

Modeling and Simulation of CPR-A as an Aerial Cable Suspended Parallel Robot

Parallel Robots Project

Ashkan Rashvand and Ehsan Damghani

Cable Suspended Parallel Robots

Simple structure Easy assembly capability Large workspace Low mass and volume

Outline

01 Mechanism Description 02 Kinematics 03 Jacobian Analysis 04 Dynamics Formulation 05 Motion Control **O6** Force Control

Mechanism Description

CPRA System

ADVANCED ROBOTICS & AUTOMATED SYSTEMS

Mechanism Description

- 3 motors and 2 cables
- 4 moving pulleys and 10 fixed pulleys

 \bf{z}

- Winds and unwinds simultaneously
- Asymmetric design
- Workspace Improvement
- Low maintenance costs

Modeling assumptions

Kinematics

CPRA System

- **Invers Kinematics**
- **Forward Kinematics**
- **Kinematics Simulation**

ADVANCED ROBOTICS & AUTOMATED SYSTEMS

 $r_3\theta_3 = (h - h_0) + (k - k_0) + r_2\theta_2$ $r_3\theta_3 = (m - m_0) + (h - h_0) + r_1\theta_1$

 $r_3\theta_3 = (k - k_0) + (h - h_0) + (m - m_0) + (n - n_0)$

Forward Kinematics

New Variables

Forward Kinematics

Forward Kinematics (Analytical vs. Numerical)

Jacobian Analysis

CPRA System

- **Velocity Analysis**
- **Jacobian Simulation**
- **Singularity Analysis**
- **Stiffness Analysis**
- **Sensitivity Analysis**

ADVANCED ROBOTICS & AUTOMATED SYSTEMS

Jacobian Analysis

$$
\dot{\theta}_{1} = \frac{1}{r_{1}}(\dot{k} + \dot{n})
$$
\n
$$
\dot{\theta}_{2} = \frac{1}{r_{2}}(\dot{m} + \dot{n})
$$
\n
$$
\dot{\theta}_{3} = \frac{1}{r_{3}}(\dot{k} + \dot{h} + \dot{m} + \dot{n})
$$
\n
$$
\dot{\theta}_{2} = \frac{1}{r_{2}}\left[\left(\frac{x - d}{m} + \frac{x}{n}\right)\dot{x} + \left(\frac{1}{m} + \frac{1}{n}\right)(y - s)\dot{y} + \left(\frac{1}{m} + \frac{1}{n}\right)z\dot{z}\right]
$$
\n
$$
\dot{\theta}_{3} = \frac{1}{r_{3}}\left[\left(\frac{x}{k} + \frac{x - d}{h} + \frac{x - d}{m} + \frac{x}{n}\right)\dot{x} + \left(\frac{y}{k} + \frac{y}{h} + \frac{y - s}{m} + \frac{y - s}{n}\right)\dot{y} + \left(\frac{1}{k} + \frac{1}{h} + \frac{1}{h} + \frac{1}{h}\right)z\dot{z}\right]
$$
\n
$$
\dot{\theta}_{3} = \frac{1}{r_{3}}\left[\left(\frac{x}{k} + \frac{x - d}{h} + \frac{x - d}{m} + \frac{x}{n}\right)\dot{x} + \left(\frac{y}{k} + \frac{y}{h} + \frac{y - s}{m} + \frac{y - s}{n}\right)\dot{y} + \left(\frac{1}{k} + \frac{1}{h} + \frac{1}{h} + \frac{1}{h}\right)z\dot{z}\right]
$$
\n
$$
\dot{\theta}_{3} = \frac{1}{r_{3}}\left[\left(\frac{x}{k} + \frac{x - d}{h} + \frac{x}{n}\right)\dot{x} + \left(\frac{y}{k} + \frac{y - s}{h} + \frac{y - s}{m}\right)\dot{y} + \left(\frac{1}{k} + \frac{1}{h} + \frac{1}{h} + \frac{1}{h}\right)z\right]
$$
\n
$$
J = \begin{bmatrix}\n\frac{\left(\frac{1}{k} + \frac{1}{n}\right)x}{\left(\frac{x}{m} + \frac{x}{n}\right)} & \left(\frac{1}{k} + \frac{1}{n}\right)(y - s) \\
\frac{\left(\frac{1}{k} + \frac{1}{n}\right)x}{\left(\
$$

Adams Simulation

Singularity Analysis

Sensitivity and Stiffness Analysis

Dynamics Formulation

CPRA System

ADVANCED ROBOTICS & AUTOMATED SYSTEMS

Regardless of the mass of the cables

Dynamic Modeling with Considering The Mass of Cables

Velocity analysis of center of the mass of cables

Velocity flow

Dynamic Modeling with Considering The Mass of Cables

Dynamic Formulation of the Limbs

$$
K_i = \frac{1}{2} v_{ci}^T m_i v_{ci} + \frac{1}{2} \omega_i^T I_{ci} \omega_i
$$

$$
M_{n1} = \frac{n\rho}{4} \left[I_{3\times3} - \frac{s_{1x}^2}{3} \right]
$$
\n
$$
\dot{L}_i = \hat{S}_i^T \dot{s}_i
$$
\n
$$
\omega_i = \frac{1}{L_i} \hat{s}_{ix} \dot{x}_i
$$
\n
$$
M_{m1} = \frac{m\rho}{4} \left[I_{3\times3} - \frac{s_{2x}^2}{3} + 2(\hat{s}_2 \hat{s}_1^T + \hat{s}_1 \hat{s}_2^T) + 4\hat{s}_1 \hat{s}_1^T \right]
$$
\n
$$
\omega_i = \frac{1}{L_i} \hat{s}_{ix} \dot{x}_i
$$
\n
$$
M_{m1} = \frac{m\rho}{4} \left[I_{3\times3} - \frac{s_{2x}^2}{3} + 2(\hat{s}_3 \hat{s}_1^T + \hat{s}_1 \hat{s}_3^T + \hat{s}_3 \hat{s}_2^T + \hat{s}_2 \hat{s}_3^T) + 4(\hat{s}_1 \hat{s}_1^T + \hat{s}_2 \hat{s}_2^T) \right]
$$
\n
$$
L_i \omega_i \times \hat{s}_i = \hat{s}_{ix}^2 \dot{x}_i
$$
\n
$$
M_{m1} = \frac{m\rho}{4} \left[I_{3\times3} - \frac{s_{3x}^2}{3} + 2(\hat{s}_3 \hat{s}_1^T + \hat{s}_1 \hat{s}_3^T + \hat{s}_3 \hat{s}_2^T + \hat{s}_2 \hat{s}_3^T) + 4(\hat{s}_1 \hat{s}_1^T + \hat{s}_2 \hat{s}_2^T) \right]
$$

Dynamic Formulation of the Limbs

$$
G_{n1} = G_{n2} = n\rho \left[\frac{1}{2} \hat{s}_{1x}^2 - \hat{s}_1 \hat{s}_1^T \right] g
$$

\n
$$
G_{k1} = G_{k2} = k\rho \left[\frac{1}{2} \hat{s}_{2x}^2 - \hat{s}_2 \hat{s}_2^T \right] g
$$

\n
$$
G_{m1} = G_{m2} = m\rho \left[\frac{1}{2} \hat{s}_{3x}^2 - \hat{s}_3 \hat{s}_3^T \right] g
$$

\n
$$
G_{h1} = G_{h2} = n\rho \left[\frac{1}{2} \hat{s}_{4x}^2 - \hat{s}_4 \hat{s}_4^T \right] g
$$

$$
C_i \dot{X} = \dot{M}\dot{X} - \frac{1}{2} \frac{\partial}{\partial X} \left(\dot{X}^T M_i \dot{X} \right)
$$

Dynamic Formulation of the Moving Platform

Dynamic Formulation of the Whole Manipulator

$$
M(X)\ddot{X} + C(X, \dot{X})\dot{X} + G(X) = Q
$$

$$
Q_i = F_d + F = F_d + J^T \tau
$$

Motion Control

CPRA System

- Decentralized PD
- **Feed Forward**
- IDC
- Partial IDC
- Robust

ADVANCED ROBOTICS & AUTOMATED SYSTEMS

Decentralized PD Controller

 $K_p = 10^3 \times diag[1, 1, 2000], \quad K_d = 10^2 \times diag[1, 1, 2000]$

Decentralized PD Controller

Decentralized PD Controller

Feed Forward Control

 $K_p = 10^3 \times diag[1, 1, 2000], \quad K_d = 10^2 \times diag[1, 1, 2000]$

Feed Forward Control

Feed Forward Control

IDC Controller

 $K_p = 10^3 \times diag[1, 1, 2000], \quad K_d = 10^2 \times diag[1, 1, 2000]$

IDC Controller

IDC Controller

Partial IDC Controller

 $K_p = 10^3 \times diag[1, 1, 2000], \quad K_d = 10^2 \times diag[1, 1, 2000]$

Partial IDC Controller

Partial IDC Controller

June 30, 2020 K. N. Toosi University of Technology, Advanced Robotics and Automated Systems (ARAS) 40

Robust Controller

 $K_p = 10^3 \times diag[1, 1, 2000], \quad K_d = 10^2 \times diag[1, 1, 2000]$

Robust Controller

Robust Controller

Motion Control Adams Simulation

CPRA System Admas Control Simulation

Force Control

CPRA System

- **Stiffness Control**
- **Impedance Control**

ADVANCED ROBOTICS & AUTOMATED SYSTEMS

IK. N. Toosi University of Technology, Advanced Robotics and Automated Systems (ARAS) 45 AM AUTOMATED AND 45 AM AUTOMATED ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT

Stiffness Control

Stiffness Control

Stiffness Control

Stiffness Control (5x)

 $K_p = 5 \times diag[1, 1, 1],$ $K_d = 5 \times diag[1, 1, 1]$

Stiffness Control (5x)

June 30, 2020 K. N. Toosi University of Technology, Advanced Robotics and Automated Systems (ARAS) 50

Stiffness Control (5x)

Impedance Control

 $K_d = 100 \times diag[1, 1, 1], C_d = 20 \times diag[1, 1, 1], M_d = 100 \times diag[1, 1, 1]$

Impedance Control

June 30, 2020 K. N. Toosi University of Technology, Advanced Robotics and Automated Systems (ARAS) 53

 $\overline{2}$

Impedance Control

Impedance Control (2)

 $M_d = 100 \times I_{3\times 3}, C_d = I_{3\times 3}, K_d = 10 \times I_{3\times 3}$

Impedance Control (2)

Impedance Control (2)

Thank You

CAE

