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We present a novel method to synthesize non-trivial speckles that can enable

superresolving second-order correlation imaging. The speckles acquire a unique

anti-correlation in the spatial intensity fluctuation by introducing the blue noise

spectrum to the input light fields through amplitude modulation. Illuminating

objects with the blue noise speckle patterns can lead to a sub-diffraction limit

imaging system with a resolution more than three times higher than first-order

imaging, which is comparable to the resolving power of ninth order correlation

imaging with thermal light. Our method opens a new route towards non-trivial

speckle generation by tailoring amplitudes of the input light fields and provides

a versatile scheme for constructing superresolving imaging and microscopy sys-

tems without invoking complicated higher-order correlations.

I. INTRODUCTION

The Rayleigh diffraction limit specifies the minimum separation between two incoher-

ent point sources that can be resolved into distinct objects [1, 2]. Over the decades, there

has been vibrant research to develop superresolving imaging techniques that circumvent the

Rayleigh limit by using quantum optical N -photon correlation [3–5], structured illumina-

tion [6–8], Rabi oscillation [9, 10], fluorescence saturation [11], photoswitching [12–14], and

higher-order detection of classical light [15, 16]. For the case of classical light illumination,

the resolution can be improved by a factor of
√

2 with second-order speckle correlation of

thermal light [17], and can be further enhanced by spatial filtering [18, 19]. Higher Nth-order

correlation provides further enhancement of resolution by
√
N times [20–22].

As a fundamental component of the modern optics toolbox, laser speckles appear when

coherent light impinges upon a scattering sample and are typically generated by modulating

a laser beam with rotating ground glass [23], or spatial light modulator (SLM) [24]. The

amplitudes of the speckles are distributed following the Rayleigh statistics, resulting in a

negative exponential intensity probability density function (PDF) [25], known as pseudo-

thermal light [26, 27]. Recently, interest has been aroused in tailoring and generating non-

trivial speckle patterns, e.g., by phase modulation of the input light fields at the Fourier

plane of SLM, speckles exhibiting non-Rayleigh statistics can be produced and used to

optimize speckle illumination imaging [28–34].
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This work presents a novel method to synthesize speckles that possess non-trivial spatial

correlation via amplitude modulation of the input light fields and achieve superresolving

second-order correlation imaging with the obtained speckle illumination. The speckle pat-

terns are generated by tailoring the light fields’ amplitudes using a digital micromirror device

(DMD). They have a blue noise power spectrum with spectral intensity increasing for higher

spatial frequencies [35]. In addition, the PDF of the blue noise speckles is made to obey the

Rayleigh statistics, which is the same as the white noise speckles. The unique property of

our blue noise speckles is the negative correlation in intensity fluctuation between neighbor-

ing spatial pixels, which endows the second-order correlation imaging with superresolving

power when the object is illuminated by such speckles. We experimentally demonstrate that

the resulting image shows > 3 times higher resolution than the first-order imaging system,

which essentially surpasses the
√

2 times enhancement by conventional second-order imaging

using thermal light.

II. MATERIALS AND METHODS

A. Synthesized colored noise speckles and the spatial correlation

The noise speckle patterns are generated and imprinted into the amplitude of the input

light field by DMD. We take the spectral power distribution of the noise speckles to be I(ω) '

C0δ(ω) + Cωn for spatial frequency ω. White noise (n = 0), and blue noise with n = 4 are

used in our experiment. After applying random conjugated symmetric phases to the power

spectrum, an inverse Fourier transform is performed to obtain the noise speckle patterns

in grayscale. The generated patterns obey Gaussian statistics with low spatial correlation,

which makes the imaging system suffer from measurement noise. Thus we redistribute the

speckle PDF to satisfy Rayleigh statistics with the local intensity transformation [36]∫ I0

0

P (I)dI =

∫ I′0

0

P (I ′)dI ′, (1)

where P (I ′) is the PDF of the original created Gaussian patterns. The patterns are then

one-to-one mapped to the negative Rayleigh distribution

P (I) = (1/Ī) exp (−I/Ī) (2)
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FIG. 1. (a) A typical 2D blue noise speckle pattern, (b) its probability distribution, and (c) its

spectrum distribution. (d) A typical 2D white noise speckle pattern, (e) its probability distribution,

and (f) its spectrum distribution. Both the blue and white noise speckle patterns obey the same

Rayleigh distribution. The red dashed lines in (b), (c), (e), and (f) are the corresponding plots based

on averaging over all the 3000 blue and white noise patterns used in the experiment, respectively.

The blue noise power spectrum scales asymptotically as ω4 for spatial frequency ω.

The resulting Rayleigh blue noise speckle pattern, its PDF, and its power spectrum are

shown in Figs. 1(a), (b), and (c), respectively. The white noise Rayleigh speckle pattern,

its PDF, and power spectrum are also shown in Figs. 1(d), (e), and (f), respectively. Unlike

previous works that obtain non-trivial second-order correlations via tailoring the speckles’

statistics, we show that the blue noise speckle has Rayleigh statistics resulting in the same

autocorrelation for each pixel, same as the white noise speckle. However, a non-trivial

correlation between one pixel and its neighboring pixel appears due to the modified spectrum

distribution.

We then examine the spatial correlation of the white noise and blue noise Rayleigh speck-

les. To simplify the calculation without loss of generality, we start with one dimension. The

spatial intensity fluctuation correlation, which is central to the image formation, is defined
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FIG. 2. 2D spatial intensity fluctuation correlation of speckle patterns for an arbitrary pixel and its

neighboring pixels. (a) white noise, (b) blue noise (n = 1), and (c) blue noise (n = 4). It is shown

that the white noise has a zero correlation between different pixels, as expected. For blue noise,

there exists a significantly negative spatial correlation between neighboring pixels; the fluctuation

correlation between adjacent pixels is −0.21 for n = 1 blue noise speckles and reaches −0.44 for

n = 4 blue noise speckles.

as

γ(2)(x̃) = 〈∆I(x1)∆I(x2)〉 =
〈I(x1)I(x2)〉
〈I(x1)〉〈I(x2)〉

− 1, (3)

where x̃ = x2 − x1. Given the power spectrum density of the patterns, the intensity fluctu-

ation correlation is

γ(2)(x̃) = F−1{|Cωn|2}(x̃). (4)

For white noise speckles, the intensity of each pixel fluctuates randomly and indepen-

dently:

γ(2)w (x̃) = F−1{|Cw|2}(x̃) ∼ δ(x̃). (5)

There is no correlation between adjacent pixels.

For blue noise speckles, we have the intensity fluctuation correlation as

γ
(2)
b (x̃) = F−1{|Cbω

4|2}(x̃). (6)

This results in a rather complicated form as compared with the white noise case. The

Rayleigh blue noise speckles possess significantly negative spatial correlation of intensity

fluctuation between neighboring pixels, with the slope and negativity of γ
(2)
b (x̃) essentially
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FIG. 3. Schematic setup of the second-order correlation imaging system. A CW laser is reflected

by a DMD. The synthesized speckle patterns and digital double-slit are loaded onto the DMD.

The reflected light propagates to the imaging plane by an imaging lens. An 800 µm diameter iris

pinhole is put right behind the lens to adjust the effective aperture of the lens. The CMOS sensor

at the image plane records the intensity distribution I(r) of the double-slit image.

enhanced for larger blue noise order n. The correlation oscillates as distance between two

pixels increases, and reaches zero when they are well separated. We plot the 2D correlation

functions of the intensity fluctuation of white noise speckles (Fig. 2 (a)), blue noise speckles

for n = 1 (Fig. 2(b)), and n = 4 (Fig. 2(c)), using 3000 patterns for each noise type.

The fluctuation correlation between adjacent pixels reaches −0.44 for n = 4 blue noise

speckles. The striking anti-correlation of intensity fluctuation correlation readily provides

the capability to resolve objects beyond the Rayleigh diffraction limit.

B. Measurement method of second-order correlation imaging

To demonstrate the corresponding resolving power of second-order correlation imaging

with blue noise speckle illumination, we employ the experimental setup shown in Fig. 3. An

input CW laser is reflected by the DMD, on which the speckle patterns of synthesized spatial

spectrum and a digital object (double-slit pattern) are loaded. The convoluted double-slit

and speckle patterns are then imaged by the complementary metal oxide semiconductor

(CMOS) sensor through an imaging lens. The effective aperture of the imaging lens can be

adjusted by a pinhole behind the lens. The DMD contains pixelated mirrors with an area of

16 µm × 16 µm per pixel. The double-slit has a dimension of 4 pixels in height, 3 pixels in
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width for each slit, and 5 pixels of center-to-center separation. The noise pattern consists of

54 × 98 independent pixels (each pixel is 4 × 4 DMD pixels). The diameter of the pinhole

is chosen to be 800 µm.

III. RESULTS AND DISCUSSION

A. Superresolution with blue noise speckle patterns

Due to existence of diffraction, the light reflected from each slit diffuses and can become

overlapped with each other. We measured the first-order image I(ri) and the second-order

correlation image with white and blue noise (n = 4) speckles illumination, which is con-

structed from the intensity fluctuation correlation of measured intensities on each pixel of

the image plane. The intensity distribution of the light field on the image plane can be

expressed as

〈I(ri)〉 ∝
〈∫

droI(ro)|T (ro)|2|h(ri, ro)|2
〉
, (7)

where I(ro) is the intensity distribution of the speckle pattern and ro is the coordinate on

the object plane. T (ro) denotes the object aperture function, and

h(ri, ro) ∝ somb

(
2πR|ro + ri/m|

λso

)
(8)

is the point spread function (PSF) [37]. Here R is the effective radius of the image lens,

m = si/so is the magnification factor of the imaging system, so is the distance between

object plane and lens, si is distance between lens and image plane, somb(r) = J1(r)/r, and

J1(r) is the first-order Bessel function of the first kind.

Since the slit width is smaller than the noise speckle size, we can treat the two separated

slits as two points in the object plane, at r1 and r2. The first-order image is then

〈I(ri)〉 ∝ h2(ri, r1) + h2(ri, r2) . (9)

The second-order image measured by illumination of white and blue noise speckle pattern

is

〈∆I2w/b(ri)〉 ∝
〈∫

drdro γ
(2)
w/b(r, ri)|T (ro)|4h4(r, ro)

〉
. (10)
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In Eq. (10), the image formation depends strongly on the properties of spatial correlation

of illumination light fields with different types of speckle patterns and cannot be expressed

as the overlap of two PSFs from two separated points r1, r2. For the blue noise speckles,

their significantly negative cross correlation of the pixelwise intensity fluctuation and the

contribution of the autocorrelation from each pixel results in the superresolution of the

formed image. The experimental results are shown in Fig. 4(a) for second-order image

FIG. 4. second-order image with Rayleigh blue noise, white noise, and first-order image of the

double-slit. The image of the two slits are well separated in the second-order image with blue

noise speckle illumination (a), but are indistinguishable in the second-order image with white noise

speckle illumination (b), and are completely overlapped in the first-order image (c).The slight

asymmetry of the double-slit image distribution in (a) and (b) is present because the iris is not

exactly oriented to the middle of the two slits.

with blue noise illumination, Fig. 4(b) for second-order image with white noise illumination

and Fig. 4(c) for first-order image. All three measurements are performed under the same

conditions, i.e., the same laser power, number of frames, and exposure time of each frame.

Data are collected by the CMOS sensor with exposure time at 30 µs for each pattern and

averaged over 3000 patterns. It can be clearly seen that, due to the finite pinhole size, the

first-order imaging system is not able to resolve the double-slit at all, while the second-order

imaging with white noise cannot distinguish the double-slit either and the image is blurred.

On the other hand, Fig. 4(a) shows a clearly distinguished slit image.

In Fig. 5, we plot the one-dimensional image of the double-slit when the effective diameter

of the lens is just enough to separate the two slits, i.e., at the Rayleigh diffraction limit. The

simulation, in solid black lines, shows that a lens with a minimal effective diameter of ∼ 2.1

mm is required. We also choose the 1D cross-section of vertical pixel 55, from the blue noise
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second-order image and the first-order image results from Fig. 4. The data are fitted to the

first-order imaging equation, providing a quantitative evaluation of the resolving power of

the imaging systems. Fitting the first-order image data results in an effective lens diameter

of ∼ 0.8 mm, which is well consistent with our experimental setup of the first-order imaging

system. The same analysis shows that, to have an equivalent resolution of the second-order

blue noise imaging system, one needs to use a lens of ∼ 2.5 mm effective diameter in the

first-order imaging system. Thus, using the blue noise speckle in second-order correlation

imaging, the resolution is enhanced by ∼ 3 times.

FIG. 5. The resolution of the first-order and second-order blue noise imaging systems, which is

characterized by their corresponding effective lens diameters. The solid black line represents the

theoretical Rayleigh limit when the effective diameter of the lens is just able to resolve the two

slits, which is found to be 2.1 mm. Red dots are the measured first-order image, fitted with an

effective lens diameter of 0.84 mm. Blue dots are the measured second-order blue noise image,

fitted to an effective lens diameter of 2.5 mm.

IV. CONCLUSION

In summary, we proposed a novel method to synthesize blue noise speckle patterns satis-

fying Rayleigh statistics by tailoring the amplitudes of the input light fields. The resulting
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speckles show a unique feature of negative spatial correlation between neighboring pix-

els. The anti-correlation of spatial intensity fluctuation endows the second-order correlation

imaging system a resolving power that is ∼ 3 times higher than the first-order imaging and

is equivalent to a 9th order correlation imaging system using thermal light illumination. Our

method is versatile and compatible with a broad range of optical setups. It can be used in

computational ghost imaging systems to sharpen the edges of the ghost image and enhance

the signal-to-noise ratio. Our method has potential application in microscopy and biomedi-

cal imaging systems such as laser speckle contrast imaging (LSCI) based on the second-order

correlation imaging mechanism [38–40]. With the buttress of blue boise speckle illumination,

LSCI can obtain essential enhancement of resolution.
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