Absorption Spectra

• Colors of transition metal complexes result from absorption of a small portion of the visible spectrum with transmission of the unabsorbed frequencies.

Visible Spectra of [M(H₂O)₆]ⁿ⁺ Complexes

• $Ti(H_2O)_6^{3+}$ appears purple (red + blue) because it absorbs green light at ~500 nm = ~20,000 cm⁻¹.

Beer-Lambert Law

• The absorption at any wavelength obeys the Beer-Lambert Law: $A = \log(I_0/I) = \varepsilon cb$

where A = absorbance

 I_{o} = incident light intensity

I = transmitted light intensity

 ϵ = molar absorptivity at a particular wavelength

c = molar concentration

b = path length through the absorbing medium

Electronic Transitions

- In the CFT model, absorption causes electrons from lower lying *d* orbitals to be promoted to higher levels.
 - For Ti(H₂O)₆³⁺ (d^1) the absorption causes the configuration to change from $t_{2g}^{-1}e_g^{-0}$ to $t_{2g}^{-0}e_g^{-1}$.

- The change in configuration causes a change in the term state of the system.
- For a free *d*¹ ion, the ground state term is ²*D*, a five-fold degenerate term arising from the five possible ways of placing the one electron in the five degenerate *d* orbitals.

$$d_{xy}^{1} = d_{yz}^{1} = d_{xz}^{1} = d_{xz}^{2} = d_{z}^{2}$$

- In an octahedral field this term is split into a new ground state term, corresponding to the configuration $t_{2g}^{\ 1}e_{g}^{\ 0}$, and a new excited state term, corresponding to the configuration $t_{2g}^{\ 0}e_{g}^{\ 1}$.
 - The ground state term is triply degenerate, corresponding to the three equivalent microstates represented by $t_{2\rho}^{1}e_{\rho}^{0}$.

$$t_{2g}^{-1}e_{g}^{0} \Rightarrow d_{xy}^{-1} = d_{yz}^{-1} = d_{xz}^{g}$$

• The excited state is doubly degenerate, corresponding to the two microstates represented by $t_{2g}^{0}e_{g}^{1}$.

$$t_{2g}^{0}e_{g}^{1} \xrightarrow{s} d_{x^{2}-y^{2}}^{s} = d_{z^{2}}^{1}$$

- The new ground state term is designated ${}^{2}T_{2g}$, and the new excited state term is designated ${}^{2}E_{g}$.
 - Both terms are doublets, because the spin multiplicity is $2S + 1 = (2)(\frac{1}{2}) + 1 = 2$.

- The energy difference between the two states is $\Delta_0 = 10Dq$, which is energetically equivalent to the frequency of the absorption, for $[Ti(H_2O)_6]^{3+} \sim 20,000 \text{ cm}^{-1}$.
 - Breadth of the observed band is in part a result of the oscillation of the strength of Δ_o as the complex vibrates.
- The state notation for the absorption transition is

$${}^{2}T_{2g} \rightarrow {}^{2}E_{g}$$

Free-Ion Terms for *d*¹⁻¹⁰ **Configurations**

• Transition metal ions with configurations $d^2 - d^8$ have more than one free-ion term.

d^n	Free-Ion Term
d^{0}, d^{10}	^{1}S
d^{1}, d^{9}	^{2}D
d^{2} , d^{8}	$^{1}S, ^{1}D, ^{1}G, ^{3}P, ^{3}F$
d^{3}, d^{7}	$^{2}P, ^{2}D(2), ^{2}F, ^{2}G, ^{2}H, ^{4}P, ^{4}F$
d^{4} , d^{6}	${}^{1}S(2), {}^{1}D(2), {}^{1}F, {}^{1}G(2), {}^{1}I, {}^{3}P(2), {}^{3}D, {}^{3}F(2), {}^{3}G, {}^{3}H, {}^{5}D$
d^5	${}^{2}S, {}^{2}P, {}^{2}D(3), {}^{2}F(2), {}^{2}G(2), {}^{2}H, {}^{2}I, {}^{4}P, {}^{4}D, {}^{4}F, {}^{4}G, {}^{6}S$

• Terms for d^n are the same as for d^{10-n} .

Determining the Ground State Free-Ion Term

- ① Write out the configuration so as to maximize the total orbital angular momentum and total spin (Hund's Rule).
- 2 Determine the orbital term from $L = |\Sigma M_L|$, where $\frac{L \ 0 \ 1 \ 2 \ 3 \ 4 \ ...}{\text{Term} \ S \ P \ D \ F \ G \ ...}$
- ③ Determine the spin multiplicity as 2S + 1, where $S = |\Sigma m_s|$.

$$d^{2} \qquad \frac{1}{+2} \qquad \frac{1}{+1} \qquad \frac{1}{0} \qquad \frac{1}{-1} \qquad \frac{1}{-2}$$

$$L = 2 + 1 = 3 \implies F$$

$$S = (2)(\frac{1}{2}) = 1 \implies 2S + 1 = 3 \implies {}^{3}F$$

$$d^{5} \qquad \frac{1}{+2} \qquad \frac{1}{+1} \qquad \frac{1}{0} \qquad \frac{1}{-1} \qquad \frac{1}{-2}$$

$$L = 2 + 1 + 0 - 1 - 2 = 0 \implies S$$

$$S = (5)(\frac{1}{2}) = \frac{5}{2} \implies 2S + 1 = 6 \implies {}^{6}S$$

$$d^{6} \qquad \frac{1}{+2} \qquad \frac{1}{+1} \qquad \frac{1}{0} \qquad \frac{1}{-1} \qquad \frac{1}{-2}$$

$$L = (2)(2) + 1 + 0 - 1 - 2 = 2 \implies D$$

$$S = (5)(\frac{1}{2}) + (1)(-\frac{1}{2}) = 2 \implies 2S + 1 = 5 \implies {}^{5}D$$

Splitting of Free-Ion Terms in Various Fields

- Splitting diagrams for any $d^1 d^9$ configuration can be constructed.
- The terms into which free-ion terms are split depend upon the symmetry of the complex.
- Splitting of free-ion terms for O_h is shown below.

Free-ion	
Term	Terms in O_h
S	A_{1g}
Р	T_{1g}
D	$E_g + T_{2g}$
F	$A_{2g} + T_{1g} + T_{2g}$
G	$A_{1g} + E_g + T_{1g} + T_{2g}$
H	$E_{g} + 2T_{1g} + T_{2g}$
Ι	$A_{1g} + A_{2g} + E_g + T_{1g} + 2T_{2g}$

• Term splitting in fields of other symmetry can be deduced either by descent in symmetry from O_h , or by constructing the reducible representation for the free-ion term in the appropriate point group and reducing it into its component irreducible representations.¹

Electronic Transitions for $d^9 O_h$

- For d^1 there is only one state-to-state transition, ${}^2T_{2g} \rightarrow {}^2E_g$.
- For d⁹ there is also one state-to-state transition, but it is ²E_g → ²T_{2g}.
 For d⁹ O_h the transition can be seen as demotion of a "hole" (i.e., electron vacancy).

- This is an example of a general "hole formalism", whereby terms for a d^n configuration are the same as those for d^{10-n} , but the order of same-spin terms is reversed.
- Cu(H₂O)₆²⁺ has a blue color due to the single ${}^{2}E_{g} \rightarrow {}^{2}T_{2g}$ electronic transition at ~800 nm.

• The state notation for this transition is

$${}^{2}E_{g} \rightarrow {}^{2}T_{2\mathbf{g}}$$

Electronic Transitions for Other Configurations in O_h

- Other d^n cases (n = 2-8) have more than one possible d-d transition because there are more possible states.
 - Multiple electron promotions and electron demotions can occur.
 - Non-equivalent arrangements for the same $t_{2g}^{n}e_{g}^{m}$ configuration may be possible.
 - States with spin multiplicities different from the ground state may exist.
 - Both high- and low-spin ground state configurations may be possible.
- The types of transitions possible for transition metal complexes are
 - ① Transitions between the ground state and excited states with the same spin.
 - ② Transitions between the ground state and excited states with different spin.
 - ③ Transitions involving electron transfer between the metal and ligand (charge transfer).
- Only charge transfer (CT) transitions are quantum mechanically allowed.
 - CT transitions result in absorption bands with high molar absorptivity $(\varepsilon >> 10^3)$.
 - CT transitions typically fall in the u.v.
- Color in transition metal complexes arises from *d*-*d* transitions in the visible region.
 - These arise from breakdown of quantum mechanical selection rules.
 - *d-d* transitions between same-spin states typically have low molar absorptivities ($\epsilon \approx 5 100$).
 - *d-d* transitions between states with different spin multiplicities typically have very low molar absorptivities ($\epsilon < 1$).

Selection Rules

- *d-d* transitions in the visible region occur as a result of a breakdown in either or both of the following selection rules.
 - 1 *Laporte's Rule.* If a system is centrosymmetric, transitions between states with the same inversion symmetry $(g \rightarrow g, u \rightarrow u)$ are forbidden, but transitions between states of different inversion symmetry $(g \rightarrow u, u \rightarrow g)$ are allowed.
 - 2 *Spin Multiplicity Rule.* Transitions between states with different spin multiplicities are forbidden.

Breakdown of the Laporte Rule

- In O_h and D_{4h} , all *d* orbitals are *gerade* and so too are the states arising from their *d* configurations.
 - Thus, all transitions of octahedral and square planar complexes are *Laporte forbidden*.
- Laporte forbidden transitions occur as a result of distortions from centrosymmetry that occur continuously as the complex vibrates.
 - These distortions cause *d-p* mixing (*p* orbitals are *ungerade*) and set up transitions between states with varying amounts of *p* character.
 - The vibration-induced breakdown of the Laporte Rule makes the *d*-*d* transitions *vibronically allowed*.
- Static loss of centrosymmetry has the same effect (e.g., $Co(en)_3^{2+} D_3$).
- Either vibronic or static distortion results in a small departure from centrosymmetry, so the molar absorptivities are typically $\epsilon \approx 5 50$.
- Tetrahedral ML₄ complexes (T_d) have no inversion symmetry.
 - *d-d* transitions for tetrahedral complexes are *Laporte allowed*.
 - Because they are allowed, these transitions have higher molar absorptivities ($\epsilon \approx 100 1000$).
- CT transitions are g ↔ u, allowed by the Laporte Rule, and so have very high molar absorptivities (ε >> 10³).

Violations of the Spin Multiplicity Rule

- Transitions to excited states with different spin multiplicities lead to even weaker bands.
 - In complexes with vibronically allowed same-spin transitions, any spin forbidden transitions are likely to be too weak to be observed.
 - Octahedral *d*⁵ high-spin complexes, which have no same-spin transitions, show only very weak bands from spin-forbidden transitions.

Example of a spin-forbidden transition:

⁶A_{1g} ⁴T_{1g}
Mn(H₂O)₆²⁺ is a d⁵ high-spin octahedral complex with a very pale pink color, owing to a series of weak spin-forbidden transitions.

- Note that for all absorptions $\varepsilon < 0.15$.
- We will be most concerned with *d-d* transitions that are spin allowed (i.e., Laporte forbidden but vibronically allowed same-spin transitions).

Triplet Terms for $d^2 O_h$

- For free-ion d^2 , the triplet states are ${}^{3}F$ and ${}^{3}P$.
 - Both terms split or change their identities in O_h .
 - ${}^{3}F \rightarrow {}^{3}A_{2g} + {}^{3}T_{1g} + {}^{3}T_{2g} \qquad {}^{3}P \rightarrow {}^{3}T_{1g}$ The two ${}^{3}T_{1g}$ terms are labeled ${}^{3}T_{1g}(F)$ and ${}^{3}T_{1g}(P)$ to indicate the freeion term from which each arises.

• The triplet terms of d^2 in O_h arise from the following configurations:

Triplet States for $d^2 O_h$ in Order of Increasing Energy

Term	Configuration	Specific Degenerate Configurations		
${}^{3}T_{1g}(F)$	t_{2g}^{2}	$(d_{xy})^1 (d_{xz})^1 (d_{yz})^0$		
		$(d_{xy})^1 (d_{xz})^0 (d_{yz})^1$		
		$(d_{xy})^0 (d_{xz})^1 (d_{yz})^1$		
${}^{3}T_{2g}$	$t_{2g}^{1}e_{g}^{1}$	$(d_{xy})^1 (d_{z^2})^1$		
		$(d_{xz})^1 (d_{x^2-y^2})^1$		
		$(d_{yz})^1 (d_{x^2-y^2})^1$		
${}^{3}T_{1g}(P)$	$t_{2g}^{1}e_{g}^{1}$	$(d_{xy})^1 (d_{x^2-y^2})^1$		
		$(d_{xz})^1 (d_{z^2})^1$		
		$(d_{yz})^{-1}(d_{z^2})^1$		
${}^{3}A_{2g}$	e_g^2	$(d_{x^2-y^2})^1 (d_{z^2})^1$		

Why Are There Two Different-Energy Triply Degenerate States for the Configuration $t_{2g}^{1}e_{g}^{1}$?

- In all three microstates of ${}^{3}T_{2g}$ the two electrons are placed in *d* orbitals that are geometrically orthogonal to each other:
 - $(d_{xy})^1 (d_{z^2})^1 (d_{xz})^1 (d_{xz})^1 (d_{x^2-y^2})^1 (d_{yz})^1 (d_{x^2-y^2})^1$
- In all three microstates of ${}^{3}T_{1g}(P)$ the two electrons are placed in *d* orbitals that lie in the same plane:

 $(d_{xy})^1 (d_{x^2-y^2})^1 \qquad (d_{xz})^1 (d_{z^2})^1 \qquad (d_{xz})^1 (d_{z^2})^1$

• Electron-electron repulsions are less in the microstates of ${}^{3}T_{2g}$ than they are in the microstates of ${}^{3}T_{1g}(P)$, so the energy of the ${}^{3}T_{2g}$ state is lower.

- There are many other states for d^2 that are not triplets, shown in the following diagram, but only transitions from the triplet ground state to triplet excited states are spin allowed.
 - This diagram, originally published by Tanabe and Sugano², shows the free-ion states, the octahedral states arising from them, and the energy separations between states as a function of Δ_{o} .

- Possible spin-allowed transitions giving rise to visible absorption bands: ${}^{3}T_{1g}(F) \rightarrow {}^{3}T_{2g}$; ${}^{3}T_{1g}(F) \rightarrow {}^{3}T_{1g}(P)$; ${}^{3}T_{1g}(F) \rightarrow {}^{3}A_{2g}$. • The ${}^{3}T_{1g}(F) \rightarrow {}^{3}A_{2g}$ transition, which simultaneously promotes two
 - electrons, is unlikely, and its band is often weak or unobserved.

²T. Tanabe and S. Sugano, J. Phys. Soc. Japan, **1954**, 9, 766.

Complex	${}^{3}T_{1g}(F) \rightarrow {}^{3}T_{2g}$ (cm ⁻¹)	${}^{3}T_{1g}(F) \rightarrow {}^{3}T_{1g}(P)$ (cm ⁻¹)	${}^{3}T_{1g}(F) \rightarrow {}^{3}A_{2g}$ (cm ⁻¹)	$\Delta_{ m o} \ (m cm^{-1})$
$[V(H_2O)_6]^{3+}$	17,200	25,000	38,000	21,500
$[V(ox)_3]^{3-}$	17,000	24,000		17,800

Transitions for $V^{3+}(d^2) O_h$ Complexes

Uv-vis spectrum of $[V(H_2O)_6]^{3+}$ $V^{3+}(d^2)$ ε 5 0 15,000 25,000 30,000 35,000 5,000 10,000 20,000 cm ⁻¹ 286 2,000 333 1,000 667 400 500 nm

- v₁ [³T_{1g}(F) → ³T_{2g}] and v₂ [³T_{1g}(F) → ³T_{1g}(P)] are shown.
 v₃ [³T_{1g}(F) → ³A_{2g}] at 38,000 cm⁻¹ falls in the uv and is not shown.

Tanabe-Sugano Diagrams

- Tanabe-Sugano diagrams for configurations d² d⁸ are published in most advanced inorganic chemistry and group theory texts.³
 - These plot energy (*E*) above the ground state as Δ_0 changes.
 - *B* is the Racah parameter, which is a measure of repulsion between terms of the same multiplicity.
 - The ordinate is E/B and the abscissa is Δ_0/B .
 - Although they can be used quantitatively, most often Tanabe-Sugano diagrams are used qualitatively.
 - State notations usually do not show the subscript g notation, which should be added when discussing transitions of O_h complexes.
- Tanabe-Sugano diagrams for d^4 , d^5 , d^6 , d^7 have a vertical line down the middle, separating high-spin (low field) cases on the left, and low-spin (high field) cases on the right.

³Simplified diagrams are shown as Figure 11.7 in G. L. Miessler and D. A. Tarr, *Inorganic Chemistry*, 4th ed., Prentice Hall, NY, p. 427; more complete diagrams are shown in Appendix D in R. L. Carter, *Molecular Symmetry and Group Theory*, Wiley, NY, 1998, pp. 289-292.

Complete d² Tanabe-Sugano Diagram

- In addition to the three possible spin-allowed transitions (cf. previous diagram), there are seven singlet states that suggest there could be as many as seven multiplicity (spin) forbidden transitions.
 - Transitions from the ${}^{3}T_{1g}$ ground state to any of the singlet states would have extremely low ε values and are seldom observed in routine work.
 - Some singlet states (e.g., ${}^{1}A_{1g}$, ${}^{1}E_{g}$) are so high in energy that transitions to them would fall in the uv, where they would likely be obscured by the intense CT band.

 d^{5} Tanabe-Sugano Diagram – High-Spin Side $(t_{2g}^{3}e_{g}^{2})$

- High-spin side (left) has no sextuplet excited states, so all transitions from the ${}^{6}A_{1g}$ ground state are spin forbidden, as previously noted.
 - Spectrum of $[Mn(H_2O)_6]^{2+}$ shows only very weak absorptions.

 d^{5} Tanabe-Sugano Diagram – Low-Spin Side (t_{2g}^{5})

- As field strength increases on the high-spin side, the ${}^{2}T_{2g}$ state, emanating from the ${}^{2}I$ free-ion term, descends in energy and becomes the ground state at the cross-over point to low-spin cases (right).
 - At the cross-over point to low-spin cases the former ${}^{6}A_{1g}$ ground state of high-spin cases ascends rapidly.
- On the low-spin side, there are potentially three spin-allowed transitions:

$${}^{2}T_{2g} \rightarrow ({}^{2}A_{2g}, {}^{2}T_{1g}) \quad {}^{2}T_{2g} \rightarrow {}^{2}E_{g} \quad {}^{2}T_{2g} \rightarrow {}^{2}A_{1g}$$

- Spectra of d^5 low-spin octahedral complexes are expected to show three bands, although the band from ${}^2T_{2g} \rightarrow {}^2A_{1g}$ might fall in the uv.
- The ${}^{2}A_{2g}$ and ${}^{2}T_{1g}$ states are accidentally degenerate (i.e., not fundamentally degenerate by symmetry), and only one band is expected from transitions to both states.

Orgel Diagrams - Principles

- In 1955 L. E. Orgel⁴ published a set of two diagrams, which are easily memorized, to account qualitatively for the spectra of all $d^{1}-d^{9}$ high-spin cases of both octahedral (O_{h}) and tetrahedral (T_{d}) complexes.
- Orgel diagrams are based on the following relationships:
 - ① $d^n(O_h)$ and $d^{n\pm 5}$ have the same diagram.
 - 2 $d^n(T_d)$ and $d^{n\pm 5}$ have the same diagram.
 - ③ d^n , $d^{n\pm 5}(O_h)$ is the reverse of d^n , $d^{n\pm 5}(T_d)$.
 - (4) $d^n(O_h)$ is the reverse of $d^{10-n}(O_h)$, and $d^n(T_d)$ is the reverse of $d^{10-n}(T_d)$.
- Labels on Orgel diagrams do not include spin multiplicity designations or *g* subscripts for octahedral cases.
 - Multiplicities must be added when discussing specific transitions.
 - Subscript g should be added to all states when discussing octahedral complexes with centrosymmetry (true O_h).
- Orgel diagrams only cover high-spin cases.
- Orgel diagrams only account for spin-allowed transitions.
- Orgel diagrams are for qualitative purposes only.
- Tanabe-Sugano diagrams must be used for low-spin cases and any spin-forbidden transitions (high-spin or low-spin).

⁴L. E. Orgel, J. Chem. Phys., **1955**, 23, 1004.

Orgel Diagram for $d^1(O_h)$ and Related Cases

- This diagram can be easily remembered by starting with the *d*¹ case, where a free-ion *D* state is split into a *T*₂ ground state and a *E* excited state.
 - The rest of the diagram is generated by extrapolating the lines to the left side and invoking the relationships previously noted.

• One visible absorption band is expected for all cases covered by this diagram, either $T_2 \rightarrow E$ or $E \rightarrow T_2$.

Orgel Diagram for $d^2(O_h)$ and Related Cases

• This somewhat more complicated diagram can be remembered by knowing the spitting for $d^2(O_h)$, extrapolating the lines to the left side, and invoking the relationships previously noted.

- The $T_1(F)$ and $T_1(P)$, being same symmetry, curve away from each other as a result of the quantum mechanical non-crossing rule.
- Three visible absorption bands are expected for all cases covered by this diagram, either from a $T_1(F)$ or A_2 ground state.

Estimating Δ_o from Spectra

- Relationship between Δ_o and observed spectral band frequencies depends upon the dⁿ configuration.
 - The following guidelines apply only to those octahedral (O_h) cases covered by the Orgel diagrams.
- ① For cases related to the $d^1(O_h)$ diagram, the frequency of the single band $(T_{2g} \rightarrow E_g \text{ or } E_g \rightarrow T_{2g})$ is Δ_0 . $Cu(H_2O)_6^{2+}$: $v = 12,500 \text{ cm}^{-1} = \Delta_0$
- ② For d^3 and d^8 (left side of the d^2 Orgel diagram), the ground state is A_{2g} and the frequency of the first band, $v_1 (A_{2g} \rightarrow T_{2g})$, is Δ_0 . Cr(NH₃)₆³⁺: $v_1 = 21,500$ cm⁻¹ = Δ_0
- ③ For d^2 and d^7 high-spin, the ground state $T_{1g}(F)$ is repelled by the excited state $T_{1g}(P)$.
 - Relationship between the ground state and any excited state is not fixed in terms of Δ_0 .
 - For exact work, the Racah parameter, B, must be used to correct for the repulsions between the T_{1g} states.
 - For an *approximate* value of Δ_0 the following relationships can be used.

$$\begin{split} &\Delta_{o} \approx v_{1} \left[T_{1g}(F) \rightarrow T_{2g} \right] / 0.8 \\ &\Delta_{o} \approx v_{3} \left[T_{1g}(F) \rightarrow A_{2g} \right] / 1.8 \\ &\Delta_{o} \approx v_{3} \left[T_{1g}(F) \rightarrow A_{2g} \right] - v_{1} \left[T_{1g}(F) \rightarrow T_{2g} \right] \end{split}$$

• Inasmuch as v_3 is often not observed, only the first relationship is generally usable.

V(H₂O)₆³⁺:
$$v_1 = 17,200 \text{ cm}^{-1}$$

 $\Delta_0 \approx 17,200 \text{ cm}^{-1}/0.8 \approx 21,500 \text{ cm}^{-1}$

• For cases not covered by the Orgel diagrams, a quantitative Tanabe-Sugano diagram and estimation of the Racah parameter are required.

Jahn-Teller Effect

 Jahn-Teller Theorem: For any nonlinear system in a degenerate state, a distortion will occur that will lift the degeneracy.

For octahedral complexes, only five ground-state configurations are immune from Jahn-Teller distortion:
 d³ (⁴A_{2g}), d⁵ high-spin (⁶A_{1g}), d⁶ low-spin (¹A_{1g}), d⁸ (³A_{2g}), d¹⁰ (¹A_{1g})

- All other configurations have a degenerate ground state (E or T).
- The strongest distortions result from a ${}^{2}E_{g}$ term arising from configurations $t_{2g}{}^{n}e_{g}{}^{1}$ and $t_{2g}{}^{n}e_{g}{}^{3}$, which have unequal distribution of electrons in orbitals pointing at ligands.
 - Consider the two microstates of $t_{2g}^{6}e_{g}^{3}$:

$$t_{2g}^{6}(d_{x^2-y^2})^2(d_{z^2})^1 \qquad t_{2g}^{6}(d_{x^2-y^2})^1(d_{z^2})^2$$

- ✓ With $t_{2g}^{6}(d_{x^2-y^2})^2(d_{z^2})^1$, ligands in the *xy* plane are more shielded from the nuclear charge than those along *z*.
- ✓ With $t_{2g}^{6}(d_{x^2-y^2})^1(d_{z^2})^2$, ligands along *z* are more shielded from the nuclear charge than those in the *xy* plane.
- Either microstate results in inequality among M–L distances, producing a distortion from perfect O_h symmetry.
- The Jahn-Teller theorem does not predict the exact distortion, but the following corollary is observed.
- Jahn-Teller Corollary: If the system is centrosymmetric, the distorted configuration will also be centrosymmetric.
- For *O_h* complexes, the distortion will cause a descent in symmetry to a centrosymmetric subgroup.

Tetragonal Distortion of Octahedral ML₆

- For ML₆ complexes, a tetragonal distortion $O_h \rightarrow D_{4h}$ is the most probable result of the Jahn-Teller effect.
 - Either equal stretching or compression of two *trans*-related positions would result in this kind of distortion.
 - Jahn-Teller theorem cannot predict the distortion and either or both may occur.
- Suppose a d^9 ML₆ complex undergoes equal stretching of the *trans*-related positions along *z*.

• The distortion results in a Jahn-Teller stabilization energy:

 $\Delta E_{\rm JT} = -2(\delta_2/2) + \delta_2/2 = -\delta_2/2$

- The new state is non-degenerate ${}^{2}B_{1g}$ in D_{4h} , because there is only one microstate for the configuration of lowest energy.
- The stabilization energy achieved drives the distortion.
- Compression along *z* would give the opposite splitting but the same stabilization energy.
 - The new state would be non-degenerate ${}^{2}A_{g}$ in D_{4h} .

Strong and Weak Jahn-Teller Distortion

- Configurations with e_g^{-1} or e_g^{-3} show pronounced Jahn-Teller distortions, because the orbitals are directed at ligands.
 - These configurations correspond to E_g terms.
- Configurations with t_{2g}^{-1} , t_{2g}^{-2} , t_{2g}^{-4} , t_{2g}^{-5} have weaker Jahn-Teller distortions, because these orbitals lie between ligands.
 - These configurations correspond to T_{1g} or T_{2g} states.
- Jahn-Teller distortion causes splitting of *E* and *T* terms, whether ground- or excited-state.
 - Energy split for any *E* term is greater than the energy split for *T* terms of the same complex.

Example: Assuming a stretching tetragonal distortion, the two terms of an octahedral d^9 ML₆ complex would split as shown in the following diagram.

• Because both ground- and excited-state terms are split, additional transitions are possible, which contribute to band broadening.

Spectroscopic Evidence of Jahn-Teller Distortions Splitting of the Ground State

- In some cases the larger split of an *E* state results in two partially resolved bands.
- The shoulder in the single band for $Cu(H_2O)_6^{2+}$ results from splitting of the 2E_g ground state into two distinct states with two transition energies to the slightly split ${}^2T_{2g}$ excited state.

Spectroscopic Evidence of Jahn-Teller Distortions Splitting of the Excited State

• The uv-vis spectrum of CoF_6^{3-} , a d^6 high-spin case, ⁵ shows two distinct bands, although only one is expected from ${}^5T_{2g} \rightarrow {}^5E_g$.

- The ground state $({}^{5}T_{2g})$ is only slightly distorted, but the excited state $({}^{5}E_{g})$ is strongly distorted.
- The ${}^{5}E_{g}$ state is spit into two distinct states $({}^{5}A_{g} + {}^{5}B_{1g} \text{ in } D_{4h})$, whose different energies give rise to two different transition energies, and hence two bands.

 $^{{}^{5}\}text{CoF}_{6}{}^{3-}$ is an exception to the tendency for Co³⁺ ML₆ complexes to be d^{6} low-spin.