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ABSTRACT

Photon entanglement calculation with the 2nd order perturbation theory.

1 State Expression & Spin-orbital Polarization Term

We define the initial states and the final states,

i) = Oé|Pi17pz'2>N|00> + 5|Pi1api2>w|00> (D

[Wr) = alpsi,ppe) |k ke), + Blosy,pra)y [k ka) 2)

Here we assume that the entangled electrons experience spin-flip during the radiation. Meanwhile, according to the
"Quantum Cerenkov Radiation: Spectral Cutoffs and the Role of Spin and Orbital Angular Momentum", the expression
of matrix element (integration of density matrix) is shown as,

1
M= /d3xdt<pf7k”jquu’pi>O> ®)

The final radiation ratio is expressed by the M matrix (C' is the constant produced by four spatial integration, shown in
PRX S18),

I'= C * /d3kd3p|M|2 = C * /d3kd3p(|Ma2imuthal|2 + |]\/fradial|2) (4)
Due to the linear relationship between M and S P, we could easily alternative M into SP as they did in PRX.

1sP)I
4E2./(sin(0;)sin(0cr))? — (cos(0pn) — cos(0;)cos(0cr))?

I'= % /Sin(eph)deph

™

&)

Thus, we have to calculate the M based on the entangled electron pairs using the 2-nd order perturbation theory. Then,
the contribution of each part of S P term corresponds to M. The SP terms are calculated in PRX.

. . pfr(Ei + mc2)ei(¢ph—¢f) _ pi’r'(Ef + ch)e—i(¢p}1_¢i)
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’ VE; + mc®\/Ey + mc? ©

Cpfz(Ei + mc?) — pi.(Ef + mc?)

+
VE; + mc?\/E; + mc?

e cos(Opn)

2 2-nd Order Perturbation Theory

In the paper "Concepts in X-ray Physics" section III, the Interaction picture is applied. From Schrodinger picture, the
probability amplitude of the electron will be found in a final state f at a later time t is given by the coefficient cypqy 5 as,

e = (FIV]D) (10)
o2 = (VMY M|V i) (11)

At this 2nd order, we have to consider the possible intermidiate states M. On the other hand, from the Feynman
Diagram, we could draw the picture of one electrons scattering in Fig. [T}

QY

Figure 1: The Feynman Diagram gives contributions to the following processes: single electron scattering (similarly to
the Compton Scattering).

For the QED interaction Lagrangian, L, = —g™ (2)7°v*1(x)qA,. Therefore, according to the Dyson’s formula,
the S-matrix expands into perturbation series in the powers of the interaction Lagrangian L,,. And the second order
perturbation term in the S-matrix is two parts contributed by the interaction Lagrangian. We could write down the
Interaction Dirac Hamiltonian as,

—2H?) = jrqA, Y qA, = bt (@) " p(x)gA, x T (&) 0y (a')qA, = HyrHyr (12)
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Then we insert Eq. [T} Eq. [53] and Eq. [I2]into Eq. [T0] Similar to Eq. [3]the 1st order perturbation theory gives the matrix
elements.

-1 [ (2)
M= o /d wdt(alpyr, pral (k. ke, + B(pr1,ppa|y (kis kel ) Hy 13
X (Ol|pz'17pz‘2>m|00> + 5|pi17pz‘2>H’00>)
After simplification, we get,
—1 3
M= /d wdt((Hr) gy, (Har) gy, + 20B8(H1r) i (Hot) i) (14)
From the Eq. ff]and Eq. [5] we get the total radiation ratio represented by SP.
U= (Crapy + Taz )1 Cragy + Tazpy)z +40° 62 (Crapt + Loz pt)1(Cra st + Loz pt)2
+2aﬂ(/ (SPqgiatty + SPazimuthat,t1) (SPradiat,tt + S Pazimuthal, t1))1
(15)

X (/ (Sp:adial,ﬂ, + SP;zimuthal,T\L)(SPTadilllyTT + SPazimuthal,TT))2
+H.C.

Again, following the second order Dyson’s expansion, we could write down the fourth order of the Interaction
Hamiltonian based on the S-matrix expansion.

Y = 2 A2 1A = S @ 9 (@)ed)? x 0F N b aA,)? = 5 (Hu(Han)? (16)

Along with the Eq. [TT] we could get the 2nd order matrix elements.

1
M = m/d3gvd75(04<pf17pf2|¢T<k1,k‘2|N +ﬁ<pfl’pf2|ﬂ<kl’k2|¢T)H§4)

X(Oé|Pi1,Pi2>N’00> + 5|Pi1»Pi2>¢T}00>)

a7)

After simplification, we get

1 3 2 2 2 2
M = o /d xdt(<H11H21>f”p + 2a,6<HHH2,>Mf”p) (18)

2.1 Spin Flip Part A,

Here we focus on the first component <pf1pf2 |¢T<k1 ko |N(HH)2 (Hor)? |p¢1pi2 ‘ jre }00). Let’s insert the intermediate
terms with one of electrons’ spin-flip and photon emission.

<Pf1pf2|”<k1k‘2|NH11H21|M><M’H11H21 ’pi1pi2>N’00>
(Ei1 — Eyv +i01)(Ei2 — En + i02)

(prips2 |lT<k1k2 |TL(H”H21)2 [pirpiz|)11|00) = Z
M
(19)

|M) = ‘pflpz‘2>u|/€10>T&|Pi1]9f2>ﬁ’07*62>¢ (20)
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We calculate each electron respectively. Let’s take the first matrix element in Eq. [T9]

(pripy2 ’LT<k1k2 ’NHHHQI |M><M}H11H2I|Pi1pi2>n|00>

A = - .
! %: (Ei1 — Ean +i01)(Eig — Enra + i02)

_ <Pf1pf2|u<k1k2’NH11H21|Pf1Pi2>u|k10>T<Pf1Pi2|u<k10‘TH11H2I|pi1Pi2>N|00>
(Bin — Ep1 +io1) (B2 — Eig + i02)

N (prips2 ’¢T<k1 ko ’NHIIHQI ’pi1pf2>ﬁf0k2>¢<pi1pf2 ’TT<0/€2‘TH11H21|Pi1pi2>ﬂ|00>
(Ei1 — Ei1 +i01)(Ei2 — Epe +i02)

21

To see the equation more clearly, we define |11> |i2>,

f1>, and | f2> instead. Thus, Eq. [19|becomes

<f1|H11|f1><f2|H21|i2><f1|H11|i1><i2|H21|i2> n <f1|H11|i1><f2|H21|f2><i1|H11|i1><f2|H21’i2>

Ay —
! (Eil —Ep + i01)i09 (Eig — Epy + i09)i0]

(22)

2.2 Spin Non-flip Part A,

Here we focus on the second component {(pr1py2 |¢T<k1 ko |N(H11>2(H21>2 |pi1piz|)1+]00). Let’s insert the intermedi-
ate terms with one of electrons’ spin-flip and photon emission.

<pf1pf2|¢T<k1k2|NH11H21|M><M’H11H21 |pi1pz‘2>u|00>
(Bir — Ev +i01)(Eig — Eno + i02)

<Pf1pf2’u<k1k’2’N(HHHQI)Q’pi1p¢2|>w|00> = Z

M
(23)
M) = |Pf1pz'2>u|k10>T&|Pi1pf2>TT’0k2>¢ (24)
(pripsal (kika|, HirHar|M)(M|Hy; Haor|piipiz) . |00)
A, — Z 1 N 1
? v; (Ein — By +i01)(Eig — Eyg +i02)
_ <pf1pf2’H<k1k2’NH11H21’pf1p¢2>u’k10>T<pf1pi2’w<k10‘TH11H21|pi1pi2>u|00> 25)

(Ein — Ef1 +i01)(Eig2 — Eig + i02)
N (prips2 |¢T<k1k2 |NH”H21 |pz‘1pf2>ﬁ’0k2>i<ﬁz‘1pf2 |TT<0]€2|TH11H21fpilpi2>H’00>
(Ez — E,jl —+ iUl)(EZ‘Q — Efg —+ 7:0'2)

To see the equation more clearly, we define ’i1>, i2>, f1>, and ] f2> instead. Moreover, we add flip and non — flip
on these notations if their spin flip while still staying on initial or final state. Thus, Eq. [T9 becomes

4o (Al Hulf)(Fol Horliz) (il Ha i), (i Harli2)
(Eﬂ — Efl + iUl)iUQ

+<f1|H11|i1><f2|H21|f2><i1|H11|il>flip<f2’H21|i2>
(Eig — Ef2 + Z’O-Q)ia-l

(26)

non

Now we have to consider the eigenvalue of initial and final states (with no spin flip within the same state). According to

Eq. [69]

Sp(ﬁzimuthal = _QCpiTSin(prh - ¢i) @D



A PREPRINT - FEBRUARY 8, 2021

SPdeial = 2¢p;Sin(Opp) — 2¢pircos(Ppn — ¢i)cos(Opp)
S‘Ptifzfimuthal = _2CprSin(¢ph - Qbf)

SPIT 1 = 2cpp:51(0pn) — 2epfrcos(dpn — bf)cos(Opn)

On the other hand, we calculate the eigenvalue of initial and final states (with spin flip within the same state).
(Spvl:édial)fl’ip =0

(Spéiimuthal)flip =0

Thus, A term would be omitted. And the matrix elements can be simply expressed by A;.

1

1
— 3 2 772 _ 3
M m /d xdt(<H11H21>flip T /d xdtA,

3 Spin Polarization term

To begin with, we have to use some relations to simplify the SP terms.

cpir = BE;sin(0;)

cpi» = BEicos(0;)

cppr = BEisin(0;)e”" @95 — nhwsin(fp,)e " (#rn=¢1)
cpy. = BE;cos(8;) — nhwcos(Opp)

cos(ppn — ¢i) = cos(0cr) — cos(0;)cos(Opn)

sin(6;)sin(0pn)

Therefore, for initial-final state transfer parts,

op2 (e)?

azimuthal,T] — (E7 + ch)(Ef 4 mcz) (/BEzCOS(GZ) TL(EZ + mc )COS(eph))

(fw)?

(B ) (B ) (BB sin® @) sin® () — (cos(6pn) — cos(6:)cos(bor))

+[BEicos(0cr) — n(E; + mc*))?}

2
Spradial,'N, =

Adding up the radial and azimuthal S P term, we get

(hw)®
(E; + mc?)(Ef + mc?)
—2nBE;(E; + mc?®)[cos(8;)cos(0pn) + cos(0cr)]
+B2E?[1 — cos® (Opn) + 2cos(0pn)cos(0;)cos(0cr)]}

SP% = {n?(E; + mc?)?[1 + cos*(0,n)]

Secondly, we calculate those initial-initial parts and final-final parts (non-spin flip). Similarly, we get

SP" = 2BE;sin(0cr)

(28)

(29)

(30)

€29

(32)

(33)

(34)

(35)

(36)

(37

(38)
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SPI =28 E;sin(0g) (39)

where 3’ = %f and 6, 5, is the QCR spread angle of the same photon emission by the states. Specifically, we can write
down these two QCR spread angles to compare with each other.

w/1-p2n%2-1

o (L ¢
= arccos(— + —
CR nB  we 153 2n

) (40)

1 /1 — (B2 2_1
H/CR:CLTCCOS(i—Fi pn )

nf  we Jox 2n @1

Importantly, we notice that, in the non-spin flip initial-initial and final-final situation, the S P terms do not have 6,,. In
the result, we could take them out directly from the 6, integration in the next section.

4 Total Emission Rate with the 2nd Order Perturbation

Based on the calculations above, we could write down the total emission rate with regard to M that contains S P term.

'=0Cx /d?’kd3p|]\4|2 =C x /d3kd3p(|Mazimuthal|2 + |Mradial|2)

HSP]|2 (42)

4E2.\/(sin(0;)sin(0cr))? — (cos(Opn) — cos(0;)cos(0cr))?

« .
% / stn(Opn)dbp,

According to A,

<f1}H11|f1>2<f2|H21|i2>2<f1|H11‘i1>2<i2|H21’i2>2 <f1‘H1I|i1>2<f2’H21|f2>2<i1|H11|i1>2<f2’H21|i2>2
(Eil — Efl + 7;0'1)20% (Eig — Efg + i02)20'%
+2<f1|H11’f1><f2|H21|f2><f2‘H21|i2>2<f1|H11|i1>2<il|H11|i1><i2|H21|i2>
(Eil — Efl + iGl)UQ(EiQ — Efg + iUQ)O'l

A2 = N

(43)
Substituting spin-polarization term in to A%, we get the 2nd order total emission rate.
2
SP
I'= g/Sin(eph)d‘gph - - |[ H

73 4E2./(sin(6;)sin(0cr))? — (cos(Bpn) — cos(0;)cos(0cr))?

Fry\2 ify\2 ii12 ify2 0412 if\2 f1y2 if\2
~0 [ (¢ o SELHSPIREP US| (SPORSPYRISPIRISP ) "

(Eil —Efl +ZO’1)202 (EZQ —Ef2+20'2)20'1

(SP)F(SPI)S(SPI) 1 (SP )y (SP)1(SPY)s
(Eil — Ef1 + iUl)UQ(EiQ — Ef2 —+ iUQ)O’l

+2
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From the section above, we know that we could take 73 and f f term out directly from the 6, integration because they
do not have 6, term.

isPII

4E2.\/(sin(6;)sin(0cr))? — (cos(Opr) — cos(0;)cos(0cr))?
(x1%)(SPY) 2f2 (x2%)(SPf)3

(Ezl — Ejp1 +i01)%03

o Ji GLO)(SPY)T [ (x24) (SPY)3

(Biz — Ef2 +i02)207

[, G<1x)(SP)? [ (%24)(SPT)3
(Ea — Ef1 +1i01)02(Eip — Epe +i02)01

« .
I'= % /sm(ﬁph)dﬁph

=C x (SP/)}(SP™)3 2f1
(45)

+C x (SP")3(SPIT)2

+2C x (SP!1) (SP)y(SP™), (SP™),

From the supplementary of PRX, we know

Fw,T¢ = Fw,azimuthal,T,L + Fw,radial,T¢
_ o (hw) {(5Ei)2[1 + cos®(,)][1 + cos®(Ocr)]
83 E (E; +mc?)(Ey +mc?)

dnBE;cos(0cr) 200 (46)
_—Ef i [1+ cos®(6;)]

o Ei +mc?

T ez 2+ 2005 (8:)cos® (Bor) + sin® (0:)sin® (6on)]}
f

+

So the final expression of the total emission ratio is

(SPI)2(SPii

2
2
['= Lo, t]1lws 112 E 5

)
il —Efl +ZJ ) 0'
(SP™)}(SPIT)3
Iy, T, 47
ol ,wh(EﬁiEfﬁmQ)zg “47)

(SPI)(SPI)y(SPY), (SP),
(Ei1 — Ep1 +i01)02(Eja — Efs +i02)01

+2[Cwy 1)1 [Lws ]2

5 Calculation based on Werner States

5.1 Werner State Vectors

As we known, the Werner state expression defines the summation of entangled states and non—entangled states with
the probability of entanglement. Explicitly, if we assume that the two qublts are intialized in one of Bell states,

9D entangie = v3(| 1) = [ 1)) with probability p. or in [¢;) 210y +Lop(for)+]od),

then the Werner state can be expressed by

nonentangle

pw = (1 B p)|1/}>nonentangle<1’Z)|nonentangle + p|w>entangle<w|entangle (48)

In our situation, the entangled initial state is expressed with

1
i) = ﬁ(!pn,pi2>w|oo> + |pir, piz) [00)) (49)
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And the non-entangled initial state

1
i), = §(|pi170>m + ‘pz‘170>w)(|0’pi2>m + ‘pri2>0¢)|00>
1
= §(|pi1,pi2>TT + |pz‘1,pi2>N + |pi17pi2>H + |pi17pz‘2>u)|00>
So the Werner state’s density matrix can be expressed by

pw = (1= p)[i),,(¥il,,, + P|vi) (Wi

Projecting this density matrix on Bell basis,

Vi) = [ = p)|wi), (|, + p|ws)(wi]l|vi)
= (L= p)[thi),,, (Wil o |0i) + pltbi)

1
= \ﬁ(l = P)|vi),, + P¢i)
Similarly, the final state can also be expressed as above.
1
vy) = \ﬁ(!pfhpfﬁu\kl,kﬁm +|pr1spra)y, [k ke) L)
1
Wf>no - §(|pf17 0>¢0|k1’0>¢0 + |pf1’ O>¢0|kl7 0>¢0)(|0’pf2>0T|0’ k2>o¢ + |07pf2>o¢|07 k2>0T)

1
= §(|Pf1,pf2>ﬁ|k1,k2>u + |pf1,10f2>w|7<71,l<32>¢T + |pf1apf2>w|k1,k2>u + |pf1,pf2>u|k1,k2>ﬁ)

o), = %(1 — )]s, +alir)

(50)

&1y

(52)

(53)

(54)

(55)

For the 2-nd perturbation, we also have to write down the intermediate states. First of all, considering the first electron

emits one photon and flip its spin while the second electron does not change its state.

1
|7/)m>1 = ﬁ(‘pf17pi2>¢¢’k1a0>m + |pf1,pi2>ﬁ|/€170>w)

1

|7/’m>71w - §(|pf170>¢0|k1v0>¢0 + |pf1v0>¢0|k17O>¢o)(|0’pi2>m|00> + |0’pi2>o¢|00>)

1
= §(|Pflapi2>m|k1,0>w + |pflapi2>u|k170>w + |Pflapi2>”|k1,0>m + |Pf1api2>u|k1,0>¢0)

Uiy = 5 (1= i), + aln)’

Secondly, we consider another situation instead.

1
|,¢)m>2 = ﬁ(|p117pf2>1~1~’07k2>0¢ + |p7,17pf2>¢¢|03 k2>0T)

1
[ )y = 5([Pi1.0)15]00) + [pi1,0) |00)) ([0, 12 )y [ OR2),, + 0, k2)

O’pf2>0¢ OT)

0,k2>0¢ + ‘pz‘17p,f2>u‘0, k2>0T + |pi1,pf2>” O’k2>0¢ + ’101‘1,1)]02>w 0, k)

1
= 5(’p117pf2>)m OT)

|w’m>3v = (1 - b)|'¢’rn>72w + b‘wm>2

Sl

(56)

(57)

(58)

(59)

(60)

(61)
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5.2 2nd-order Perturbation

M= 4%71 /d%dt(j (1= a)(vy],,, +a(vs]) x HY x (%(1 = p)[¥i),,, + i)

1/1f|WH11H21|¢m>W<1/1m|WH11H21|¢z>

(62)
/d3 dt
~ 1=1,2 (B — Emn +io1)(Ei2 — Enz +i02)

while [ = 1, and we represent matrix elements by spin-polarization terms.

(gl Hrr Hog [t ), — {(1—19)(1—@

5 + (1 —=pla+p(l— a)] (SPT ) non1ipl(SP) piip + (SPY uon piin]

pa
A2 SPI o in (SPS) i
(63)

<1/’f‘WH11H2I|¢m>11/V — (SP{ ) nons1ip|CL(SPY) 1ip + Co(SPy Vnon fiip) (64)

<1/)m‘WH11H21”(/}1>;V — [Dl(Splif)flip + DZ(SPff)nonflip](SPQM)nonflip (65)

where C1, Cy, D1, Dy are coefficient that replace entanglement probabilities. While | = 2, and we represent matrix
elements by spin-polarization terms.

<¢f|WH11H21|¢m>‘2,V — [El(splzf)flzp + EQ(SPff)nonflip](szff)nonflip (66)

<¢m’WH11H21|¢i>124, — (SP{nons1in [F1 (SPy) j1ip + Fo(SPs ) non i) (67)

Substitute all the terms with spin-polarization in M.

M / dadt [ (SP)nonsiip(S P Jnonstip[C1(SP5) rip + Co(S P ) non i) (D1 (SPL) piip + Da(S P Y moni)]
4'h (Eil — Efl + iUl)iUg
N (SPI) o sip(SPS Y nons1ip FL(SPY) prip + Fo(SPY Vnon ptipl [E1(SPYY) p1ip + B2 (SPY ) non piip]
101(E0 — Epo + idg)

(68)

According to the relationship between M and total emission rate I', we could derive the result. (Too complicate, but
without any difficulty with regard to method)

6 Graphics

6.1 Fig. 2 in PRX - Matrix Elements

In this section, we firstly rederive the Fig. 2 in PRX.

eppre” 1 = BE;sin(0;)e” " — nhwsin (O, )e” "
eprre'®t = BE;sin(0;)e'? — nhwsin(f,yp)e ?" (69)
(eppr)? = B2EZsin®(0;) + n?h?w?sin® (0,1) — 2nhwBE;[cos(0cr) — cos(0;)cos(0,n)]

According to the relationships we have refered above, we have

(epir)? = BPEZsin®(6;) (70)
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Index of refraction of silica Constant index of refraction 6
(including its material dispersion) (n=1.45986) x10
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Figure 2: Matrix-element amplitudes for the CR process, as a function of the photon wavelength \ and emission spread
angle 6,,,. (a). Here we choose 0; = 0.1798, I; = 3, [y = 0, [, = 4, and the spin flip from —% to % The color map
shows the spatial part of the matrix element that vanishes outside of the permitted zone, bounded by the blue, red, and
green dashed curves. Along these curves, the amplitude diverges; thus, we use a saturated color scale, with darker
colors corresponding to higher transition amplitudes. (b). l,, =8,1; = 7,and l;y =0

From the reference PRX, exactly quantifying the amplitudes requires solving a triple-Bessel integral over the cylindrical
radius r, which was fortunately studied in the mathematical literature, providing us with a closed-form solution:

cos(lyof —lyay;)
QWS(pir/hvpfr/ha kr)

/ T o )t (D0 B) Ty 1ty 1, (ke = (1)

where S(p;r /1, psr/h, k) is the area of a triangle with sides of lengths p;,. /71, ps/Ti, and k... where «;, af, and app,
are the angles opposite the three sides. If a triangle cannot be made, then the integral is zero, which gives another
selection rule (though not a simple one) for the possible radiation emission.

cos(0cr) — cos(0;)cos(Opn)

= 2
cos(ary) sin(6;)sin(6pn) (72)
cos(an) = nhwsin(0,,) — BE;sin(6;) (73)
' VB2E?sin2(0;) + n2h2w2sin2(0,y,) — 2nhwBE;[cos(0cr) — cos(0;)cos(0,n)]
According to the Heron’s Formula, the area of this triangle is
_ mBE;sin(0;)sin(0,n) cos(0cr) — cos(0;)cos(Opr) 2
S(pir/hpyr/hybr) = ch\ 1 sin(6;)sin(6pn) 74

10
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The angular momentum conservation tells us that [; = Iy + [, = 1. We assume that [; = 3, [y = 0, [, = 4, and the
spin flip from —1 to 3.

cos(liay — lyoy) chAcos(3ay)

- 2
. . cos(0cr)—cos(0;)cos(Opn)
QWQBEiSZn(ei)SZn(th)\/l - [ SOy ]

27‘(’5(]),’,«/71, pfr/ha kr)

stn(0;)sin(0pn) sin(6;)sin(Opn)

ch\ 4( cos(0cr)—cos(8;)cos(0pn) )3 _ 3cos(003)cos(@i)cos(eph):| (75)

2
. . cos(0cr)—cos(0;)cos(0pn)
27T2ﬁEiSZn(9i)Sln(9ph)\/1 - { S @S inO) ]

Therefore, we can plot the Matrix-element amplitudes for the CR process, as a function of the photon wavelength A
and emission spread angle 6, Fig. Q Plotting the amplitudes, exhibit preferred “stripes” of high amplitude at certain
angles of emission 6,,. Then, we try to rederive the second sub-figure in PRX’s Fig. 2. In that situation, {,,;, = 8. To
simplify the spatial part of the matrix element, we may choose [; = 7 and [; = 0 so the spatial part can be written as

cos(liay —lpoy) chAcos(Tay)
20 S (Dir /By Dpr /By k) 2w2BE;sin(0;)sin(0pn)sin(ay)

(76)

We plot the Matrix-element amplitudes for the CR process with lpn = 8 and constant index of refraction (n = 1.45986)
in Fig. 2] We can see that this figure is totally different from the figure in PRX. My own opinion is that while considering
the lelf boundary, we just have to know the boundary of cos(af). To testify my result, we plot 8, — cos(af), which,
from the main amplitude results, should not be within -1 to 1 until ,, increases over 1 x 10~3[rad] (in Fig. .

50 ' ; - -

-0.996 1

64-1
-0.998 :
Zz -0 :
Q
O

-1.002
_100}  -roo4; 1 |
-1.006 f 1

-1.008

-150 '
0 1 2 3 4 3

0 adl 1o

Figure 3: cos(ay) could be below -1 due to its denominator sin(6,,) term.

1.1161.1171.118 1.119 1.12 1.121
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6.2 Fig. 2 in our paper — Matrix Elements

In the end of part 2, we notice that

1
M= / d>xdtA; (77)
and
A — (fu|Huz|f1){f2|Har|iz) (fi|Huz i1 ) (iz| Hari2) n (fu|Huz|iv)(fo|Har| fo) (i |Hup |ir){ fo| Hari2) (78)
te (Eil — Efl + iUl)iUQ (Eig — Efg + idg)ial
Therefore,
M (79)
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