Dr. Markus Kuhlmann

Transgenerational memory in plant stress biology

Get inside into epigenetic aspects of applied research

EPI-CATCH Cost action

Plant epigenetics

Workshop 2021

#FuturePlants

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) www.ipk-gatersleben.de

What is epigenetics?

· Epigentics:

- epi (Gk) upon
- genesis (Gk) generation, birth, origin
 - genes (Gk) born
- 'the interaction of genes with their environment, which bring the phenotype into being" (Waddington, Endeavor 1:18,1942)
- 'heritable changes in gene expression not attributable to nucleotide sequence variation' (Murrell et al. Hum Mol Genet 14:R3, 2005)

Waddington, C. H. *The strategy of the genes. A discussion of some aspects of theoretical biology. With an appendix by H. Kacser.* London: George Allen & Unwin, Ltd., (1957).

Definition:

"The study of mitotically and/or meiotically heritable changes in gene function that cannot be explained by changes in the DNA sequence." (Riggs et al. 1996)

Mechanisms mediating an epigenetic response

- **PTGS Post Transcriptional Gene Silencing**
- TGS Transcriptional Gene Silencing

Involving DNA-methylation, histone modification and small regulatory RNA

DNA Methylation

Die genomische Information liegt in Eukaryonten in Form der DNA-Sequenz gespeichert im Zellkern vor. Das DNA-Molekül ist um Histone (Kernproteine) gewunden, mit weiteren Proteinen "dekoriert" und als Chromosom organisiert. Die kodierenden Bereiche können in mRNA abgeschrieben (transkribiert) und in Proteine umgesetzt (translatiert) werden. Als DNA-Methylierung wird das enzymatische Ankoppeln einer Methylgruppe an das fünfte Kohlenstoffatom im Ring des Nukleosids Cytidin bzw. der Nukleinbase Cytosin bezeichnet. Es beeinflusst nicht die Basenpaarung der DNA (A–T und G–C), kann aber die Organisationsstruktur der DNA beeinflussen. Darstellung des Chromosoms: Fotolia. Detection is possible by Immunology 5 mC Antibody: Histology ChIP ChIP-Seq

Chemistry Bisulfite conversion WGBS

Enzymes

MSRE qPCR enzymatic conversion Enzymatic Methyl-seq

From: Das 5. Element Kuhlmann 2019 Biologie in unserer Zeit

#FuturePlants

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) v

www.ipk-gatersleben.de-

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)

Unterricht Biologie, 2014

#FuturePlants

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)

Example for transgenerational epigenetic effect in barley

RNA-directed DNA methylation (RdDM) of HvCKX2.1 promotor leads to stable transcriptional gene silencing (TGS)

#FuturePlants

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)

www.ipk-gatersleben.de

Terminal drought results in a loss of yield

Initial question:

Will the small RNAs contribute to drought stress induced change of the barley grain development?

Sreenivasulu, et al., 2010

www.ipk-gatersleben.de

www.ipk-gatersleben.de

Sequencing of small RNA in barley under terminal drought - experimental approach:

Sequencing of small RNA in barley under terminal drought sample preparation from caryopsis

43 59 74 120 ng/µl

Bioanalyser (Agilent)

#FuturePlants

Sequencing of small RNA in barley under terminal drought

Sequencing was performed in collaboration with GeneXPro

and resulted in 18/ 15.4 million reads for the control caryopsis 11.3/ 8.6 million reads for the stressed caryopsis

Data analysis: GenXPro and CLC workbench

Sequencing of small RNA in barley at terminal drought

microRNAS (miRNA)

#FuturePlants

Sequencing of small RNA in barley at terminal drought

analysis of sequences matching to hairpin database (miRBASE): Selection for miRNA Sequences

 \Rightarrow minor changes in singletons, but expression levels of several miRNAs are reduced during drought stress

16 miRNAs unique present under drought stress conditions.

drought stress

From Zhang 2015 acc. to Hackenberg et al., 2015

Feature ID	Small RNA -	Small RNA - Name	Small RNA - Resour	Small RNA -	Small RNA -	Experiment	Experiment	Experiment	Experiment	Control - mi	Control - mil	Control - Me	Stress - miR	Stress - miR	Stress - Mear
AAGAGGAGAAAGGTT	15	5 mmu-miR-7086-5p	miRBASE2014	Exact	0	16	16	16	#DIV/0!	0	0	0	16	16	16
ACAAAACCTTCAGCTATCCATCG	23	3 tae-miR7757-5p	miRBASE2014	Variant	2	2 15	15	15	#DIV/0!	0	0	0	15	15	15
ACCTGTTTGTCATTAAATTTCTT	23	3 tae-miR9652-5p	miRBASE2014	Variant	2	2 20	20	20	#DIV/0!	0	0	0	20	20	20
AGGAATCTTGATGATGCTGCAT	22	2 ath-miR172e-3p//c	s miRBASE2014	Variant	1	21	21	21	#DIV/0!	0	0	0	21	21	21
CAGGGATGGAGCAGAGCAAGG	21	1 ata-miR408-5p	miRBASE2014	Exact	0) 15	15	15	#DIV/0!	0	0	0	15	15	15
CCTGGGCAGCAACACCA	17	7 bdi-miR5059	miRBASE2014	Variant	1	16	16	16	#DIV/0!	0	0	0	16	16	16
GCTCACTCCTCTTTCTGTCAG	21	1 ata-miR156d-3p	miRBASE2014	Exact	0	17	17	17	#DIV/0!	0	0	0	17	17	17
TCCACAGGCTTTCTTGAACTGTT	23	3 osa-miR396e-5p//z	n miRBASE2014	Variant	2	2 15	15	15	#DIV/0!	0	0	0	15	15	15
TCCACAGGCTTTCTTGAATT	20	osa-miR396e-5p//c	s miRBASE2014	Variant	1	19	19	19	#DIV/0!	0	0	0	19	19	19
TCGCTTGGTGCAGATCGGGGC	21	1 osa-miR168a-5p//s	b miRBASE2014	Variant	1	15	15	15	#DIV/0!	0	0	0	15	15	15
TCGGACCAGGCTTAAATCCCT	21	1 osa-miR166k-3p//c	s miRBASE2014	Variant	1	15	15	15	#DIV/0!	0	0	0	15	15	15
TGGGGGCTCGAAGACGA	17	7 peu-miR2916	miRBASE2014	Variant	1	17	17	17	#DIV/0!	0	0	0	17	17	17
TTCACAGGCTTTCTTGAACTG	21	1 osa-miR396e-5p//z	n miRBASE2014	Variant	1	15	15	15	#DIV/0!	0	0	0	15	15	15
TTCACGTCGGGTTCA	15	5 ppt-miR894	miRBASE2014	Exact	0	18	18	18	#DIV/0!	0	0	0	18	18	18
TTTGGCACCTTGAAACTGG	19	9 hvu-miR5051	miRBASE2014	Exact	0	18	18	18	#DIV/0!	0	0	0	18	18	18
TTTGGTTTCCTCCAATATCTTA	22	2 mes-miR2275	miRBASE2014	Exact	0	21	21	21	#DIV/0!	0	0	0	21	21	21

miR5051(abiotic/boron stress), miR172e (flowering time), miR396e (GRF), miR156 (heat, drought)

hc-siRNAS (heterochromatic siRNA 24mers)

mod. from Unterricht Biologie, 2014

#FuturePlants

% of abundance compared to unstressed control

Sequencing of small RNAs in barley caryopsis under terminal drought

General profile of small RNAs: high abundance of 24mers in reproductive tissue, but relative reduction of 21 and 24mers under drought conditions

www.ipk-gatersleben.de

Identification of hc-small RNA

- Removal of miRNA sequences (based on hairpin database)
- Selection of 24mers (based on size)
- Mapping to genome
- Normalisation (reads/million)

Sequencing of small RNA in barley under terminal drought -

45% of all reads are 24mers and ~ 92% are putative heterochromatic small RNAs.

Majority of high abundant 24mers reads is unchanged under control and stress conditions

High abunda	ind under Control												
Identity Clus	miRNA	length of sec	count	Short ID	description	percental ho	Blast score	Blast identity	database	L1_misa.miR	L2_misb.miR	L3_mica.miR	L4_micb.miR
482098	TTGAACTGTTTCCTCTGAAATTCC	24	28574	minus50399	gi 50399595	91,6667	38,1576	5 22 1	nt.viridiplan	4160	3761	11602	9051
183203	ATTGTATCCTTAACCATTTCTTTT	24	31016	409102295 #	gi 40910229	100	48,0694	1 24 i	nt.viridiplan	6239	6843	9899	8035
208818	CACGACTCTCGGCAACGGATATCT	24	19665	387865909 #	gi 38786590	9 100	48,0694	4 24 I	nt.viridiplan	4418	2800	6491	5956
185582	ATTTATTTCAAGCTATTTCGGATC	24	18177	118201020 #	gi 11820102	100	48,0694	4 24 I	nt.viridiplan	3505	2922	6200	5550
439381	TCTTGGATTTATGAAAGACGAACA	24	23019	507118450 #	gi 50711845	(100	48,0694	4 24 i	nt.viridiplan	4802	4950	7865	5402
214836	CAGCCCCATGTCGCACGGATTCGT	24	14704	169834 #or#	gi 169834 g	l 100	48,0694	1 24 i	nt.viridiplan	2583	2015	5011	5095
205637	CACACGACTCTCGGCAACGGATAT	24	15192	387865909 #	gi 38786590	9 100	48,0694	4 24 I	nt.viridiplan	3400	2180	4737	4875
279399	CTAGCACTTTGAATTTGGGTTGAA	24	18865	minus63147	gi 63147801	83,3333	40,14	1 20 I	nt.viridiplan	2443	2504	9107	4811
400033	TACCTGGTTGATCCTGCCAGTAGT	24	20436	507413709 #	gi 50741370	9 100	48,0694	4 24 i	nt.viridiplan	5956	4077	5695	4708
279374	CTAGCACTITGAATTTAGGTTGAA	24	15116	20513849	gi 20513849	83,3333	40,14	1 20 i	nt.viridiplan	2076	1943	6688	4409
493055	TTTAGTCGGGCGTTCTCCATGCGC	24	17708	minus24209	gi 24209507	75	36,1753	3 18 I	nt.viridiplan	4534	2723	6118	4333
183287	ATTGTATTCTTTAATTATTTCTCT	24	15267	319412298 #	gi 31941229	100	48,0694	4 24 r	nt.viridiplan	3970	3149	4274	3874
111059	AGCTTTTGACGTTGTTTTGCCAAG	24	13125	minus16799	gi 16799883	79,1667	38,1576	5 19 r	nt.viridiplan	2341	2001	5190	3593
485938	TTGCTCGTCAAAGTAGTCCTCGAT	24	14615	478165359	gi 47816535	9 75	36,1753	3 18 r	nt.viridiplan	3306	2522	5286	3501
238769	CCCGAGAGACCCGGGTTCAGGTCC	24	17300	335999261 #	gi 33599926	95,8333	40,14	4 23 r	nt.viridiplan	6380	2831	4598	3491
466798	TTAAGACTAAGGCTGTCGTGAAGA	24	9789	302839568	gi 30283956	د 75	36,1753	3 18 r	nt.viridiplan	1672	1344	4164	2609
173822	ATTAATTTGTGCTAATGCGTTTGT	24	8668	217332074	gi 21733207	4 75	36,1753	3 18 r	nt.viridiplan	1419	1351	3468	2430
89148	ACTTAGGAATTCACACATGAGAAG	24	8122	323367034 #	gi 32336703	4 75	36,1753	3 18 r	nt.viridiplan	1884	1460	2362	2416
94121	AGAACTGAGTGCTAGTTCAGTGGC	24	7886	minus50944	gi 50944737	91,6667	38,1576	5 22 r	nt.viridiplan	1291	1547	2682	2366

High abundand under Stress										
Identity Clus miRNA	length of sec coun	t Short ID	descriptio	n percental h	Blast score	Blast identit database	L1_misa.miR	L2_misb.miR	L3_mica.miR	L4_micb.miR
183203 ATTGTATCCTTAACCATTTCTTTT	24	31016 40910229	95 #or# 410177745 #or# 410177832 #or# 4101779 gi 409102	29! 10	48,0694	24 nt.viridi	lan 6239	6843	9899	8035
439381 TCTTGGATTTATGAAAGACGAACA	24	23019 50711845	50 #or# 507118451 #or# 507118452 #or# 5071184 gi 507118	15(10	48,0694	24 nt.viridi	lan 4802	4950	7865	5402
400033 TACCTGGTTGATCCTGCCAGTAGT	24	20436 50741370	09 #or# 507413710 #or# 507413711 #or# 5074137 gi 507413	709 100	48,0694	24 nt.viridi	lan 5956	4077	5695	4708
482098 TTGAACTGTTTCCTCTGAAATTCC	24	28574 minus503	399595 #or# minus50872480 gi 503995	95 91,666	38,1576	22 nt.viridi	lan 4160	3761	11602	9051
183287 ATTGTATTCTTTAATTATTTCTCT	24	15267 31941229	98 #or# 319412384 #or# 340802207 #or# 3408022 gi 319412	298 10	48,0694	24 nt.viridi	lan 3970	3149	4274	3874
185582 ATTTATTTCAAGCTATTTCGGATC	24	18177 11820102	20 #or# 118201189 #or# 13928184 #or# 40910229 gi 118201	02(10	48,0694	24 nt.viridi	lan 3505	2922	6200	5550
238769 CCCGAGAGACCCGGGTTCAGGTCC	24	17300 33599926	51 #or# 335999266 #or# 335999273 #or# 3377301 gi 335999	26: 95,833	40,14	23 nt.viridi	lan 6380	2831	4598	3491
208818 CACGACTCTCGGCAACGGATATCT	24	19665 38786590	09 #or# 491649914 #or# 491649916 #or# 4916499 gi 387865	909 100	48,0694	24 nt.viridi	lan 4418	2800	6491	5956
493055 TTTAGTCGGGCGTTCTCCATGCGC	24	17708 minus242	2095071 gi 242095	07: 7	36,1753	18 nt.viridi	lan 4534	2723	6118	4333
485938 TTGCTCGTCAAAGTAGTCCTCGAT	24	14615	478165359 gi 478165	359 7	36,1753	18 nt.viridi	lan 3306	2522	5286	3501
279399 CTAGCACTTTGAATTTGGGTTGAA	24	18865 minus631	147801 gi 631478	83,333	40,14	20 nt.viridig	lan 2443	2504	9107	4811
205637 CACACGACTCTCGGCAACGGATAT	24	15192 38786590	09 #or# 491649914 #or# 491649916 #or# 4916499 gi 387865	909 100	48,0694	24 nt.viridip	lan: 3400	2180	4737	4875
214836 CAGCCCCATGTCGCACGGATTCGT	24	14704 169834 #0	or# 170767 #or# 21856 #or# 21973 #or# 2419886(gi 169834	gl 10	48,0694	24 nt.viridip	lan 2583	2015	5011	5095
111059 AGCTTTTGACGTTGTTTTGCCAAG	24	13125 minus167	7998838 #or# minus168020616 #or# minus16803 gi 167998	338 79,166	38,1576	19 nt.viridig	lan 2341	2001	5190	3593
279374 CTAGCACTTTGAATTTAGGTTGAA	24	15116	20513849 gi 205138	49 83,333	40,14	20 nt.viridip	lan 2076	1943	6688	4409
94121 AGAACTGAGTGCTAGTTCAGTGGC	24	7886 minus509	9447377 #or# minus509448471 gi 509447	37: 91,666	38,1576	22 nt.viridig	lan 1291	1547	2682	2366
89148 ACTTAGGAATTCACACATGAGAAG	24	8122 32336703	34 #or# 332640072 #or# 509214914 #or# 7321030 gi 323367	034 75	36,1753	18 nt.viridig	lan 1884	1460	2362	2416
339749 GCCGGCCGGGGGACGGACCGGGAA	24	7490 19561621	17 #or# 253760054 #or# 308081571 #or# 3131036 gi 195616	21: 10	48,0694	24 nt.viridig	lan 1837	1460	2060	2133

51 heterochromatic siRNAs are exclusively detected at terminal drought stress condition

													Oue	33	00	nuoi	
	313237	GAATACACCAAAAATAATGTCTAG	24	8	123694921	gi :	12369492	75	36,1753	1	8	nt.viridipla	2		6	0	
	447423	TGATCTTCTACTATCGGCCGCTTC	24	8	no hit	no	hit r	no hit	no hit	no hit		no hit	3		5	0	(
	46833	AATCAGATAACACAGTTGTTAACC	24	8	minus47012	gi 4	47012477	75	36,1753	1	8	nt.viridipla	3		5	0	
	200420	CAAGGCCCCCCGCTTCGCTCCGCT	24	8	509425433	gi !	50942543	75	36,1753	1	8	nt.viridipla	3		5	0	
	256972	CGATGGCCATCTTCGTCGACACGA	24	8	minus44943	gi 4	44943328	75	36,1753	1	8	nt.viridipla	3		5	0	
	457630	TGGTAGTGTTTTGTCGTCTCTTAC	24	8	123683439 #	gi :	12368343	79,1667	32,2105	1	9	nt.viridipla	3		5	0	
	463090	TGTGTAGCGGCATTCACCCATCAG	24	8	326526596 #	gi 3	32652659	66,6667	32,2105	1	6	nt.viridipla	3		5	0	
	47144	AATCATGGGACAAATGAAGCAGGG	24	8	151419059 #	gi :	15141905	79,1667	32,2105	1	9	nt.viridipla	4		4	0	
	69725	ACATTTTTTGCACATGTTATGAA	24	8	388502393 #	gi 3	38850239	75	36,1753	1	8	nt.viridipla	4		4	0	
	239965	CCCTTTAGTGACGTTCGTCACGAA	24	8	148469858	gi :	14846985	66,6667	32,2105	1	6	nt.viridipla	4		4	0	
	267323	CGGTGGGGCTCCCTGACGCGGCGT	24	8	minus15142	gi :	15142740	70,8333	34,1929	1	7	nt.viridipla	4		4	0	
	353360	GGATTTTGAAAAGGCTTTTGACTC	24	8	minus50919	gi !	50919335	91,6667	44,1047	2	2	nt.viridipla	4		4	0	
	422677	TCATGATTTAGCGCATAATGGATG	24	8	157311787	gi :	15731178	70,8333	34,1929	1	7	nt.viridipla	4		4	0	
	441675	TGAACTAATCGTACCAAAATATGT	24	8	minus22492	gi 2	22492325	79,1667	38,1576	1	9	nt.viridipla	4		4	0	
	459922	TGTAGTGCAAACTCTATAACACAC	24	8	61699076	gilt	61699076	75	36,1753	1	8	nt.viridipla	4		4	0	
	462046	TGTGACGTGCAAAAAACAGCGACC	24	8	116308931 #	gi :	11630895	70,8333	34,1929	1	7	nt.viridipla	4		4	0	
	78518	ACGCTTTCTCAAAATCCACCTTGA	24	8	29122710 #c	gi 2	29122710	100	48,0694	2	4	nt.viridipla	5		3	0	
	91970	AGAAAAAACATTCAGACGTCCCAG	24	8	333470784	gi 3	33347078	70,8333	34,1929	1	7	nt.viridipla	5		3	0	
	114297	AGGATTTTTTTCTAGCTATTGTTC	24	8	123671043 #	gi :	12367104	79,1667	38,1576	1	9	nt.viridipla	5		3	0	
	272950	CGTGTGTTGCTATGGTGTGAAAAT	24	8	minus44057	gi 4	44057744	87,5	36,1753	2	1	nt.viridipla	5		3	0	
	319881	GACTTATACTGAAGCAAGCAATGA	24	8	166234948 #	gili	16623494	75	36,1753	1	8	nt.viridipla	5		3	0	
	433989	TCTAATGCCTCCATGTAATGATGT	24	8	194267329	gi :	19426732	87,5	42,1223	2	1	nt.viridipla	5		3	0	
	480950	TTCTTCCGGACCGATCACTGACGT	24	8	110742206 #	gili	11074220	79,1667	32,2105	1	9	nt.viridipla	5		3	0	
	137920	ATAGATCCACCACAGTACAGTACA	24	8	25900578 #c	gill	25900578	70,8333	34,1929	1	7	nt.viridipla	6		2	0	
	229543	CATTCTGGACTAAAGCTTTTTGAA	24	8	minus12364	gill	12364921	79,1667	38,1576	1	9	nt.viridipla	6		2	0	
	244447	CCGTTGTCGTTGCCCATAGAACAA	24	8	minus30068	gila	30068151	75	36,1753	1	8	nt.viridipla	6		2	0	
	285448	CTCCGTGTCCGAATCCCCCCTCCG	24	8	218664762 #	gill	21866476	100	48,0694	2	4	nt.viridipla	6		2	0	
	353989	GGCATGTTGCTTCCTTAGTTCACT	24	8	297611087	gill	29761108	75	36.1753	1	8	nt.viridipla	6		2	0	
	421129	TCAGGTGGACGCTAGGTTCATGGA	24	8	356544835	gila	35654483	70.8333	34,1929	1	7	nt.viridipla	6		2	0	
	424638	TCCAGCGAGGTAAGTCTAATGAAA	24	8	minus40017	gila	40017305	70,8333	34,1929	1	7	nt.viridipla	6		2	0	
	492816	TTTAGGAGGAGGAATTAGCAGAGT	24	8	minus39957	gill	39957197	79,1667	38.1576	1	9	nt.viridipla	6		2	0	
	317447	GACCTGTATGGGCCAGCCTTTTTT	24	8	168052750 #	gill	16805275	70.8333	34,1929	1	7	nt.viridipla	7		1	0	
	506899	TTTTTTTCTATCTGTATTAATTGT	24	8	482662084 #	gild	48266208	83,3333	40.14	2	0	nt.viridipla	7		1	0	
	451943	TGCTAATGAGCTCACTAGACTAGC	24	8	224122325 #	gill	22412232	83,3333	40.14	2	0	nt.viridipla	8		0	0	
CCA1	298581	CTTCCCTTTGTTGGGATGGTGGCT	24	9	502136179 #	gil	50213617	75	36.1753	1	8	nt.viridipla	3		6	0	
	140359	ATATAAGACGTCACTGCACCAATG	24	9	147790313	gill	14779031	91.6667	38,1576	2	2	nt.viridipla	4		5	0	
	188639	ATTTGTTTCTGCTACTTCTATGAC	24	9	326523548 #	gila	32652354	79,1667	38,1576	1	9	nt.viridipla	4		5	0	
	16003	AAATAGGAACTGGCTCTTGGCACT	24	9	19172013 #c	gill	19172013	95,8333	40.14	2	3	nt.viridipla	5		4	0	
	133289	ATAATATCAAGAACTTGCTCCATT	24	9	minus21707	gill	21707586	83,3333	40.14	2	0	nt.viridipla	5		4	0	
	461214	TGTCGGCCGTTCCTACGCACTGGC	24	9	no hit	no	hit r	no hit	no hit	no hit		no hit	6		3	0	1
	66350	ACATACGATTACCTTATCTATCGG	24	9	332656411 #	gila	33265641	66,6667	32.2105	1	6	nt.viridipla	6		3	0	-
	441175	TGAACAACATCACACATCTGATTA	24	9	minus14781	gilt	14781522	79 1667	38 1576	1	9	nt viridipla	6		3	0	
	493052	TTTAGTCGGGCGTTCTCCATGCCC	24	9	minus35715	gill	35713369	70 8333	34 1929	1	7	nt viridipla	7		2	0	-
	163543	ATGCATTCTCTTAAATATCGTGGG	24	9	196259863	gil	1962598f	70 8333	34 1929	1	7	nt viridipla	9		0	0	
Sandra2	379988	GIGIAGTITIGCTICATCGTGAAT	24	10	minus1680	gil	1680246	70 8333	34 1929	1	7	nt viridipla	3		7	0	
DEMETER	103665	AGATGGTAGTACCTTGCCTGCGGG	24		118485797 #	gil	11848579	79 1667	32 2105	1	9	nt viridipla	5		5	0	
HOX1 VBS1	139428	ATAGTACAAAGTTCAGTAAGGAGA	24		123663132 ±	gil	12366311	75,2007	36 1753	1	8	nt viridinla	6		4	0	-
HOX1 Sandra5 Hordein	397325	TAATTGTTTAAGAACAGTCCACAT	24		minus22531	gil	22531925	75	36 1753	1	8	nt viridinla	7		3	0	
[ks2 (short internodes)	423240	TCATTCCCGACAGAGGGGAAGGACG	24		147865233 +	oil'	1478652	79 1667	32 2105	1	9	nt viridin!>	7		3	0	
CCA1/TOC1	153073	ATCGTCATGTCGCCGAGGGGGGCCTTC	24		240254173 +	gil'	2402541	75,1007	36 1753	1	8	nt viridin!>	7		4	0	-
	387030	GTIGTGTGAGATGTGCTTAGCATA	24		147821503 +	oil'	14782150	70 8333	34 1020	1	7	nt viridin!a	7		5	0	-
Lks2 (short internodes)	90352	ACTTGCCAAGTGAATCTACTATCT	24		359751507	oil:	35975150	70,0333	34 1020	1	7	nt viridin!>	0		5	0	-
CKX2 1 MIOC 53923 und Hov1	54496	AATTCAAGAGGAAATAGCGTGATT	24		194267320	gil!	19426721	95 8333	40 14	2	3	nt viridin!>	9		7	0	-
CINELY MEDIC_55525 UND HORI	J4400	ANTICARGAGGAGATAGCGTGATT	24	-	134201323	611-	1.720131	53,0333	40,14	2	5	n. mupid	0				
												Summe	275	19	9	0	-
												www.tittithe		10	-	-	

Genes associated with 24mer hits (putative candidate genes):

CKX2.1

cytokinin oxidase/dehydrogenase CCA1 Circadian Clock Associated 1 LKS2 Short internodes TKF

Putative target CKX2.1 Cytokinin oxidase

Integration of epigenetic and genetic controls of seed size by cytokinin in *Arabidopsis*

Jing Li^{a,b}, Xin Nie^{a,b}, Jeanie Li Hui Tan^a, and Frédéric Berger^{a,b,1}

^aTemasek Life Sciences Laboratory, National University of Singapore, Singapore 117604; and ^bDepartment of Biological Sciences, National University of Singapore, Singapore, Singapore 117543

Edited by Robert L. Fischer, University of California, Berkeley, CA, and approved August 14, 2013 (received for review March 18, 2013)

The development of seeds in flowering plants is placed under complex interactions between maternal tissues, the embryo, and the endosperm. The endosperm plays a major role in the requlation of seed size. In Arabidopsis thaliana, endosperm size depends on the coordination of the genetic pathway HAIKU (IKU) with epigenetic controls comprising genome dosage, DNA methylation, and trimethylated lysine 27 on histone H3 (H3K27me3) deposition. However, the effectors that integrate these pathways have remained unknown. Here, we identify a target of the IKU pathway, the cytokinin oxidase CKX2, that affects cytokinin signaling. CKX2 expression is activated by the IKU transcription factor WRKY10 directly and promotes endosperm growth. CKX2 expression also depends on H3K27me3 deposition, which fluctuates in response to maternal genome dosage imbalance and DNA demethylation of male gametes. Hence, the control of endosperm growth by CKX2 integrates genetic and epigenetic regulations. In angiosperms, cytokinins are highly active in endosperm, and we propose that IKU effectors coordinate environmental and physiological factors, resulting in modulation of seed size.

27 on histone H3 (H3K27me3) might be responsible for the restriction of endosperm and seed growth (18). However, additional results have questioned this idea and proposed rather that the dosage of AGL62 and associated AGLs are primarily involved in responses to maternal dosage excess (19).

To investigate further the link between epigenetic regulations and endosperm growth, we identified the series of *haiku (iku)* mutants that phenocopy the excess of maternal genome dosage and the fertilization of WT ovules by *met1* pollen (20). Molecular analyses of the *iku* mutants have identified three genes (2). *IKU1* encodes a VQ domain protein containing a conserved FxxxVQxLTG (VQ motif) of unknown function (21). *IKU2* and *MINI3* encode a leucine-rich repeat transmembrane kinase and the WRKY10 transcription factor, respectively (22). WRKY proteins constitute a class of transcription factors characterized by the conserved WRKY domain, which contains an almost invariant WRKYGQK sequence followed by a zinc-finger motif (23, 24). All *IKU*-class genes are expressed in the syncytial endosperm after fertilization (21, 22). Double mutants *iku1;iku2* (20) and *iku2:mini3* (21) show the same phenotype as single

Position of drought stress specific 24mers upstream of CKX2.1

Methylation quantified by MSRE in the region upstream of CKX2.1

- DNA-methylation in CKX2.1 promotor region is elevated after drought stress
- => *HvCKX2.1* is transcriptionally active during germination

Chromosome chr3H: 117,868,317-117,884,738

\$ < ⊡ %	
cha shaqu	
Chr. chr3H	

Region in detail @

\$ < ⊞ ≅ <	\$; 73 ≁				1500 00 Ib		Scr	oll: ┥ 🕨	Track height: 🗴 🖨 🖨	Drag/Select: \leftrightarrow 📗
Contigs Genes Genes	117.85 Mb < HORVUS 117.85 Mb	117.70 Mb Hr1G027450 117.70 Mb	117.75 Mb	117.80 МЬ	117.85 Mb	117.80 МЬ 3H+1G027480 > 117.80 МЬ	117.95 Mb 117.95 Mb	118.00 Mb 118.00 Mb	118.05 Mb 118.05 Mb	118.10 Mb
Gene Legend	protein coding									
Location: chr3	3H:117868317-117884738	Go Gene:		Go						
♦ 🌆 < 🖻 🛙	u \$\$ 75				16 42 kb					Drag/Select: ++
Genes	117.870M	b 11	7.872МЬ	117.874Mb HORVU3Hr1G027460.1 > protein coding HORVU3Hr1G027460.2 > protein coding	117.876Mb	117.878Mb	117.880МЬ		117.882Mb	117.884Mb
1						HORVU3Hr1G027460.3 > protein coding				
BLASIN adainst	Everencion	Atlaa							Query single ce	Il expression
	Expression	Allas								Atlas >
Q	Gene expression acros	s species and	biological conc	litions						

RNA-seq of coding RNA of eight barley tissues from different developmental stages

RNA-Seq mRNA baseline

Organism: Hordeum vulgare subsp. vulgare	
Reference(s): 23075845 (Filter by genes in paper)	

Results Experiment De	sign Supplementary Information Downloads								
Genes HORVU3Hr1G027460.1 ×	Show boxplot and transcripts view Showing 1 gene:					Click on a cell to	• Gramene genome b	owser 👻	Download - Download
Apply Clear		Expression level in T o	PM 96 caryopsis (15 dpa) cary	opsis (5 dpa) germinatin	g embryo inflorescence (1 cm)	inflorescence (5 mm)	internode root (seedling)	shoo	st (seedling)
Most specific		HORVU3Hr1G027460							
Expression value 0.5									
In See distribution									

#FuturePlants

Methylation quantified by MSRE in the region upstream of CKX2.1

- DNA-methylation in CKX2.1 promotor region is elevated after drought stress
- Transcription of *CKX2.1* is reduced during imbibition.

Germination speed of barley seeds is increased after application of terminal drought stress on the mother plant

Reduced expression of *CKX2.1* might lead to elevated level of cytokinin

Isoprenoid side chains of N^{6} -(Δ^{2} -isopentenyl)adenine (iP) and *trans*-zeatin (tZ) predominantly originate from the methylerythritol phosphate (MEP) pathway, whereas a large fraction of the *cis*-zeatin (cZ) side chain is derived from the mevalonate (MVA) pathway (*green arrows*). Plant adenosine phosphate-isopentenyltransferases (IPTs) preferably utilize ATP or ADP as isoprenoid acceptors to form iPRTP and iPRDP, respectively (*blue arrows*). Dephosphorylation of iPRTP and iPRDP by phosphatase (1), phosphorylation of iPR by adenosine kinase (AK), and conjugation of phosphoribosyl moieties to iP by adenine phosphoribosyltransferase (APRT) create the metabolic pool of iPRMP and iPRDP. APRT utilizes not only iP but also other CK nucleobases. The CK nucleotides are converted into the corresponding tZ-nucleotides by CYP735A (*red arrows*). CK nucleoside 5' -monophospates, such as iPRMP, tZRMP, DZRMP, and cZRMP, are activated to CK nucleobases by two-step reaction catalyzed by 5' -ribonucleotide phosphohydrolase (2) and adenosine nucleosides can be catabolized by CKX to adenine (Ade) or adenosine (Ado), cZ and tZ can be enzymatically interconverted by zeatin cis-trans isomerase (5). tZ can be reversibly converted to the *O*-glucosyltransferase (ZOGT) and β -glucosidase (β Glc). CK nucleobases also can be converted to the *N*-glucosyltransferase (ZOGT) and β -glucosidase (β Glc). CK

The width of the arrowheads and lines in the green, blue, and red arrows indicates the strength of metabolic flow. Flows indicated by black arrows are not well characterized to date. tZRDP, tZR 5' -diphosphate; tZRTP, tZR 5' -triphosphate; 2, 5' -ribonucleotide phosphohydrolase; 3, adenosine nucleosidase; 4, purine nucleoside phosphorylase; 6, zeatin reductase; 7, CK cis-hydroxylase. Modified from a previous review (Sakakibara 2006).

Article

Increase of DNA Methylation at the *HvCKX2.1* Promoter by Terminal Drought Stress in Barley

Korana Surdonja ¹, Kai Eggert ², Mohammad-Reza Hajirezaei ², Vokkaliga Thammegowda Harshavardhan ^{1,4}, Christiane Seiler ¹, Nicolaus von Wirén ², Nese Sreenivasulu ^{1,3} and Markus Kuhlmann ^{1,*} 2017

RNA-directed DNA methylation (RdDM) of HvCKX2.1 promotor leads to stable transcriptional gene silencing (TGS)

"famous" phenotypes associated with epigenetics (changing pattern of DNA methylation)

DFR in Petunia

a)

CNR in Solanum lycopersicum

Dwarf1 in *Oriza sativa*

Paramutation (B) in Zea mays

GUS (transgene Reporter) in Arabidopsis thaliana

#FuturePlants

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)

Unterricht Biologie, 2014

#FuturePlants

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)

Thanks to

RG Heterosis

Thomas Altmann Rhonda Meyer Lothar Altschmid

...and former RG Abiotic Stress Genomics Korana Surdonja

DNA Methylation in Plants Associated with Abiotic Stress

f ⊻ in <

22,706

#FuturePlants