration buffer. The egfp reporter gene has been exten-
sively utilized to investigate the efficiency of gene 
delivery (Soleymani et  al. 2019). Our data showed 
that the rate of DNA transfection was dependent on 
various conditions of the selected square-wave pulse 
and the electroporation buffer. The culture medium 
(pH 7.5) showed an important role in increasing the 
transfection efficiency of pDNA into the cells com-
pared to sucrose buffer. Potter and Heller showed 
the effect of electroporation buffer related to pH 
in protocols (2017). Guo et  al. (2012) showed that 
RPMI-1640 without serum and antibiotics as elec-
troporation buffer was more effective than phosphate-
buffered saline (PBS 1X) buffer. Moreover, incubat-
ing the cells on ice prior and after pulsing enhances 
electroporation efficiency (Guo et  al. 2012). Indeed, 
incubation of cells on ice usually leads to higher 
transfection rate particularly at high voltage due to 
heat generation (Potter et  al. 1984). Another critical 
factor in electroporation is the pulse length and volt-
age. The studies showed that the millisecond pulses 
are more desirable for enhancing the cell uptake than 
the microsecond pulses (Lucas and Heller 2001). In 
our study, the 15 ms pulse was more effective than the 
25 ms pulse for DNA uptake in both HEK-293 T and 
COS-7 cells. The longer exposure time to voltage led 
to the reduction of electroporation efficiency which 
may be due to heat generation during the pulse. The 
reports showed that the optimal voltage for electro-
transfection had an inverse relationship with the cell 
size (Chu et  al. 1987). It was previously confirmed 
that two pulses are sufficient for electro-transfection 
of DNA into most cell types (Jianqiong et al. 2000). 

Moreover, the cell distance from electrodes plays a 
crucial role in electro-transfection efficiency. The 
0.4  cm cuvette showed better results in compari-
son with 0.2  cm cuvette due to greater cell distance 
from electrodes (Geng and Lu 2013; Grys et al. 2017; 
Hyder et al. 2020). We also used the 0.4 cm cuvette 
for electro-transfection. On the other hand, our study 
showed that the linearized pDNA led to a decreased 
expression of EGFP protein. Other studies demon-
strated that the circular DNA is more effective than 
the linearized DNA for transient gene expression 
(Potter and Heller 2017).

In current study, electroporation was utilized to 
deliver pDNA into DCs. DCs were widely used for 
development of cell-based vaccines in infectious dis-
eases and cancer. DCs as an antigen presenting cell 
(APC) are responsible for antigen uptake, their pro-
cessing and presentation to the major histocompat-
ibility complex (MHC) molecules (Yi and Appel 
2013). In various studies, antigen-pulsed DCs could 
stimulate tumor-specific immune responses (Porgador 
et  al. 1996; Gabrilovich et  al. 1996). Some findings 
showed the gene transfer into DCs through electro-
transfection (Lenz et  al. 2003; Artusio et  al. 2006). 
Our data showed that lower voltages (300 or 400 V) 
were more efficient than high voltage (700 V) in elec-
tro-transfection efficiency (p < 0.05), but the number 
of pulses did not influence the cell uptake (p > 0.05).

On the other hand, heat treatment could alter the struc-
ture of the cell membrane in various cell types. Heat-
induced changes in the membrane potential were deter-
mined in normal and transformed hamster lymphocytes. 
Incubation for 1–2  h at temperatures between 38 and 
42 °C resulted in a depolarization of normal cells and a 
hyperpolarization of SV40-transformed cells (Mikkelsen 
and Koch 1982). In 2017, Tkizaki et  al. reported that 
gene transfection could be enhanced by heat treatment 
(2017). Heat shock likely influences the cells through an 
increase in the number of cells that uptake the plasmid, 
and/or an increased stable integration rate (Pipes et  al. 
2005). In our study, heat treatment of the cells at 42 °C 
for 2 h after electroporation could increase transfection 
efficiency and gene expression in both adherent and sus-
pension cells (p < 0.05).

Generally, in our study, different parameters were 
studied to determine the best conditions of DNA 
electro-transfection into adherent cells (HEK-293  T 
and COS-7 cells). The RPMI buffer, circular form of 
DNA, two pulses of 15 ms and 200 V conditions were 
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more effective than the sucrose buffer, linear form of 
DNA, two pulses of 25 ms and 100 V conditions for 
DNA delivery into both HEK-293 T and COS-7 cells. 
In all experiments, the viability was significantly 
reduced in electro-transfected cells as compared to 
untransfected cells. However, the sucrose buffer, 
200 V and two pulses of 25 ms led to further cyto-
toxicity than other conditions. Moreover, the electro-
transfection of DCs with the plasmid DNA was stud-
ied. Our data indicated that serum-free RPMI buffer, 
circular form of DNA, 300 V, and one pulse of 5 ms 
and incubation time of 48 h were the most effective 
conditions for DNA delivery into DCs. Moreover, the 
voltages of 300 and 400 (300 V and 400 V) showed 
the same cell viability, but the voltage of 700 (700 V) 
indicated high cell cytotoxicity with low transfection. 
On the other hand, the best conditions of electropo-
ration along with heat treatment could significantly 
augment the transfection efficiency in all the cells.

In summary, our study showed that DNA delivery can 
be successfully performed in various cell types through 
electroporation using the optimized parameters such as 
buffer, electric field, number of pulsing, pulse length, 
DNA form and incubation time after electro-transfec-
tion. The low voltage, low pulse length, and cell culture 
medium as electroporation buffer were important param-
eters in cell uptake and also cell viability. Significant dif-
ferences were observed between DCs and adherent cells 
(HEK-293 T and COS-7 cells) in electro-transfection effi-
ciency. However, HEK-293  T and COS-7 cells showed 
the same conditions in electro-transfection parameters 
likely due to their same origin (epidermal tissue). These 
findings can be used for DNA delivery through electropo-
ration in other cells. Moreover, heat treatment along with 
electroporation could significantly increase the transfec-
tion efficiency in the cells. Further studies will be required 
to optimize other electroporation conditions (e.g., DNA 
concentration, buffer, etc.) as well as mechanism of heat 
effects on electroporation.
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