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We present a novel framework for computational ghost imaging based on deep learning and pink noise
patterns, which substantially decreases the sampling ratio over 10 times smaller than previous sub-
Nyquist computational ghost imaging works. Here, the deep neural network, which can learn the sensing
model and enhance the quality of image reconstruction, is trained merely by simulation results. There
is no necessity to conduct experiments to get training inputs (non-experimental) and add noise to cus-
tomize with a real imaging system (noise-free). This one-time trained network can be applied to multi-
ple environments and various situations. To demonstrate the sub-Nyquist level in our achievement, the
conventional computational ghost imaging results, imaging results reconstructed using white noise, and
pink noise via deep learning are compared in several sampling rates. To indicate its non-experimental and
noise-free advantages, a group of results with strong environmental noise are presented. This method has
great potentials in various applications that require a low sampling rate, quick reconstruction efficiency,
and strong turbulence.
© 2021 Optical Society of America
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1. INTRODUCTION

Ghost imaging (GI) [1–4], a novel practice with measuring the
spatial correlations between two light beams, where the signal
light field interacts with the object then collected by a single-
pixel detector, and the reference light field, which never interacts
with the object, falls onto the imaging detector. Therefore, the
image information is not present in either beam alone but only
revealed in their correlations. To further ameliorate and simplify
this framework, computational ghost imaging (CGI) [5, 6] was
proposed. The reference light path that functions as recording
speckles is replaced by loading pre-generated patterns directly
onto the spatial light modulator or the digital micro-mirror de-
vice (DMD). The unconventional image is then revealed by cor-
relating the sequentially recorded intensities at the single-pixel

detector and their corresponding patterns. CGI finds a lot of ap-
plications such as wide spectrum imaging [7–9], remote sensing
[10], and quantum-secured imaging [11].

However, CGI normally requires a large number of samplings
to reconstruct a high-quality image, or the signal would have
been submerged under correlation fluctuations and environmen-
tal noise. To suppress the environmental noise and correlation
fluctuations, the required minimum number of sampling is pro-
portionate to the total number of pixels within patterns that are
going to be applied on DMD, i.e., the Nyquist limit of sampling
[12, 13].The image could have a meager signal-to-noise ratio
(SNR) if the sampling number does not satisfy the requirement.
This demanding requirement hindered CGI fully replacing the
conventional photography. Previously, many schemes have been
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proposed to improve CGI’s speed and decrease the number of
sampling (sub-Nyquist) [14–21]. Compressive sensing imag-
ing is capable of reconstructing imaging with a relatively low
sampling rate by exploiting the sparsity of the objects [22–24].
It nevertheless largely depends on the sparsity of objects and
is sensitive to noise [25]. Orthonormalized noise patterns can
be used to suppress the noise and improve the image’s quality
under a limited sampling number [16, 26], in which the orthonor-
malized colored noise patterns can break the Nyquist limit down
to ∼ 5% [26]. Fourier and sequency-ordered Walsh-Hadamard
patterns, which are orthogonal to each other in time or spatial
domain, were also applied to the sub-Nyquist imaging [17–19].
The Russian doll [20] and cake-cutting [21] ordering of Walsh-
Hadamard patterns were proposed to minimize the sampling
ratio to 5%-10% Nyquist limit.

Recently, deep learning (DL) is employed to improve the
quality of images with the deep neural network (DNN) [27–35]
or merely identify images [36, 37]. Specifically, computational
ghost imaging via deep learning (CGIDL) has shown a mini-
mum ratio of Nyquist limit down to ∼ 5% [29, 31]. However,
such work’s DNNs are trained by experimental CGI results. It
is because only when the training environment is highly iden-
tical to the environment used for image reconstruction, can the
DNN be effective. Otherwise, the training network without
adding environmental noise cannot be accustomed to the real
noisy situation. This limits its universal applications and re-
stricts it to achieve quick reconstructions in that usually over
thousands of inputs have to be generated, which would be very
time-consuming if conducting training experiments. On the
other hand, some work have attempted to try the effectiveness
of non-experimental CGI training DNN [27, 30, 33], but the min-
imum ratios of the Nyquist limit were up to 12%, 6.25%, and
3.5%, respectively. Namely, the work reached a 3.5% Nyquist
sampling rate inevitably added simulation noise [27], in other
words, the customizing process is closed to the experimental DL
above. Meanwhile, for an arbitrary object outside of training tar-
gets, the sampling ratio is much higher than those objects within
the training group [29]. Therefore, those works applying objects
within the training group in CGIDL experiments hardly stand
the points [28, 33]. In a word, retrieving high-quality images
outside of the training group with a meager Nyquist limit ratio
by non-experimental training in a noisy environmental situation
remains a challenge for the CGI system.

This letter aims to minimize the necessary sampling num-
ber further and improve the SNR with the combination of DL
and pink noise CGI. The pink noise CGI owns positive a cross-
correlations in the second-order correlation [38, 39]. It gives a
good quality image under a boisterous environment or pattern
distortion when the traditional CGI method fails. Combining
DL with pink noise CGI shows that the imaging can be retrieved
under a meager sampling rate (∼ 0.5%). We also show that we
can get training patterns from the simulation without introduc-
ing the environmental noises, i.e., there is no need to get DNN
training with a large number of experimental training inputs.
We can get training patterns from the simulation on the com-
puter without worrying about environmental noise. Another
novelty demonstrated in this work is that the object used in the
experiment can be independent of the digit used in training,
which can largely benefit CGIDL in the real application.

The experimental setup is shown in Fig. 2. A CW laser is used
to illuminate the DMD, where the noise patterns are loaded on
it. The pattern generated by the DMD is then projected onto
the object. In our experiment, the size of the noise patterns is

216 by 392 pixels, in which the independent changeable mirrors
count for 4 by 4 pixels. The DMD contains tiny pixel-mirrors
each measuring 16 µm× 16µm.

Fig. 1. Schematic of DNN. Our DNN consists of four convo-
lution layers, one image input layer, one fully connected layer
(in yellow), ReLU and BNL (in red). Patterns in the upper line
are CGI results (training inputs) and handwriting ground truths
(training outputs) respectively; Patterns in the bottom line are
CGI results from the experiment (test inputs) and CGIDL results
(test outputs) with printed body.

2. DEEP LEARNING

The proposed scheme, as shown in Fig. 1, is a two-step process
to reconstruct the CGIDL. Firstly, we construct a network frame-
work which is going to be trained later. Specifically, we used
a DNN model with four convolution layers, one image input
layer, and one fully connected layer. Small 3× 3 receptive fields
were applied throughout the whole convolution layers, which
have been proved to perform better by Google-Net [40]. Batch
normalization layers (BNL) and rectified Linear Unit (ReLU)
layers were added between each convolution layer. The BNL is
functioned to avoid internal covariate shift during the training
process and speeds up the training of DNN [41]. The ReLU
layer applies a threshold operation to each element of the inputs
[42]. To customize the size of training pictures, both the input
and output layers were set as 54× 98. The solver for training is
employed by the Stochastic Gradient Descent with Momentum
Optimizer (SGDMO), thus reducing the oscillation via using
momentum. The parameter vector can be updated via equation
Eq. (1), which demonstrates the updating process during the
iteration.

θ`+1 = θ` − α∇E (θ`) + γ (θ` − θ`−1) (1)

Here ` is the iteration number, α is the learning rate, θ is the
parameter vector, and E(θ) is the loss function. The third part of
the equation is the feature of SGDMO, analog to the momentum
where γ determines the contribution of the previous gradient
step to the current iteration [43]. Two strategies were applied
to avoid over-fitting of training images. At the end of DNN, a
dropout layer is aimed to reduce the connection between con-
volution layers and the fully connected layer [44]. Meanwhile,
the learning rate dropped from 0.001 to 0.0001 after 75 epochs,
which constrain the fitting parameters within reasonable region.
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After the establishment of DNN, plenty of training images
are reconstructed by the CGI algorithm, as is mentioned above.
Then the training images and reconstruction training images
feed the DNN model as inputs and outputs, respectively. Here
we use a set of 10000 handwritten digits of 28× 28 pixels in
size from the MNIST handwritten digit database [45] as training
images. Compared to the original training images, we resize im-
ages from 28× 28 to 54× 98 and normalize them to test a smaller
sampling ratio. The maximum epochs were set as 600, and the
training iteration is 46800. The program was implemented via
MATLAB R2019a Update 5 (9.6.0.1174912, 64-bit), and the DNN
was implemented through DL Toolbox. The GPU-chip NVIDIA
GTX1050 was used to accelerate the speed of the computation.

Fig. 2. The flow chart of CGIDL. The DNN model is trained in
the training process (in red), and test images are for the testing
stage (in orange). The experiment process is on the left bottom
functioned as the input of trained DNN, and the experimental
DL process is on the right bottom side (in purple).

After obtaining a trained DNN, the next step is testing the
DNN by simulation and retrieving CGI results in the experi-
ment. The schematic is shown in Fig. 2. In the testing part,
the CGI algorithm generates reconstruction testing images from
testing images different from images in the training group. The
trained DNN, fed with reconstruction testing images, generates
CGIDL results. Comparing the difference between CGIDL and
testing images, we could measure the quality of the trained
DNN. Well-performed DNN can be used for retrieving CGI in
the experiment.

In the CGI process, the SNR of images is proportional to the
measurement ratio. Therefore, the ratio between the number
of illumination patterns Npattern and the (average) number of
speckle in each of these patterns Npixel [46, 47], namely,

β = Npattern/Npixel (2)

is used in our work to reflect SNR. Here we present several
results concerning a couple of β by applying pink noise and
conventional white noise patterns. Meanwhile, we also calculate
the Mean Square Error (MSE) to justify the quality of the recon-
structed image by CGI and CGIDL with pink and white noise,
respectively. The MSE is defined as

MSE =
1

Npixel

Npixel

∑
i=1

[
Gi − Xi
〈G(o)〉

]2 (3)

Here, X is the reference matrix calculated by

Xi =

{
〈G(o)〉 , Transmission = 1
〈G(b)〉 , Transmission = 0

(4)

G(o) represents pixels in the correlation results that the light
ought to be transmitted, i.e., the object area, while G(b) represents
pixels in the correlation results that the light ought to be blocked,
i.e., the background area.

3. SIMULATION

Fig. 3. Main simulation results. For pink noise, we select β =
0.05, 0.01, 0.005, 0.003. For white noise when β equals to these
small values, the results are totally smeared both under CGI and
CGIDL. Thus, here we present β = 0.5, 0.1, 0.05, 0.01 for white
noise to make comparison.

Fig. 4. The MSE of object (a): 1, (b): 2, and (c): 3 in the simulation.

To obtain the trained DNN, we carried out simulation using
10000 training images with different β. Patterns used in our
simulation were white noise and pink noise. Because white
noise pattern is globally used in CGI while pink noise pattern can
significantly improve the image quality, we select β as 0.5, 0.1,
0.05, and 0.01 for white noise, 0.05, 0.01, 0.005, and 0.003 for pink
noise. Then several testing images (digits ‘1’, ‘2’, and ‘3’), which
are completely independent of training images, were chosen as
examples in our simulation. These images have 28× 28 pixels,
and are resized into 54× 98 by widening and amplification. As
shown in Fig. 3, both CGI and CGIDL images are de-noised
and become clearer and brighter with increasing β. For smaller
β, CGIDL can be visualized while CGI can not, reflecting the
advantage of DL. Meanwhile, testing images using white noise
patterns became unrecognizable when β = 0.05, and we can
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optimize them using DL, which is similar to work with [28]. But
when β is 0.01, both CGI and CGIDL failed because of the lack
of averaging during correlation. Nevertheless, the β of CGIDL
using pink noise can reach 0.003, through which we can still
distinguish these numbers. To directly justify the quality of
reconstructed images, we compare the MSE of all figures above
in Fig. 4. We can clearly see that the CGI with pink noise patterns
already owns a great advantage in sub-Nyquist imaging than
conventional white noise. With the combination of DL, it can
reach to very small β with low MSE. The MSE of CGIDL with
white noise substantially increases when β < 0.05 and oscillate
due to the network of DL could not distinguish the shape of
the original image. Therefore it becomes a random process in
amelioration, and would be some probability that results with a
lower sampling ratio have better quality after the DL process.

In a word, we realize 0.3% Nyquist reconstruction via CGIDL
and pink noise patterns in the simulation.

4. EXPERIMENT

Fig. 5. Main experimental results with the SNR of 14.68dB.
For pink noise, we select β = 0.05, 0.01, 0.005, 0.003. For white
noise when β equals to these small values, the results are totally
smeared both under CGI and CGIDL. Thus, we present β =
0.5, 0.1, 0.05, 0.01 for white noise to make comparison.

To further demonstrate the advantage and applicability of
CGIDL with pink noise, we performed experiments with two
core directions. First of all, we explored the bottom limits of the
sampling ratio where we control the noise to the bottom limit in
the experiment. Then, we increase the environmental noise to
test the non-experimental and one-time training eligibility and
its noise-free feature. The main results are shown in Fig. 5. The
signal to noise ratio (SNR) can be calculated by

SNRdB = 10log
Psignal

Pbackground
(5)

Here the average signal Psignal = 247, and the average back-
ground Pbackground = 8, so the SNR is 14.90dB. Intuitively, we
could claim that we can still get great results with pink noise
CGIDL when β = 0.005. Meanwhile, we can see that the CGI
without DL results can be clearly distinguished while β = 0.05
and β = 0.1 respectively with pink and white noise patterns. We
present the MSE as well in Fig. 6.

Fig. 6. The MSE of object (a): 1, (b): 2, and (c): 3 in the experiment
with SNR at 14.90dB.

Fig. 7. Main experimental results with the SNR of 4.14dB. For
pink noise, we select β = 0.05, 0.01, 0.005, 0.003. However, for
white noise when β equals to these small values, the results
are totally smeared both under CGI and CGIDL. Thus, here we
present β = 0.5, 0.1, 0.05, 0.01 for white noise to make compari-
son.

Secondly, we increase the ratio of environmental noise in
which the average signal Psignal equals to 18 and the average
background Pbackground equals to 6. Hence, the SNR is 4.77dB.
The main results are shown in Fig. 7. We could see a distinctive
change both in white noise CGI and CGIDL results. The CGIDL
results with pink noise still maintain their MSE value around
9, while the CGIDL results with white noise raise around 0.5
correspondingly. We cannot get clear numbers even when β
reaches to 1. In contrast, the CGI and CGIDL results with pink
noise patterns always maintain their shapes no matter whether
there exists noise or not. This demonstrates the noise-free feature
of pink noise patterns [38], and we utilize this feature to make
up the shortcomings of DL substantially. We present the MSE as
well in Fig. 8. The MSE of white noise CGIDL changes randomly
in that the DNN cannot readout any feature from the input of
CGI with white noise, which is smeared by environmental noise.
The DNN stochastically changes the structure of input so that
the MSE randomly oscillates with probability. We cannot even
say at what β it will give the optimum results.

In a word, experimental CGIDL with pink noise patterns
can reconstruct the images at 0.5% Nyquist limit both the low
and high noise level. However, the conventional CGIDL with
white noise patterns only can reach to 5% Nyquist limit in the
condition of low noise level. Otherwise, the conventional CGIDL
method fails.
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Fig. 8. The MSE of object (a): 1, (b): 2, and (c): 3 in the experiment
with SNR at 4.77dB.

5. CONCLUSION

In conclusion, our new method of CGIDL with pink noise pat-
terns achieves one-tenth of the traditional CGIDL sampling rate
both in simulation and experiments. Rather than other previous
works on CGIDL, our method does not require experimental
training. Besides, our work is robust to noise so one group of
trained networks is eligible to be implemented in various situa-
tions. This one-time, noise-free, and non-experimental training
CGIDL has a wide range of application prospects. The pink
noise patterns, trained DNN with various sampling rates, and
their raw encoding programs are encapsulated and uploaded
online 1.People who need a quick sampling function on CGIDL
can utilize this universal system to get ameliorated results in
other CGIDL systems.
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