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Computational ghost imaging generally requires a large number of pattern illumination to obtain
a high-quality image. The colored noise speckle pattern was recently proposed to substitute the
white noise pattern in a variety of noisy environments and gave a significant signal-to-noise ratio
enhancement even with a limited number of patterns. We propose and experimentally demonstrate
here an orthonormalization approach based on the colored noise patterns to achieve sub-Nyquist
computational ghost imaging. We tested the reconstructed image in quality indicators such as the
contrast-to-noise ratio, the mean square error, the peak signal to noise ratio, and the correlation
coefficient. The results suggest that our method can provide high-quality images while using a
sampling ratio an order lower than the conventional methods.

Computational ghost imaging (CGI) [1–3], an ameliorated scheme on traditional ghost imaging (GI) [4–7], owns
the ability to reconstruct the object via single bucket detector. CGI also grants advantages in an expanding range
of non-conventional applications such as wide spectrum imaging [8, 9] and depth mapping [10, 11]. It also finds
application to various fields, such as temporal imaging [3], X-ray imaging [12], remote sensing [13], etc.. However,
its sampling number is usually comparable to the total number of pixels in the speckle pattern to keep good imaging
quality, thus is time consuming and resource intensive. In addtion, it is only suitable for static object reconstruction.

Various methods have been proposed to overcome this problem [14–19]. One typical and effective way is the or-
thonormalization method [18]. This method introduces a data post-processing algorithm to improve the reconstructing
process in a GI system with pseudo-thermal light. By applying the Gram-Schmidt process on the noise patterns and
intensity sequence collected by the bucket detector, the required sampling number is reduced. However, such a method
is sensitive to noise and the image quality is not even comparable with standard CGI when the pattern number is
large enough. Traditionally, Gaussian white noise speckle pattern is used for GI. The spatial distribution of the light
field amplitude is Gaussian, and the phase associated with the field amplitude is random. Recently, we developed a
method to generate the so-called colored noise speckle pattern for CGI by customizing the power spectrum density of
the speckle patterns [20]. Unlike white noise, colored noise generally has non-zero cross-correlation between neighbor-
hood pixels. Sub-Rayleigh imaging was demonstrated with the blue noise pattern which has negative cross-correlation
between two adjacent pixels. The pink noise pattern allowed us to image in a variety of noisy environments.

In this letter, we introduce a novel method on the combination of the colored noise and Orthonormalization
methods together to substantially reduce the number of sampling and overcome the drawback of pink noise patterns.
We also compare the orthonormalization colored noise GI (OCGI) with orthonormalization white noise GI (OWGI),
traditional white noise GI (WGI), and pink noise GI (PGI). The results are tested using the quality indicators such
as the Contrast-to-Noise Ratio (CNR), the Peak Signal to Noise Ratio (PSNR), the Correlation Coefficient (CC),
and the Mean Square Error (MSE). We show that OCGI always has the best performance. It can reduce the sample
rate one order lower while still obtain the same image quality as that of standard CGI. It is also robust to noise
interference.

The experimental setup is shown in Fig. 1. This is a typical CGI setup, a CW laser is used to illuminate the digital
micromirror device (DMD), where the speckle patterns with designed distributions are loaded. The pattern generated
by the DMD is then imaged onto the object with letters ’OH’ etched on an opaque plate. A bucket detector is put
right after the object to record the transmitted light intensity. The DMD contains tiny pixel-mirrors each measuring
16 µm×16µm. In the experiment, each noise patterns has 54×98 independent pixels, each independent pixel consists
of 10× 10 mirrors.

Firstly, the Gaussian white and pink noise patterns are generated by applying inverse Fourier transformation upon
the spectrum in which the spatial frequencies are defined as ω0 and ω−1 [20]. Random phase matrices are also
assigned to each pattern. The Gram-Schmidt process is then performed to orthonormalize the patterns. We note here
that, after the orthonormalization, the spatial frequency of the pink noise pattern is gradually changed to blue noise
distribution, as shown in Fig. 2. In other words, the spatial frequency of the orthonormalized pattern covers a broad
spectrum range from pink to blue, which is why we named it colored noise pattern. The initial colored patterns are
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FIG. 1: Schematic of the setup. The digital micromirror device (DMD) is illuminated by a CW laser. Orthonormalized patterns
are loaded on the DMD then imaged onto the object plane. Correlation measurement is made between the pattern and the
intensity measured form the bucket detector.

matrices P1, P2, P3, ......, PN , and the orthonormalized patterns are matrices P̃1, P̃2, P̃3, ......, P̃N , all of which contain
54× 98 elements. We define the projection coefficient cmn by

cmn =
Pm · P̃n

P̃n · P̃n

(1)

And the orthonormalized patterns can be generated by

P̃1 = P1 (2)

P̃m = Pm −
m−1∑
n=1

cmnP̃n (3)

Then, we re-normalize the histogram of P̃1, P̃2, P̃3, ......, P̃N to [0, 255], which we define as P̃ ′1, P̃
′
2, P̃

′
3, ......, P̃

′
N . Accord-

ing to the number of orthogonal vector space, we generate 5292 patterns for each kind, which is equal to the number of
total pixel in single pattern. We note here that, unlike the post-processing method shown in [18], we directly generate
these orthonormalized patterns and apply them to DMD. Therefore, the orthonormalization coefficients and patterns
are done at one time. In addition, we don’t have any intensity loses during the orthonormalization process. In our
scheme, the intensity is measured as

Ii = T · P̃ ′i , (4)

where T is the transmission coefficient of the object, P̃ ′i is the i-th orthonormalized pattern. As shown in Fig. 1, the
image is retrieved by calculating the correlation between patterns and collected light intensity sequence as

g(2) =
1

N

N∑
i=1

P̃ ′i Ii −
1

N2

N∑
i=1

P̃ ′i ×
N∑
i=1

Ii, (5)
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where N is the sampling number. We define β as the ratio between the sampling number N and the number of speckle
in each pattern Npixel as

β =
N

Npixel
(6)

FIG. 2: The orthonormalized colored noise pattern: (a) the 1st pattern, (b) the 1000th pattern, (c) the last pattern (5292th);
(d), (e), and (f) are normalized spatial frequency distribution of the 1st pattern, the 1000th pattern, and the 5292th pattern,
respectively.

Now, we explore the properties of the orthonormalized pattern by analyzing its spatial frequency, its auto- and
cross-correlation. To begin with, the spatial frequencies are shown in Fig. 2. We see that when the pattern number
increases, the frequency peak is moving to the higher end. This suggests that the pattern is gradually changing for
pink noise distribution to blue noise distribution under the orthonormalization process. This is easy to understand
since the orthonormalization protocol naturally requires that the patterns to be orthogonal including the spatial
frequency domain. So the OCGI maintains the pink noise’s advantage when the sampling number is small, and it can
continuously enhance the resolution when increasing the number of sampling. Indeed, the OCGI owns the OWGI’s
feature when the sampling number close to the number of total pixel in one pattern, as shown in Fig. 3.

FIG. 3: Cross-auto correlation ratio as a function of pattern number. Inserted pictures: from top left to bottom right, 2D auto-
and cross-correlation of total pattern number 100, 1000, 3000, and 5292.

A random pixel p(x, y) is chosen and its auto-correlation and cross correlation with all other pixels are calculated.



4

The cross-auto correlation ratio Rca is defined as,

Rca =
g
(2)
p(x−1,y) + g

(2)
p(x+1,y) + g

(2)
p(x,y−1) + g

(2)
p(x,y+1)

4g
(2)
p(x,y)

(7)

The relationships are shown in Fig. 3. From the pink line we can see that the ratio is gradually dwindling, the cross
correlation starts from 1 when β is small and eventually decreases to 0 when beta = 1, which is the same as the white
noise pattern. In a word, from the arbitrary unit pattern’s spatial frequency distribution, we can precisely predict
the change of results during the image retrieving process with the OCGI method. It is also expected that the OCGI
and OWGI measurements will converge to the same results when β approaches 1, as shown in the following.

FIG. 4: Simulation with no noise. Image qualities via different frame numbers by CGI in ideal condition. (a) CNR, (b) MSE,
(c) PSNR, and (d) CC.

To test the feasibility of the OCGI method, we run a simulation firstly in ideal condition without environmental
and system noise. To better judge the performance of various methods, i.e., the OCGI, OWGI, WGI, and PGI, we
utilize four evaluating indicators of image quality, i.e., CNR, MSE, PSNR, and CC [18, 21–23]:

CNR =
〈G(o)〉 − 〈G(b)〉√

V ar[G(o)] + V ar[G(b)]
(8)

MSE =
1

Npixel

Npixel∑
i=1

[
Gi −Xi

〈G(o)〉
]2 (9)

PSNR = 10× log10[
(2k − 1)2

MSE
] (10)

CC =
Cov(G,X)√
V ar(G)V ar(X)

(11)
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Here, X is the reference matrix calculated by

Xi =

{
〈G(o)〉 , Transmission = 1

〈G(b)〉 , Transmission = 0
(12)

G(o) represents pixels in the correlation results that the light ought to be transmitted, i.e., the object area, while G(b)

represents pixels in the correlation results that the light ought to be blocked, i.e., the background area. k is the gray
level of the image, and in our experiment k ≡ 8.

As shown in Fig. 4, the OCGI, similar to the PGI, gives a stronger signal in the low sample rate domain, as
demonstrated in our previous study[20]. The OCGI has always the best image quality. It is only when the image
quality is saturated as the pattern number reaches maximum, the OWGI and OCGI have almost the same behavior.
Both of them are still much better than the WGI and PGI. Here the orthonormalization process completely smears
the weakness of PGI whose image quality is almost smooth from the beginning to the end, and strengthens the PGI’s
advantage at the small level of sampling.

The advantage of OCGI is further demonstrated when we introduce background noise into the system, since in real
experimental condition the noises such as background noise, the quantization error, diffraction and thermal noise of
detectors are more or less unavoidable. We run another simulation with noise level at ±1% signal. The values of
evaluating indicators are presented in Fig. 5, from which we can see that MSE is about the same as the noise-free
case. OCGI still maintains the best in these imaging methods. CNR is dramatically decreased for all methods, when
β is large. Nevertheless, it should be noted that there are peaks clearly shown in the Fig. 5(c) and Fig. 5(d). The
PSNR and CC of OCGI reach their highest value when β ∼ 0.1, then slowly decrease and finally reach the same value
as that of the OWGI. It suggests that during the orthonormalization process of the colored noise pattern, there exists
an optimum sampling rate for the noise-free feature. Again, the orthonormalized results are always better than the
conventional patterns.

FIG. 5: Simulation with added noise. Image qualities via different frame numbers by CGI with noise at ±1% signal level. (a)
CNR, (b) MSE, (c) PSNR, and (d) CC.

In the experiment, we perform measurement on the object ‘OH’. The main results are shown in Fig. 6(a). The
Npattern represents the patterns we apply on the DMD to retrieve the image, while the Npixel symbolizes the total
pixel contained in each pattern. As mentioned earlier, Npixel = 54× 98 in our experiment. From Fig. 6 we see that
when β is only 0.05, the OCGI already gives an image while all the other methods show no image at all. OCGI,
OWGI and WGI all give a clear image at β ∼ 0.5, but the image obtained with OCGI is clearer than that of OWGI,
and both of them are better than WGI. On the other hand, PGI failed to give a clear image even when β = 1. This
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FIG. 6: Experimental results. (a) Different types of noise pattern with various β. (b) PGI with different object size at β = 1.
the size of the letters, from top to bottom,are: 4, 3, 2, and 1 times of that used for (a).

is due to the relatively small object size compared with the pixel size. To verify that, we then gradually enlarge
the object size 2, 3, and 4 times for PGI, as shown shown in Fig. 6(b). We see that when the object size is large
enough, the PGI gives a clear image. We conclude that the quality of image in OCGI is better than other conventional
methods, particularly when β = 0.1 where we get the optimum results from the simulation with noise as well. The
PGI method, on the other hand, is limited to the object size and cannot be used for the resolution-limit imaging. To

FIG. 7: Image qualities via different frame numbers in the experiment. (a) CNR, (b) MSE, (c) PSNR, and (d) CC.

further compare the results, we utilize those four evaluating indicators of image quality again. The results are shown
in Fig. 7.
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We can see that the experimental results and the simulation results almost exactly match. Nevertheless, as shown
in Fig. 6, even though the quality of images retrieved from OCGI are the best when β = 0.1 if judged by evaluating
indicator, the results when β = 1 seem to have stronger visibility. It is because they have sharper edge compared to
results when β = 0.1. The reason is when β = 1 the cross-correlation disappears, thus no contribution to the area
where the object is opaque. So when β = 0.1 the results have substantially strong SNR, when β = 1 the measurements
restore the image authentically. Those parameters also give us some indication of the optimal frame rate to choose
depending on different experimental goal.

In conclusion, we have developed a method based on the orthonormalized colored noise pattern in the CGI system
to yield image reconstruction results with high quality when the sampling number is small, and with continuously
improvement during the further sampling, which is the weakness of the traditional pink noise pattern. The major
advantage of this scheme is that it makes use of the continuously changing cross-correlation from the orthonormalized
colored noise patterns to overcome the difficulties faced by conventional white and pink noise. Meanwhile, this method
is easy to implement because of its simple setup and rapid image reconstruction; this method is also immune to noise.
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