Bisulfite Sequencing for Site-Specific DNA Methylation Analysis

epicatch

Training School on Plant Epigenetics: Basics, Applications and Methodologies June 28th-30th, 2021 On-line

Outline

- Principles of Bisulfite Conversion
- Methodology of Bisulfite Sequencing
 - DNA extraction
 - Bisulfite treatment
 - Amplification
 - Cloning
 - Sequencing
- Summary

°O⁻ Na⁺ HO

Principles of Bisulfite Conversion

IN SCIENCE & TECHNOLOGY

epicatch

June 28th-30th , 2021 On-line

Organization, Volcani Institute

Principles of Bisulfite Conversion

Training School on Plant Epigenetics: Basics, Applications and Methodologies June 28th-30th, 2021 On-line

Principles of Bisulfite Conversion

IN SCIENCE & TECHNOLOGY

Principles of Bisulfite Conversion

Training School on Plant Epigenetics: Basics, Applications and Methodologies June 28th-30th, 2021 On-line

Training School on Plant Epigenetics: Basics, Applications and Methodologies June 28th-30th, 2021 On-line

- Plant genomic DNA extraction kit (recommended)
- Standard CTAB DNA extraction

Commercial kits available for **plant** DNA bisulfite conversion

Training School on Plant Epigenetics: Basics, Applications and Methodologies June 28th-30th, 2021 On-line

Duration: ~ 5 hrs

Training School on Plant Epigenetics: Basics, Applications and Methodologies June 28th-30th, 2021 On-line

PCR amplification using the bisulfite-treated DNA

General considerations for primers design:

- Use a designated software (freely available on the web)
- Target a methylated region \leq 500bp
- Design nested primers
- As few Cs as possible

Freely available tools for primer design:

- Kismeth http://katahdin.mssm.edu/kismeth/primer_design.pl
- Methyl primer express

https://www.thermofisher.com/order/catalog/product/4376041?SID=srch-srp-4376041

- Bisulfite Primer Seeker https://www.zymoresearch.com/pages/bisulfite-primer-seeker
- And more....

Bisulfite Primer Design

Use the form below to select the file containing your sequence in fasta format: **?**

Sequence file: Choose File SITAB2.txt		Display name (o Example	optional):
Min. primer length Max. primer length 30	Min. product length	Max. product length	Min. Tm 48
Number of primers 10	Primers for other strand ?		
Upload	file and generate prime	rs	

http://katahdin.mssm.edu/kismeth/primer_design.pl

Home

Bisulfite primers

File SITAB2.txt, size 687 bytes has uploaded successfully.

Input sequence (676 bp)

Forward strand primers visualize

Count	forward primer	reverse primer	product length	for,rev pos	T1,T2(forward)	T1,T2(reverse)
1	AAATAAAAATAAATAATTTGGGTTTGATGG	CTCCCATAATTTTTTCCCTCTAATATCAA	273	58,361	50.6,50.6	54.4,54.4
2	TAATTTGGAAGAAGAGGAGGA	TACCTRAARAATCTRATTTTATC	250	245,516	48.5,48.5	42.7,48.1
3	AATATGTTTAYYAAAATGTAAGGTGAAGT	TAAARCATCTTTCAAARTRATACTATT	254	170,453	50.1,53	46.0,50.6
4	AAAATGTAAGGTGAAGTYTGTTYATATT	ATATARATARTAAARCATCTTTCAAA	254	182,464	49.6,52.6	43.7,48.5

C -> Y (C or T) in Forward primer

G -> R (G or A) in Reverse primer

T1 is the Tm calculated by replacing all C's with T's in the forward primer (and G's with A's in the reverse primer), T2 is the Tm for the unmodified primer

Reverse strand primers visualize

Count	forward primer	reverse primer	product length	for,rev pos	T1,T2(forward)	T1,T2(reverse)
1	AGTTGAGAGGATGTAAGTTAAGAGTA	TCTCCCTTTACTTCAAACTCATAAA	408	537,104	53.2,53.2	51.1,51.1
2	TATTGATAAGATTATTAGGAAAATATTTGG	СТСССТТАТСТТТТАААТАААААААТАААА	368	427,29	50.6,50.6	49.3,49.3
3	AATTGATGAGAGAATTGAAAATGTAAAA	AARCTTCTTCTATTTCATCTACTAATTT	313	564,223	49.6,49.6	49.6,51.1
4	GGAAAATATTTGGTATAYTGAAGAGAGAGG	AAAAATTARTCTCCCTTATCTTTTAAATAA	361	410,19	56.1,57.5	49.3,50.6
5	GAAAATGTAAAAYAGTTGAGAGGATGTAAG	TCCAATTTCARTRTATTCCCCTTTAAATCA	381	546,135	54.7,56.1	53.4,56.1
6	TGGTATAYTGAAGAGAGAGGGAAT	AAAAATAAAAAAAAATTARTCTCCCTTATC	367	406,9	52.2,53.9	49.3,50.6
7	AAAAATGGAAAAYAATTGATGAGAGAAATTG	CTTCAAACTCATAAARCRATTTCCAATTTC	431	575,114	52.0,53.4	53.4,56.1
8	AAAGTGATAYTATTGATAAGATTATTAGGA	CTRCARTCTCCCTTTACTTCA	318	437,98	50.6,52	48.5,52.4
9	TGATTTTATYGGGTAATGGGATA	TATTCCCCTTTAAATCARTTRCAATAT	328	503,148	48.1,49.9	49.1,52.1
10	TAAGTYATTAGATATAGATAGTAAAG	TCTRTTCATATTCCATCARTTTCT	253	475,198	46.9,48.5	47.1,50.5

T1 is the Tm calculated by replacing all C's with T's in the forward primer (and G's with A's in the reverse primer), T2 is the Tm for the unmodified primer

Please contact Ravi Sachidanandam (ravi.cshl.work{at}gmail.com) with any questions.

Visualization

Forward strand primers

highlighted regions correspond to features in track: primer4, primer3, primer2, primer1

AAAAAAATAA AAAATAAAAA AAAATTAGTC TCCCTTATCT TTTAAATAAA AAAATAAAAA ATAAAAATAA ATAAATTTGGG TTTGATGGCT TGTCTAAGCT GCAGTCTCCC TTTACTTCAA ACTCATAAAG CGATTTCCAA TTTCAGTGTA TTCCCCTTTA AATCAGTTGC AATATGTTTA CCAAAATGTA AGGTGAAGTC TGTTCATATT CCATCAGTTT CTGAAGCTTC TTCTATTTCA TCTACTAATT TGGAAGAAGA GGAGGACGAC GATCCCACTG CTGAACTTGT TTATCTTGAC CCTGAAATTG ATCCTGAGAG CTTATCTGAG TGGGAATTGG ATTTTTGTTC AAGACCAATT CTTGATATTA GAGGGAAAAA ATTATGGGAG CTTCTTGTTT GTGATGATTC CCTCTCTCT CAGTATACCA AATATTTTCC TAATAATCTT ATCAATAGTA TCACTTTGAA AGATGCTTTA CTACTATAT CTAATGACTT AGGTATCCCA TTACCCGATA AAATCAGATT CTTCAGGTAC TCTTAACTTA CAAGAGCTTG ACTGTTTAC ATTTTCAATT CTCTCATCAA TTGTTTCCA TTTTAGGTC ACAAATGCAA ACTATTATTA CAAGAGCTTG CAACGAACTT GCCATCAAAC CTGTTCCTAG CAAACG

No nesting option

Visualization

Reverse strand primers

highlighted regions correspond to features in track: primer10, primer9, primer8, primer7, primer6, primer5, primer1, primer2, primer1

AAAAAAATAA AAAATAAAAA AAAATTAGTC TCCCTTATCT TTTAAATAAA AAAATAAAAA ATAAAAATAA ATAATTTGGG TTTGATGGCT TGTCTAAGCT GCAGTCTCCC TTTACTTCAA ACTCATAAAG CGATTTCCAA TTTCAGTGTA TTCCCCTTTA AATCAGTTGC AATATGTTTA CCAAAATGTA AGGTGAAGTC TGTTCATATT CCATCAGTTT CTGAAGCTC TTCTATTTCA TCTACTAATT TGGAAGAAGA GGAGGACGAC GATCCCACTG CTGAACTTGT TTATCTTGAC CCTGAAATTG ATCCTGAGAG CTTATCTGAG TGGGAATTGG ATTTTTGTTC AAGACCAATT CTTGATATTA GAGGGAAAAA ATTATGGGAG CTTCTTGTTT GTGATGATTC CCTCTCTCT CAGTATACCA AATATTTTCC TAATAATCTT ATCAATAGTA TCACTTTGAA AGATGCTTTA CTATCTATAT CTAATGACTT AGGTATCCCA TTACCCGATA AAATCAGATT CTTCAGGTAC TCTTAACTTA CAACGCTC ACTGTTTAC ATTTTCAATT CTCCATCAA TTGTTTTCCA TTTTAGGTC ACAAATGCAA ACTATTATTA CAAGAGCTTG CAACGAACTT GCCATCAAAC CTGTTCCTAG CAAACG

Nested PCR primers:

- primer7 + primer5
- Primer9 + primer 10

Nested PCR for increased specificity and yield:

Standard cloning procedure

- ligation into cloning vector
- Transformation into bacteria (E.Coli), colony selection (6-10 positive)
- Plasmid purification -> sequencing

Sequence analysis

- 1) Clean vector sequences
- 2) Blast to validate identity
- 3) KISMETH analysis

Bisulfite Analysis

Display name: t	est ?
Select the files c	ontaining your sequences: ?
Formats YES: FASTA NO:	WORD, PDF, EXCEL
Reference sequence file:	Comparison sequences file:
Choose File AtMu1_plus_wt_leaf.	fa Choose File AtMu1_plus_ddm1_leaf.fa
Parameters(r	tfm before changing them)
Remove por duplicates:	<u> </u>
Min. fraction of positive matches:	0.8 Min. fraction of length: 0.5
Start of match:	End of match:
Upload sele	cted files and run analysis
Example	data files from nilot studies

http://katahdin.mssm.edu/kismeth/revpage.pl

Bisulfite Analysis

Overall statistic	Total methylation (%)
CG	1.29%
СНБ	1.29%
СНН	2.74%
all	2.3126%

Unmethylated chloroplastic region

epicatch

Training School on Plant Epigenetics: Basics, Applications and Methodologies June 28th-30th, 2021 On-line

DNA bisulfite sequencing results – Example 1

epicatch

Training School on Plant Epigenetics: Basics, Applications and Methodologies June 28th-30th, 2021 On-line

DNA bisulfite sequencing results – Example 2

Lieberman-Lazarovich M, Melamed-Bessudo C, de Pater S, Levy AA (2013) Epigenetic Alterations at Genomic Loci Modified by Gene Targeting in *Arabidopsis thaliana*. PLoS ONE 8(12): e85383. https://doi.org/10.1371/journal.pone.0085383

Summary

Bisulfite sequencing:

- Provides information on DNA methylation at a nucleotide level resolution, allowing the detection of the position of methylated cytosines and the level of methylation.
- Key factors for a successful assay: primer design, non-methylated control
- Can be used to detect methylation status
 - of a particular locus
 - genome wide

epicatel

Agricultural Research Organization, Volcani Institute

Me

Me

