

CA19125-EpiCATCH EPIgenetic mechanisms of Crop Adaptation To Climate cHange

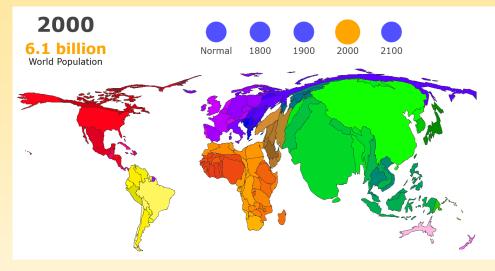
Training School - 28th-30th June 2021 **Plant Epigenetics: Basics, Applications and Methodologies Sophie Brunel-Muguet, INRAE**

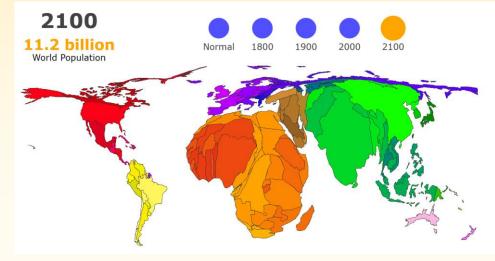
Crop acclimation to global warming: a three-fold lever of action based on agricultural practices, genetic improvement and ecophysiological approaches

Introduction: The food security challenge in the context of global warming

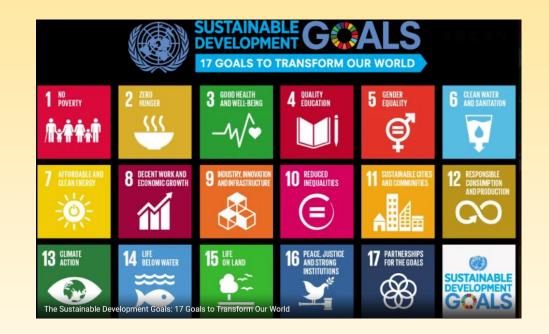
Strategies for crop adaptation to global warming

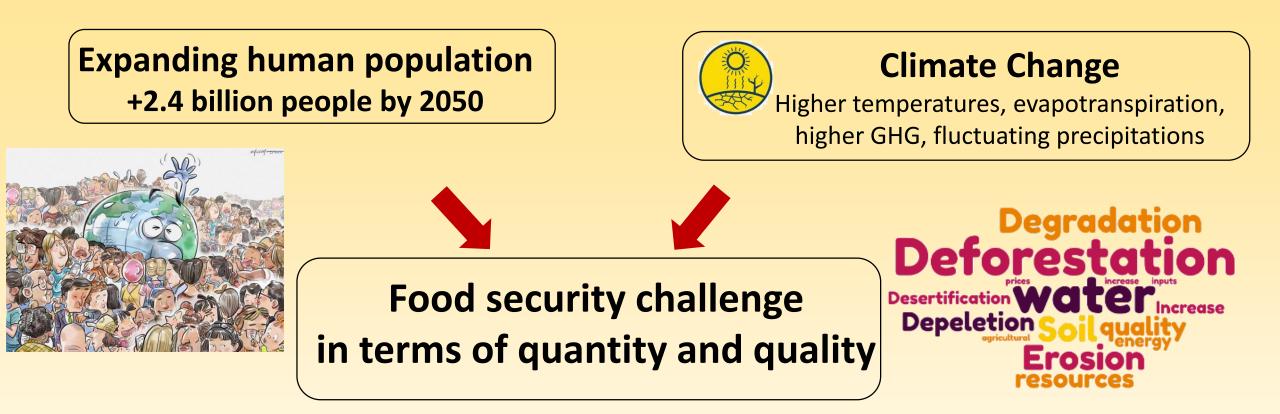
Agricultural practices




Crop Genetic Improvement

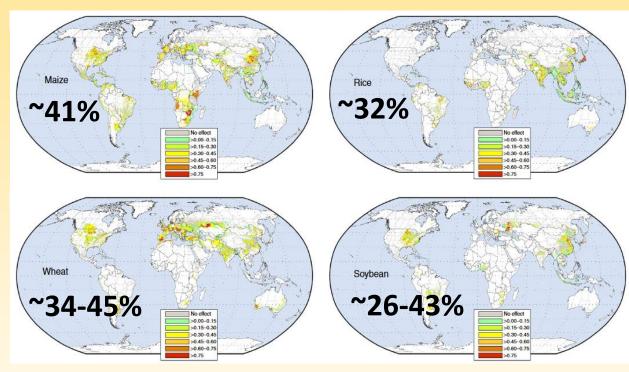
Stress memory And priming


Expanding human population +2.4 billion people by 2050



http://metrocosm.com/world-population-history-map/

Amongst the 17 sustainable development goals: « No Hunger Zone »


"Agricultural production needs to increase by 70% worldwide, and by almost 100% in developing countries, in order to meet growing food demand" Tutwiler, 2011 (FAO's Deputy Director-General)

According to the United Nations Framework Convention on Climate Change, about 14 milliards US\$ will be required annually by 2030 to face adverse effects of climate change on agriculture, forestry and fisheries sectors (Rötter et al 2011) and other studies point out 2 to 3 times higher estimates.

Climate variations cause yield and crop quality variability- past observations

Total crop yield variability explained due to climate variability over the last 3 decades.

Ray et al. 2015

Simple measures of growing season temperatures and precipitation (spatial averages based on the locations of each crop) explain ~30% or more of year-to-year variations in global average yields

IOP PUBLISHING Environ. Res. Lett. 2 (2007) 014002 (7pp) ENVIRONMENTAL RESEARCH LETTERS doi:10.1088/1748-9326/2/1/014002

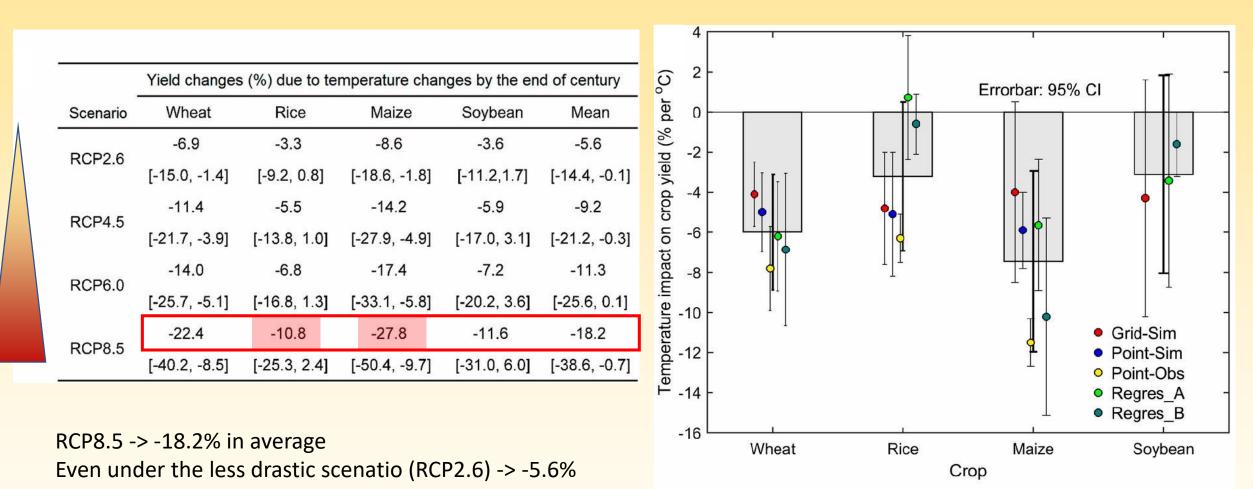
Global scale climate–crop yield relationships and the impacts of recent warming

David B Lobell¹ and Christopher B Field²

Impacts of heat stress – past observations

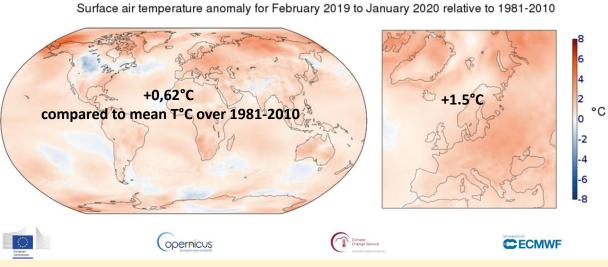
Table 1. Yield losses due to heat stress in cool and warm season crops

Species	Threshold temperatures for the species ^a	World production in 2017 ^b (kg ha ⁻¹)	Average yield reduction (%)	Reference
Cool-season crops				
Barley (Hordeum vulgare L.)	Not reported	3136	15	Weichert et al. (2017)
Chick pea (Cicer arietinum L.)	15–30 °C for growth, 25 °C for reproductive growth	1015	19–50	Devasirvatham and Tan (2018)
Citrus (Citrus spp.)	35 °C for vegetative growth	9600	N/A	N/A
Lentils (Lens culinaris Medik.)	Not reported	1153	38–58	Sita <i>et al.</i> (2018)
Spinach (Spinacia oleracea L.)	Not reported	29 993	50	Yan <i>et al.</i> (2016)
Wheat (Triticum spp.)	20-30 °C for vegetative growth,	3531	6	Lobell et al. (2011); Zampieri et al.
	15 °C for reproductive growth			(2017); Comastri <i>et al.</i> (2018)
Warm-season crops				
Grapes (Vitis vinifera L.)	Not reported	10 716	35–50	Greer and Weedon (2013)
Maize (Zea mays L.)	33–38 °C for photosynthesis and	5755	7–40	Valdés-López et al. (2016); Zhao et al.
	pollen viability			(2017); Meseka <i>et al.</i> (2018); Prasad
				<i>et al.</i> (2018)
Peanut (Arachis hypogaea L.)	29–33 °C for vegetative growth, 39–40 °C for seed set and yield	1686	6	Prasad <i>et al.</i> (2001)
Potato (Solanum tuberosum L.)	Not reported	20 111	18–23	Hancock <i>et al.</i> (2014)
Rapeseed (Brassica napus L.)	About 30 °C for flowering	2195	Up to 85%	Koscielny et al. (2018); Sparks (2018)
Rice (<i>Oryza sativa</i> L.)	33 °C for biomass, 35 °C limiting for grain formation and yield	4602	3	Zhao <i>et al.</i> (2017)
Sorghum [Sorghum bicolor (L.)	26–34 °C for vegetative growth,	1416	17–44	Tack <i>et al.</i> (2017)
Moench]	40 °C for reproductive growth and yield			
Soybean [Glycine max (L.) Merr.]	26–36 °C for reproductive development, 39 °C lethal	2854	3–7	Valdés-López <i>et al</i> ., 2016; Zhao <i>et al.</i> (2017)
Sunflower (Helianthus annuus L.)	Not reported	1804	10–70	Debaeke <i>et al.</i> (2017)
Tomato (Solanum lycopersicum L.)	37 °C for vegetative growth, 28–30 °C for reproductive development	37 600	28	Snider et al. (2012); Lamaoui et al. (2018)

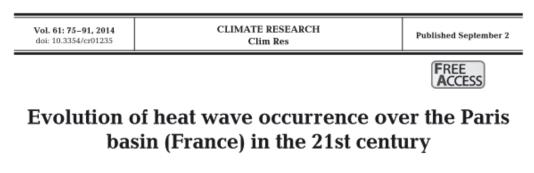

^a Data from Luo (2011) and Kaushal et al. (2016).

^b Data obtained by world production and world cultivated extension for each crop, from FAOSTAT 2017, http://www.fao.org/faostat/en/#data/QC/visualize.

From Janni et al. 2020

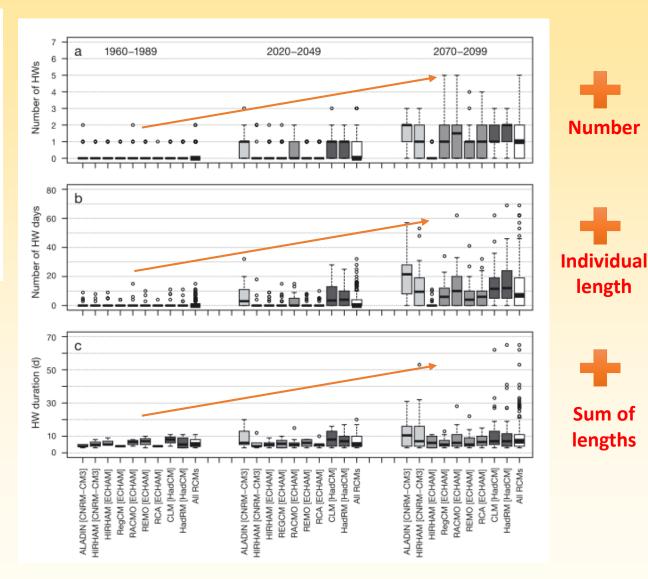

Expected impacts of temperature increase projections on yield of major crops

Multimethod estimates of global crop yield changes in response to temperature increase.

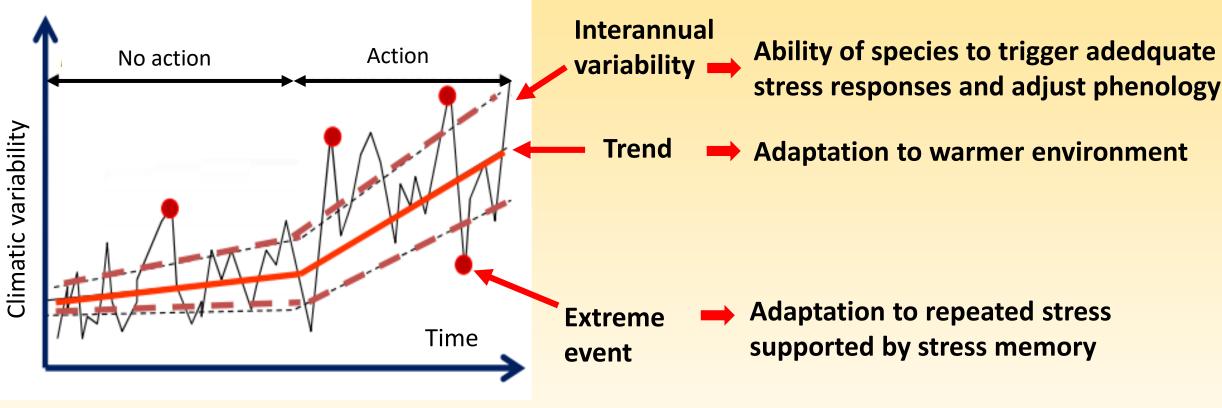


Maize: more impacted crop per unit of degree increase

Climate projections...more frequent heat waves



Surface air temperature anomaly for February 2019 to January 2020 relative to the average for 1981-2010. Data source: ERA5. Credit: Copernicus Climate Change Service/ECMWF.


Aude Lemonsu*, Anne Lise Beaulant, Samuel Somot, Valéry Masson

Frequency of heat waves under several scenarii Lemonsu et al . 2014

Features of global warming

Challenge to face the features of global warming

From: P. Bertuzzi, AgroClim, INRAE

What are the strategies geared

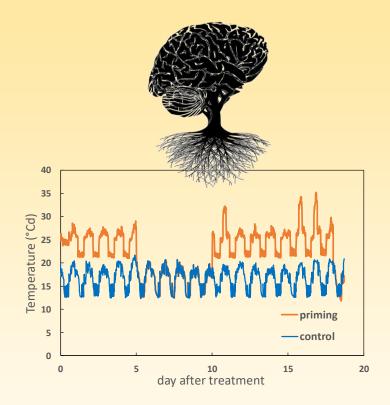
towards buffering future crop production from global warming?

Features of global warming

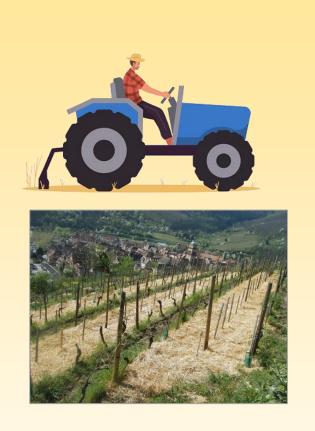
What are the levers of action for crop adaptation to high temperature stresses?

Agricultural practices

PERSPECTIVES


SCIENCE AND SOCIETY

Protecting crop genetic diversity for food security: political, ethical and technical challenges


José Esquinas-Alcázar

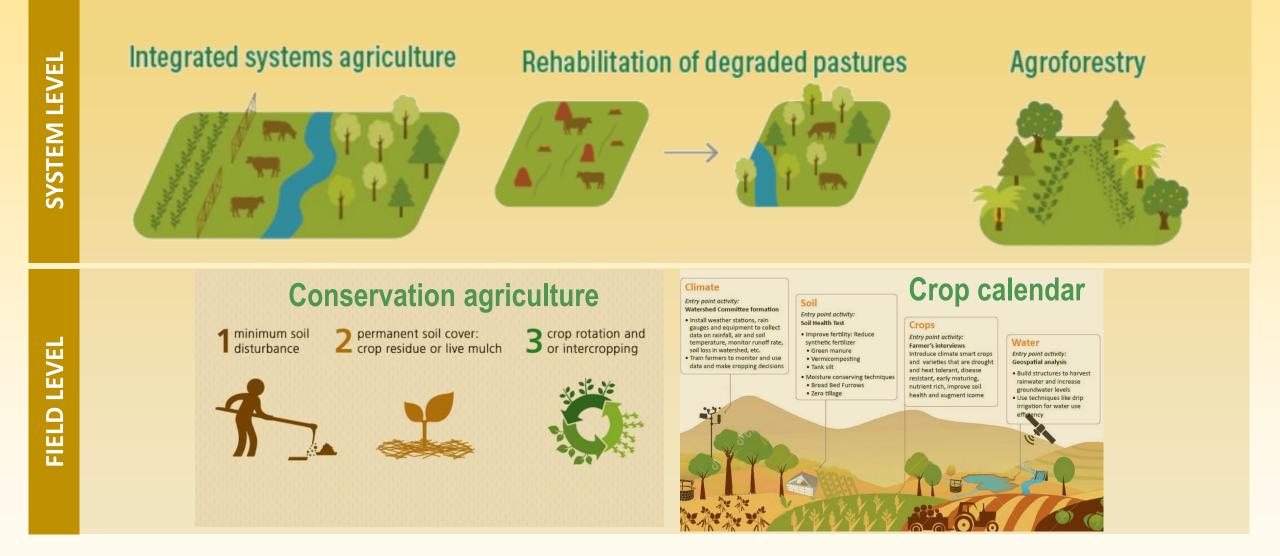
Nature Review Genetics, 2015

Crop Genetic Improvement

Stress memory And priming

Agricultural practices

In the context of global warming


SYSTEM LEVEL

FIELD LEVEL

- 1. Making agriculture more resilient to climate change
- 2. Moving location to follow environmental change
- 3. Adopting protected agriculture

What are the agricultural practices to target in terms of cropping systems and technical practices ?

1. Making agriculture more resilient to climate change

1. Making agriculture more resilient to climate change

SYSTEM LEVEL

Integrating pastures with forestry in Brazil

Rehabilitation of degraded pastures

How do these strategies help facing the effects of climate change?

Indirect effects Reduction of soil erosion, Enhanced water availability, Carbon sink, Increased biodiversity

Direct effects

Reduction of the impact of extreme weather events i.e. drought, heatwaves, cold waves, heavy rain and floods by improving the local micro-climate (shading, downwind edge)

Diversification of productions making the system less vulnerable to fluctuating stressing events (ex. IS produce food, energy, fiber, timber and non-timber forest products in the same area, at the same time or in rotation)

> A farm where the pasture was reabilitated by Fazenda Ecologica using rotation and trees in the Minas Gerais countryside. Photo by D. Hunter/WRI Brasil

https://www.wri.org/insights/4-ways-farmers-can-adapt-climate-change-and-generate-income

Key lever 1. Agricultural practices

Agroforestry

Cocoa plants can grow better and be even more resilient under the shade of other trees.

1. Making agriculture more resilient to climate change within the current footprint

Improvement of water use efficiency and soil fertility

-> direct effects of crop adaptation to warming environment

http://www.icrisat.org/Building-climate-smart-farming-communities

Adjustments of sowing, planting, harvest, grazing period in relation to soil moisture content, risks of frost events during spring, risks of heat stress over the seed filling period...

2. Moving location to follow environmental change

Relocation of crops to new areas to keep within the current environmental ranges of the current production system is an option but new requirements to adapt to specific feature of the new area (local pests and diseases)

Example: Relocation of rice, areas -> water scarcity -> relo heat stress-free environments

3. Adopting protected agriculture by partial or completely controlling the environment

-> trade off between investment in transferring crops into protected systems and financial losses if crops remain growing in the disturbed environment

Vertical system for high values crops (vegetable and horticultural productions)

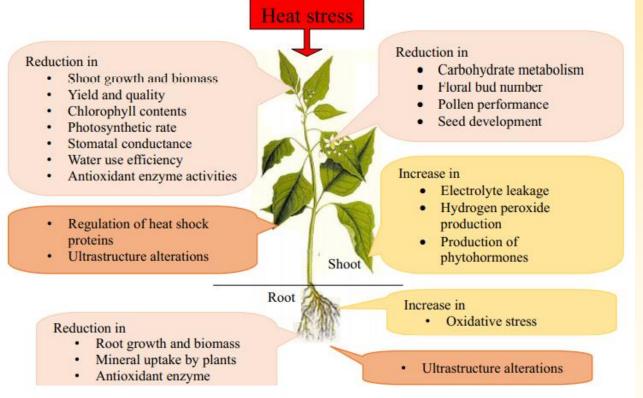
PERSPECTIVES

SCIENCE AND SOCIETY

Protecting crop genetic diversity for food security: political, ethical and technical challenges

José Esquinas-Alcázar

Nature Review Genetics, 2015


Crop Genetic Improvement

Crop Genetic Improvement

The science of applying genetic and plant breeding principles and biotechnology to improve plants (Univ. Illinois) Crop breeding for heat stress tolerance requires a deep understanding of the metabolic, physiological and developmental processes which impairment affects the ability of plants to cope with heat stress (HS).

What are the main effects of HS on plant metabolism, physiology and development?

Ali et al. 2020

Wahid et al. 2007, Prasad et al. 2017, Valdés-Lopez et al. 2016, Seghal et al. 2017, Cho et al. 2018

Molecular level:

HS-responsive genes are involved in primary and secondary metabolism, regulation of processes such as Ca2+, phytohormone, lipid and sugar signaling or protein modifications (Jha et al. 2014)

HS responses involve HSFs and HSPs

HSFs regulate the transcription of HSP genes while HSPs act as molecular chaperones to prevent the misfolding and denaturation of other proteins and help stabilize them under HS (Serrano et al. 2019)

What are the desired characteristics for heat tolerant varieties?

-Higher photosynthetic rates (e.g. stay green leaves)

-Enhanced membrane thermostability (which interferes with cell signaling, and molecular transport)

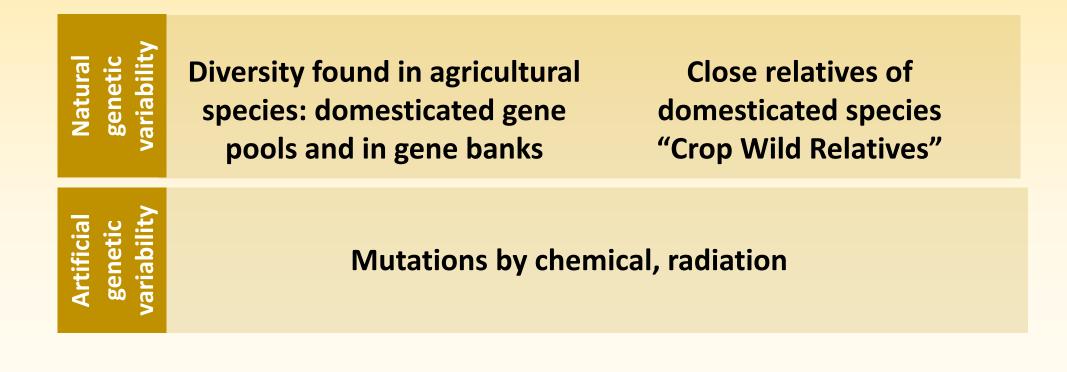
- Stable pod set or grain production...

Examples of selected traits target for HS tolerance

In Cowpea: selection for abundant flower production, greater pod set (Ehlers et al. 2000)

In Wheat: selection for traits involved in light interception, radiation use efficiency, partitionning of assimilates (Cossani and Reynolds, 2012)

In Maize: selection for traits associated with **reproductive success** (anthesis-silking interval, pollen viability, stigma receptivity...) and **other morpho-physiological traits** (senescence, chorophyll content) (Alam et al. 2017)



Genetic diversity is required for crop genetic improvement

The pre-requisite for breeding for heat tolerance is to **identify/create genotypic variability** on traits involved in HS

This genotypic variability can be naturally found or artificially created

Expanding the gene pool for crop HS tolerance based on naturally occurring genetic diversity

Natural genetic variability

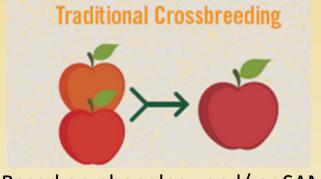
Diversity found in agricultural species: domesticated gene pools and in gene banks

Prior breeding programs have resulted in **genetic erosion**. Barely more than 150 species are now cultivated. (Esquinas-Alcázar, 2005)

Traditional farmers' varieties have provided many individual traits that have been introduced into existing, improved breeding lines

Example of a primitive Japanese dwarf wheat variety, which had a key role in the genetic improvement of wheat during the 'Green Revolution'. It was used as a donor of the genes that are responsible for dwarfism, which allow increased nitrogen uptake (Esquinas-Alcázar, 2005)

Close relatives of domesticated species "Crop Wild Relatives"

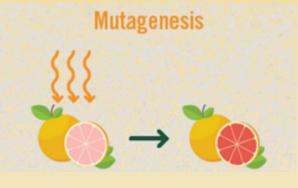


Wild forms of Beta collected as a source of resistance to rhizomania. It was found that the collections also show Erwinia root-rot resistance, sugar-beet root maggot tolerance, and moderate leaf-spot resistance (Esquinas-Alcázar, 2005)

Breeding approaches for heat tolerance

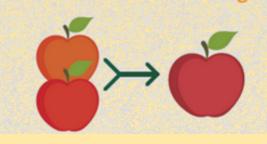
The screening and incorporation of the genetic variability into new cultivars can be done using different approaches (Janni et al. 2020):

Conventional breeding


Based on phenology and/ or SAM

New Breeding Techniques

GMO

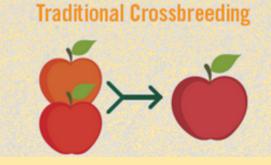

Mutational breeding

http://marylandgrain.org/technology/

Conventional breeding approach Janni et al. 2020

The conventional breeding approach encompasses the screening of natural genetic variability and the incorporation of portions of genes or genes of interest into new cultivars.

Traditional Crossbreeding


What are the underlying techniques?

- QTL mapping -> large DNA portions which can contain many candidate genes.
- Genotyping-by-sequencing (GBS) -> which has allowed an increase in the number of markers, making precise mapping of QTL and candidate gene identification possible.
- Genome-wide-association-studies (GWAS) permits narrowing down the candidate regions to explore specific haplotypes in natural population and wild species.

These techniques allow the identification of markers (microsatellites, SNPs) used in Markers-Assisted Selection (MAS)

-> known to be the most efficient methods when working on complex traits having hereditary characteristics such as HS tolerance (Tayade et al. 2018)

Examples of gene/QTL identification for to heat stress tolerance

Species	Techniques	HS reponsive genes/QTL	References
Wheat	GWAS and GBS	Genomic regions associated to heat tolerance	Vijayalaskshmi et al. 2010 Acuña-Galindo et al. 2015 Maulana et al. 2018
Sorghum	GWAs	key genomic regions (specific alleles) under heat stress	Chopra et al. 2017
Cowpea	QTLs	Two dominant genes controlling heritable tolerance to heat at pod set QTLs associated to pod set number per peduncle that include HSP and HSF genes	Marfo and Hall 1992 Lucas et al. 2013 Pottorff et al. 2014
Rice	QTLs	Heat tolerance at flowering	Ye et al. 2012 <i>,</i> 2015 Kilasi et al. 2018

New Breeding Techniques (NBTs) Janni et al. 2020

Creation of transgenic plants

e.g. transgenic cotton plants overexpress an HSP in pollen--> increased pollen germination and pollen tube growth under high temperature resulting in overall heat tolerance of reproductive tissue and reduced yield losses (Burke and Chen, 2015)

Availability of genomic sequences owing to genome editing techniques such as CRISPR-cas9 -> used in ~20 crops

e.g. potato, tomato, rice, cotton, soybean, maize, sorghum, wheat...

Crop	Target gene	Stress or trait
Maize	ARGOS8	Improved yield under drought stress condition
Rice	OsPDS, OsMPK2, OsBADH2	Abiotic stress tolerance
Rice	OsMPK2, OsDEP1	Yield under stress
Rice	GS3, Gn1a	Grain size and number increase
Rice	GW2, GW5, TGW6	Grain weight increase
Rice	Gn1a, DEP1, GS3	Grain size and number Increase in dense, erect panicles
Wheat	TaDREB2, TaERF3	Abiotic stress tolerance

Cleavad

Genome editing approaches used for heat stress breeding

	Maize ubiquitin Ubi1 promoter/	
	overexpression	Increased drought and HS tolerance
	Rice actin 1 constitutive promoter/overexpression	Enhanced drought tolerance and photosynthetic capacity
:70 allelic variant/ ato	HSc70 native promoter	Greater tolerance to HS as determined by improved yield
P70/rice	CaMV 35S	Overexpression manifested enhanced tolerance to HS
sp101 /Arabidopsis	CaMV 35S promoter	Increased tolerance to high temperature
Rab7	CaMV 35S	Greater tolerance to HS as determined by improved yield
IBF1c/wheat	Maize ubiquitin 1	Higher thermotolerance than control plants at both seedling and reproductive stages
CR/Arabidopsis		Enhanced HS tolerance
P70-1/tobacco	CaMV 35S	Transgenics possessed enhanced tolerance to HT stress
70-1/brassica		Enhanced tolerance to HT stress
P21/tomato	CaMV 35S	Overexpression protected PSII from temperature-
		dependent oxidative stress; early accumulation of
		carotenoids noted
	Barley HVA1s promoter/ drought inducible, up-regulated	Improved thermotolerance
	Maize ubiquitin 1 promoter/ overexpression	Improved thermotolerance
	270 allelic variant/ ito 270/rice isp101 /Arabidopsis iab7 IBF1c/wheat IR/Arabidopsis 270-1/tobacco 270-1/brassica 221/tomato SA /wheat	promoter/overexpression F70 allelic variant/ HSc70 native promoter HSc70 native promoter HSc70 native promoter CaMV 35S promoter CaMV 35S CaMV 35S BF1c/wheat CaMV 35S BF1c/wheat CaMV 35S CaMV 35S

Gene Editing

List of selected heat stress- (HS) tolerant transgenic plants

General public concerns and complex legislation -> limiting applications

Mutational breeding Janni et al. 2020

Generation of new variability in plants by chemicals or radiation

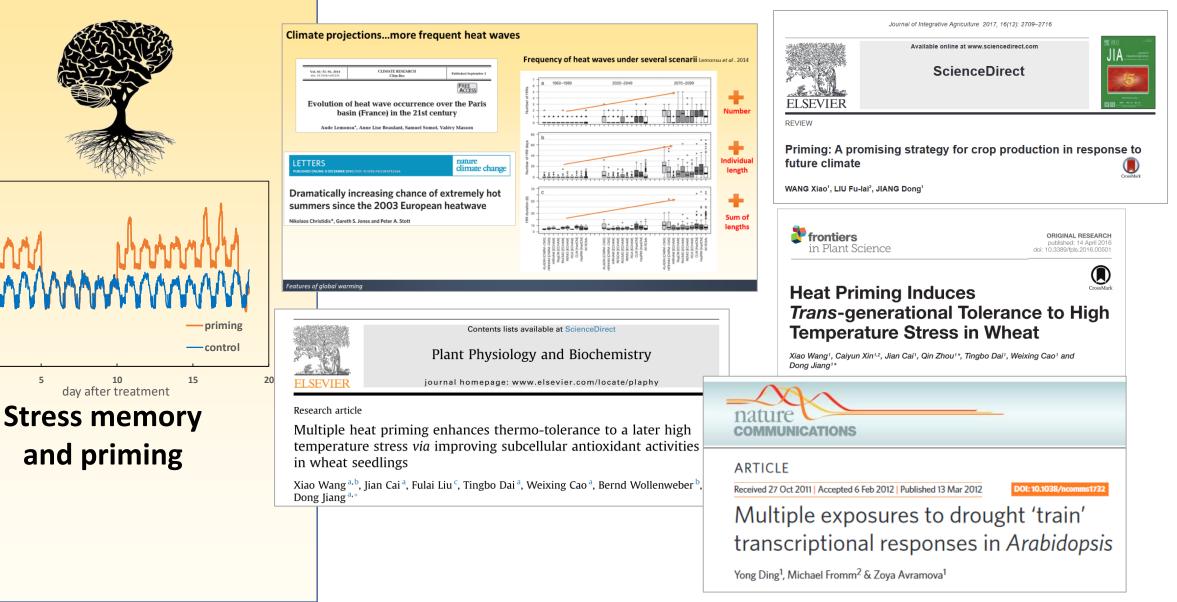
Development of TILLING (Targeting Induced Local Lesions IN Genome, 2000 Arabidopsis) which requires a population of EMS induced mutants (random mutations) and a screening method to identify individuals with mutations in the target gene (Wang et al. 2010)

More commercially competitive than precise genome editing approaches (not seen as transgenic crops in most juridictions)

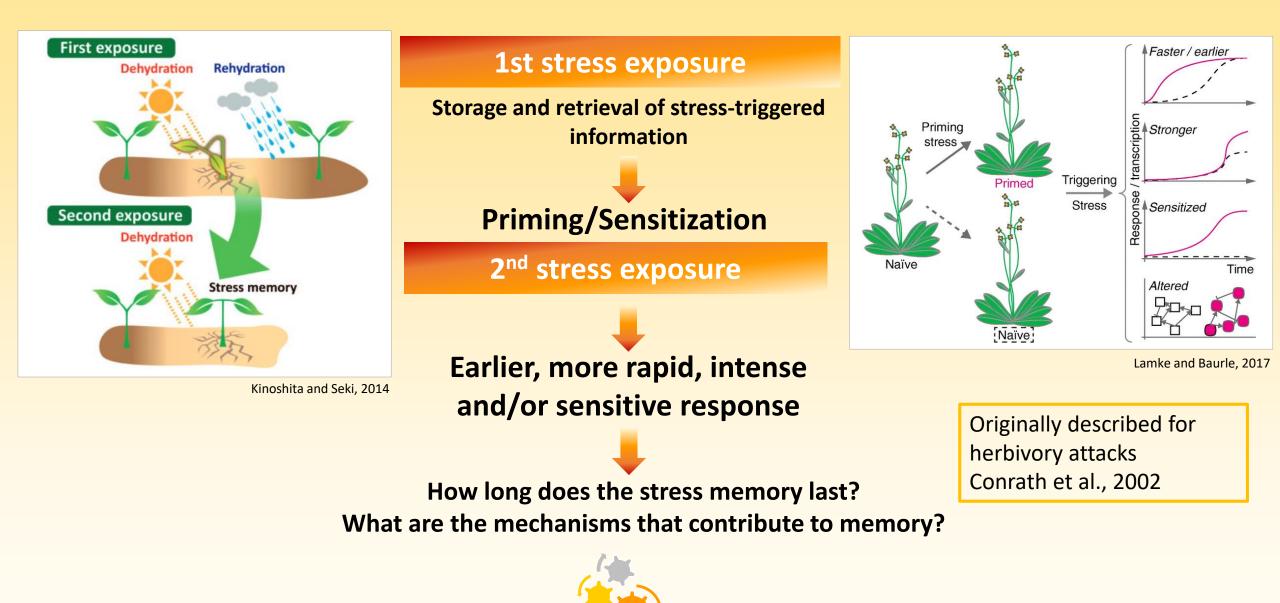
In rice, screening of a TILLING population for mutations in HSP genes -> several lines were shown to display enhanced HS tolerance (Yona et al. 2015)

In Durum wheat, identification of small HSP alleles suitable for enhancing HS tolerance using TILLING approach (Comastri et al. 2018)

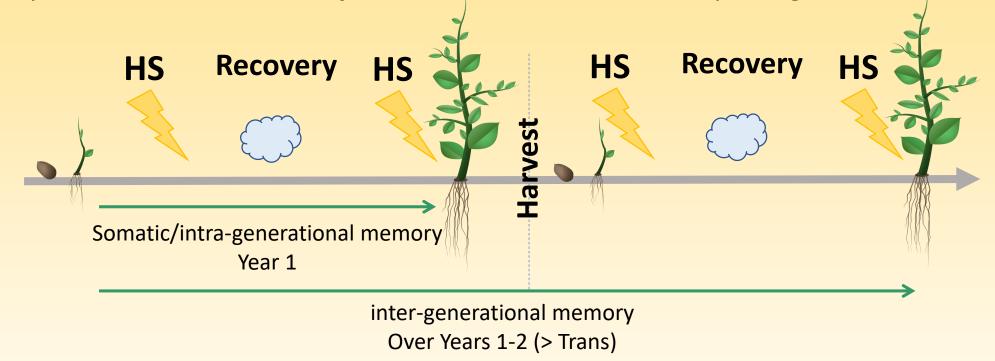
Genetic approaches to cope with Heat Stress: Conclusions


In the past, genetics has mainly been used to enhance yield and product quality but it can be equally applicable to alternative objectives such as contributing to adaptation to climate change

Three challenges to increase crop production under global warming:


- to modify our selection criteria to focus on efficiency or tolerance to stress(es) in addition to total yield
- to determine whether such efficiency/stress-tolerance alleles are still present and exploitable in our elite material and wider breeding germplasm
- to accelerate the development of genomic tools for screening genetic diversity

Stress memory and priming: a key lever for thermosensitization in the context of increased frequency of heat waves?



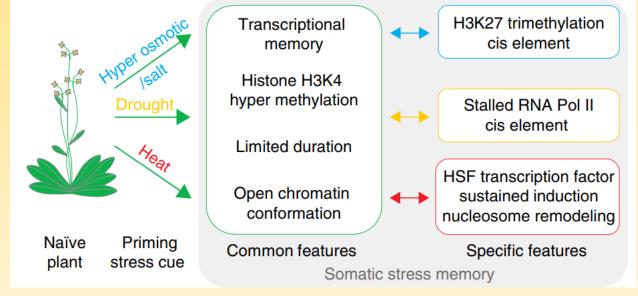
Beneficial effect of stress memory for heat stress acclimation

Stressing events can recur **during the crop season** and affect the plant during its crop cycle or they can be observed **over years** and thus affect several plant generations.

The definition of stress memory distinguishes **somatic memory that is intra-generational memory** from **inter/transgenerational memory** when we talk about memory that is transmitted to the offsprings.

Somatic or intra-generational memory

Persistence of stress induced-metabolites (Pastor et al. 2014, Balmer et al. 2015, Hu et al. 2016)


Sustained expression of genes after the stress (Charng et al. 2006, Stief et al. 2014)

Stalling of RNA polymerase II that potentiates transcription (Ding et al. 2012)

Accumulation of proteins (mitogen-activated protein kinases-MPKs, Beckers et al. 2009)

Alternative splicing (Sanyal et al. 2018, Ling et al. 2018)

Mitotic stability of stress –induced chromatin changes i.e. epigenetic marks

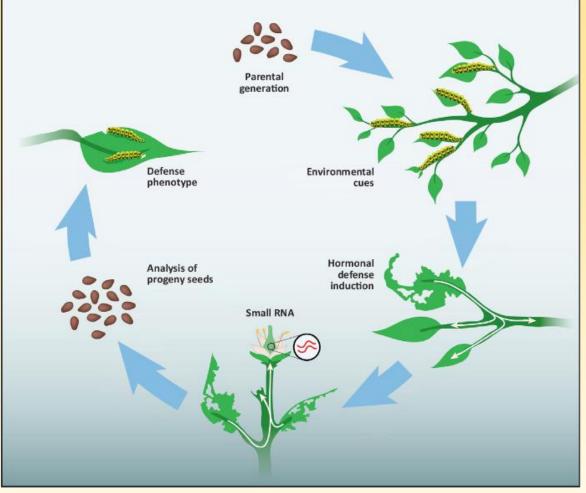
Lämke and Bäurle, 2017

Molecular features of somatic stress memory in response to abiotic stress cues.

Somatic priming of plants by an abiotic (hyperosmotic, drought, or heat) stress cue has common features that are displayed in the central box.

Inter/Trans-generational memory

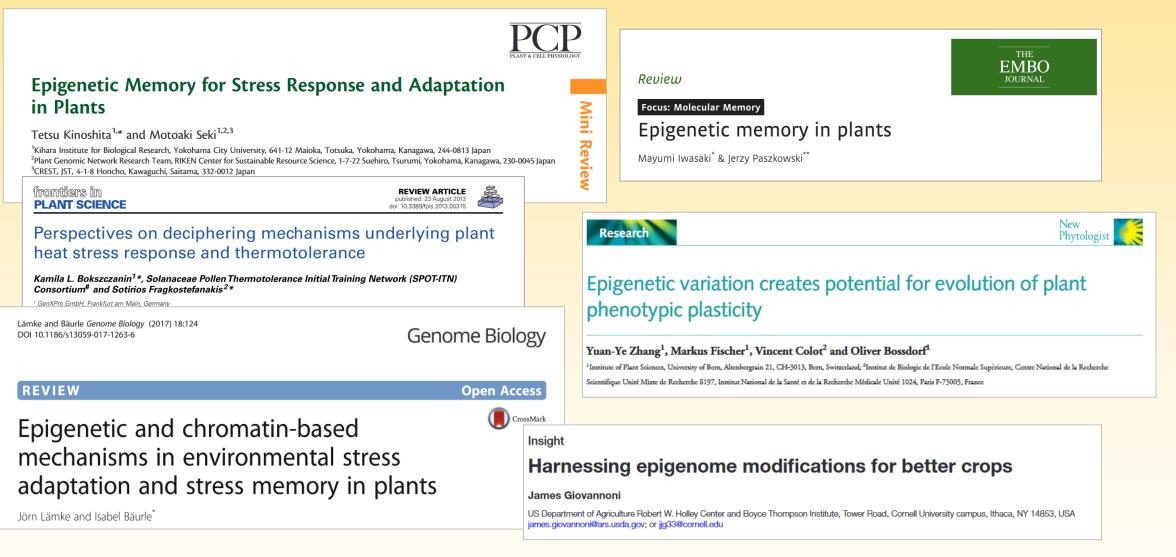
Seed provisioning (maternal effects) whereby different levels of resources are stored on the seed (mRNA, hormones, proteins, lipids...) (Pecinka and Mittlesen Scheid, 2012, Pecinka et al. 2013)


Transmission of structural variation in the genome

```
Inheritance of the chromatin states (or epialleles) by meiosis
```

Alvarez-Venegas et al. 2019

Intergenerational stress memory: when only the first stress-free generation has a detectable memory effect


Transgenerational stress memory: when memory is detectable after at least two stress-free generations

TRENDS in Ecology & Evolution

A schematic of the steps involved in the life cycle of transgenerational in induction, small RNA, analysis of progeny seeds, and the defense phenotype (Holeski et al. 2012)

What is the contribution of epigenetic regulations to heat stress memory What is the extent of their use for thermo priming?

Epigenetic marks involved in stress memory (Lamke and Baurle, 2017)

Stress cue	Maximal duration of memory (as analyzed)	Plant-level effect	Chromatin marks associated with priming
Somatic stress memory			
Desiccation	5–7 d	Yes	H3K4me3, paused RNA Pol II
Desiccation	4 d	ND	H3K4me3
Hyperosmotic	10	Yes	H3K27me3
Salt	Somatic	Yes	H3K4me3
Heat, cold, or salt	memory	Yes	H3K14ac, H3K4me2, H3K4me3
Heat	3 d	Yes	H3K4me2, H3K4me3
Heat	3 d	Yes	Histone occupancy
Systemic acquired resistance	4–6 d	Yes	H3K4me2, H3K4me3
Defense priming	ND	Yes	Histone occupancy, H3K4me3
Inter-/transgenerational stress me	mory		
Hyperosmotic	Inter-generation	Yes	DNA methylation
Iron deficiency	Inter/trans-		
Various			
Bacterial infection, chemical stressors	generationa		DNA methylation
Bacterial infection	memory		H3K27me3, DNA methylation
Caterpillar herbivory	Trans-generational	Yes	DNA methylation
d days, ND not determined			Lamke and Baurle, 2017

Memory genes : Heat inducible genes that show sustained activation after a priming stress and/or enhance induction upon recurring heat stress)

Evidence of priming mediated-improved thermotolerance: during the crop cycle

Species	Priming treatment Following HS	Effect on primed plants (vs. Unprimed) ur HT	nder Gene expression and/or Epigenetic marks	reference
Wheat	Before anthesis 32/28°C (d/n) for 2d	Improved photosynthesis and antioxidan	t up-regulated expressions of	Wang et al. 2011,
	These priming protocole raise	e the question of how to apply	such pre-acclimation tre	atment on ¹³
vinter vheat	crops grown in the field ?			al. 2016
	They are mostly dedicated to	decipher plant high-temperate	ure responsive processes	under
oilseed ra				et al. 2021
	- Grafting of primed plants (tree species, Kapazoglou et al. 2021)			
	- Clonal propagation of prim	ied plants (tissues)		
^{Pea} the	plant journal		Otany William Contraction of the second seco	NEWS & VIEWS
The Plant .	Journal (2018) 96, 22–38	doi: 10.1111/tpj.14058		
Main	tenance of grafting-induced ep	New Idea	IE NATURE OF THINGS: ESSAYS as and Directions in Botany	
-	ual progeny of <i>Brassica olerace</i>	a and <i>B. juncea</i> chimera		

Evidence of priming mediated- improved thermotolerance :Inter/Trans-generational memory

Speci	Species Driming treatment Effect on primed plants (vg. Upprimed) Cone symptossion and (or professore			
	Most studies on Arabidopsis, or on other stre	ss (pathogen	attacks, salt stress)	
Arabi	nature communications	ansgeneratio	nal memory heat stress effect i.e. does heat	
		Plant Cell Rep (2017) 36:203 DOI 10.1007/s00299-016-207	Grobbinant	
Whe	ARTICLE	ORIGINAL ARTICL	E	
	A naturally occurring epiallele associates with leaf senescence and local climate adaptation in <i>Arabidopsis</i> accessions	^{af} Epiallelic changes in known stress-responsive genes under extreme drought conditions in <i>Brassica juncea</i> (L.) Czern.		
Rice	Li He ^{1,2} , Wenwu Wu ^{1,4} , Gaurav Zinta ¹ , Lan Yang ¹ , Dong Wang ¹ , Renyi Liu ¹ , Huiming Zhang ¹ , Zhimin Zheng ¹ ,	Rahul Sh:		
Epiger	netics 8:8, 864–872; August 2013; © 2013 Landes Bioscience			
Epigenetic marks in an adaptive water			Epigenetic QTL Mapping in Brassica napus	
stress-responsive gene in tomato roots under normal and drought conditions		Yan Long,* ¹ Wei Xia,* ¹ Ruiyuan Li,* Jing Wang,* Mingqin Shao,* Ji Feng,* Graham J. King, [†] and Jinling Meng* ² *National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China and [†] Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia		
	Rodrigo M González, ^{1,†} Martiniano M Ricardi ^{1,†} and Norberto D Jusem ^{1,2,*}			

Acclimation to heat stress to maintain or even to improve crop performances under recurrent stresses at the cycle level and over generations

Heat stress is often studied by subjecting plants to **prolonged increases in temperatures**. However, heat stress responses under a prolonged stress might differ from the ones triggered by **repeated stresses**.

Repeated stresses can lead to a primed state that further help the crops facing subsequent stresses. For breeders, these stressing sequences can be used as **priming protocols** for thermotolerance acquisition.

- Identification of priming protocols for intra and inter/trans-generational memory
 -> features of the priming protocols to target the specific processes that control the traits of interest
- The identification of underlying priming mechanisms can harness priming based crop improvement
 -> potential of epibreeding: identification of EpiQTLs/Epialleles in breeding programs

Conclusions- Take Home Messages

Three fold lever of action for crop acclimation to heat stress: from the farming system down to the genes and the regulation of gene expression.

-> agricultural | high temperatu

Thanks for your attention

nd adapt crops to g strategies

-> crop genetic improvement: available genetic resources, development of tools for high throughput genetic variability screening, legislation concerning the breeding techniques

-> stress memory and priming: inheritance, features of the priming protocols, potential of epibreeding

Agricultural practices

Crop Genetic Improvement

Stress memory And priming