

UNIVERSITÄT FRANKFURT AM MAIN

Chromatin modifications, reshuffling and restructuring

Sotirios (Akis) Fragkostefanakis fragkost@bio.uni-frankfurt.de

Training School Plant Epigenetics: Basics, Applications and Methodologies 28th-30th June 2021

DNA Packaging: Nucleosomes and Chromatin

Chromosomes consist of heterochromatin and euchromatin

Chromosomes consist of heterochromatin and euchromatin

Histone complex

H1

H2A H2B

H4

H3

Histone variants in plants

Arabidopsis thaliana histone-coding genes

Histone H3	Gene	Histone H4		Histone H2A		Histone H2B	
Histone H3		H4	At3g46320	H2A.1	At5g54640, HTA1	H2B.1	At1g07790, HTB1
H3.1	At5g65360, HTR1		At5g59690	H2A.2	At4g27230, HTA2	H2B.2	At5g22880, HTB2
	At1g09200, HTR2		At2g28740	H2A.10	At1g51060, HTA10	H2B.3	At2g28720, HTB3
	At3g27360, HTR3		At1g07820	H2A.13	At3g20670, HTA13	H2B.4	At5g59910, HTB4
	At5g10400, HTR9		At3g53730	H2A.X.3	At1g54690, HTA3	H2B.5	At2g37470, HTB5
	At5g10390, HTR13		At5g59970	H2A.X.5	At1g08880, HTA5	H2B.6	At3g53650, HTB6
H3.3	At4g40030, HTR4		At3g45930	H2A.W.6	At5g59870, HTA6	H2B.7	At3g09480, HTB7
	At4g40040, HTR5		At1g07660	H2A.W.7	At5g27670, HTA7	H2B.8	At1g08170, HTB8
	At5g10980, HTR8			H2A.W.12	At5g02560, HTA12	H2B.9	At3g45980, HTB9
H3.6	At1g13370, HTR6			H2A.Z.4	At4g13570, HTA4	H2B.10	At5g02570, HTB10
H3.7	At1g75610, HTR7			H2A.Z.8	At2g38810, HTA8	H2B.11	At3g46030, HTB11
H3.10	At1g19890, HTR10			H2A.Z.9	At1g52740, HTA9		
H3.11	At5g65350, HTR11			H2A.Z.11	At3g54560, HTA11		
CenH3	At1g01370, HTR12						
H3.14	At1g75600, HTR14						
H3.15	At5g12910, HTR15						

Replicative/canonical: expressed during S-phase and deposited during DNA replication in a DNA-synthesis-dependent manner

Replacement: expressed throughout the cell-cycle and are deposited in a DNA-synthesis-independent manner

Three main H3 variants: H3.1, H3.3 & CenH3

Nucleosomes at the centromere incorporate an H3 variant called CENH3 that is *necessary* for centromere maintenance

Deposition of H3 variants by histone chaperones

ASF: Anti Silencing Factor ASF1a/I DEK3 NASP: Nuclear Autoantigenic Sperm Protein ? **TRX** NASP ? ? CenH3-H4 \sim H3.3-H4 H3.1-H4 HIRA: Histone Regualtor A HIRA **UBN: Ubinuclein** CAF-1 UBN **CABIN: CalcIneurin Binding Protein** FAS1 HIRA FAS2 CABIN MSI1 CAF-1: Chromatin assembly factor 1 FAS: Fasciata MSI: Multicopy Suppressor of IRA

Histone H2A variants

Kawashima et al. 2015

Biswas et al. 2011, PLOS Comp. Biol.

Nucleosome array compaction

H2A.Z and expression patterning

Coleman-Derr & Zilberman, 2012

H2A.Z and expression patterning

H2A.Z regulates the responsiveness of heat stress induced genes

H2A.Z in plant development and stress responses

Remodelling of chromatin by SWR1

The histone variant H2A.Z promotes transcription and is swapped into the nucleosome by the SWR1/SRCAP complex.

H2A.Z deposition by SWR1 complex

Remodelling of chromatin by SWR1

Remodelers use energy to move/alter histone octamers

Clapier and Cairns 2009. Annu. Rev. Biochem.

Post-translational modifications of histones

Histone modifications in plants

Histone modification affects chromatin structure

Closed configuration

ЦЭ	Ме	Me P		
пэ	K9	K27 S28		

Writers, erasers and readers

Acetylation of histone lysine is associated to transcription

Transcriptional regulation by histone acetylation

Importance of histone acetylation for plant immunity

Phytophthora sojae

SAGA Spt–Ada–Gcn5 Acetyltransferase

acetyltransferase

suppression H3K9 acetylation

Histone methylation

Arginine and Lysine methylation

Effect of histone methylation

Mum & Shi 2017, Nature Rev. Mol. Cell Biol.

Reprinted by permission from Macmillan Publishers, Ltd: NATURE. Lippman, Z., Gendrel, A.-V., Black, M., Vaughn, M.W., Dedhia, N., McCombie, W.R., Lavine, K., Mittal, V., May, B., Kasschau, K.D., Carrington, J.C., Doerge, R.W., Colot, V., Martienssen, R. (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430: <u>471-476</u> Copyright 2004.

H3K27me3 is associated with genes

H3K27me3 in Arabidopsis is present within the gene-rich region, not the repeat-rich region.

H3K27me3 methylation by Polycomb Repressive Complex 2

Plants make multiple PRC2 complexes with different targets

LHP1 co-localizes with H3K27me3

© 2016 American Society of Plant Biologists

In plants LHP1 maintains H3K27me3

Maintenance of silenced state of FLC after vernalization!!!

Control of flowering by epigenetic reprogramming

Resetting *FLC* expression:

Silenced during gamete formation Reactivated during fertilization or early embryogenesis SWR1 incorporates H2A.Z variant

FLC expression:

H4 acetylation, H3K4me, H3K36me, H2A.Z incorporation

FLC silencing

Expression of the VRN3 gene (part of VRN2-PRC2 complex) Activating marks removed Silencing marks (H3K9me, H3K27me3) added

FLC maintained silenced: Association with LHP1

FT is expressed Flowering is induced

Histone Ubiquination

Ueda and Seki 2020, Plant Phys

