16.2 Strong-Acids / Strong-Bases Titration

Dr. Fred Omega Garces Chemistry 201 Miramar College

Reaction Between Acid - Base

What is the pH of a solution when an acid is mixed with a base?

Stoichiometry Problem:

 $\begin{array}{ccccc} HA & \rightarrow & H_3O^+ & + & A-\\ MOH & \rightarrow & OH^- & + & M^+\\ \hline MOH & + & HA & \rightarrow & H_2O & + & MA \end{array}$

Stoichiometry Problem:

The amount of H_3O^+ or $OH^$ remaining after a portion is neutralize determines the pH of the solution.

In an acid – base reaction, H⁺ & OH⁻ always combine together to form water and an ionic compound (a salt): Neutralization Reaction.

 $HCl_{(aq)} + NaOH_{(aq)} \rightarrow H_2O_{(l)} + NaCl_{(aq)}$

Analysis is a Stoichiometry problem <u>only</u> if a strong acid is combined with a strong base.

Titration

Acid/Base Titration

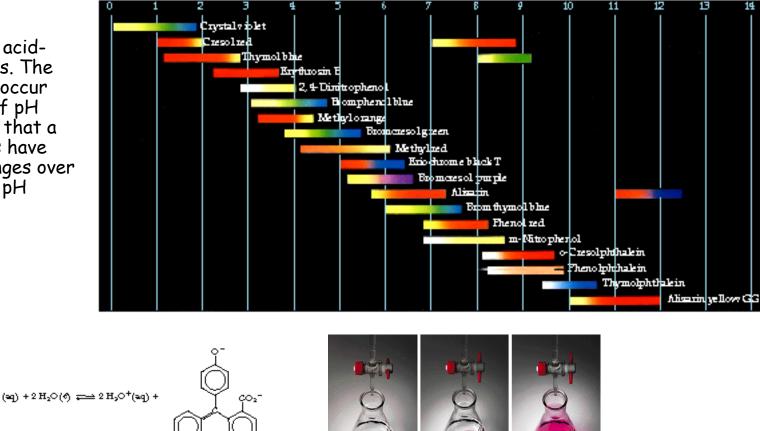

A technique of chemical analysis to determine the amount of a substance in a sample. i.e., What is the acidic content of Lake Miramar?

A sample can be tested by titration. In a titration experiment, a known volume of a standard concentrated solution (the titrant) is used to analyze a sample (the analyte). One is usually an acid, the other a base. An indicator is added to the analyte to signal when the titration is complete. This is called the endpoint. When the moles of $acid(H_3O^+)$ and moles of base (OH-) are equal in a titration experiment, the stoichiometric equivalent point is reached. This is called the equivalent point.

Indicator changes color @ endpoint

moles titrant = moles analyte.

@ equivalent point.


Acid-Base Indicator

Some common acidbase indicators. The color changes occur over a range of pH values. Notice that a few indicators have two color changes over two different pH ranges.

se no loht ha k

Downstod acid.

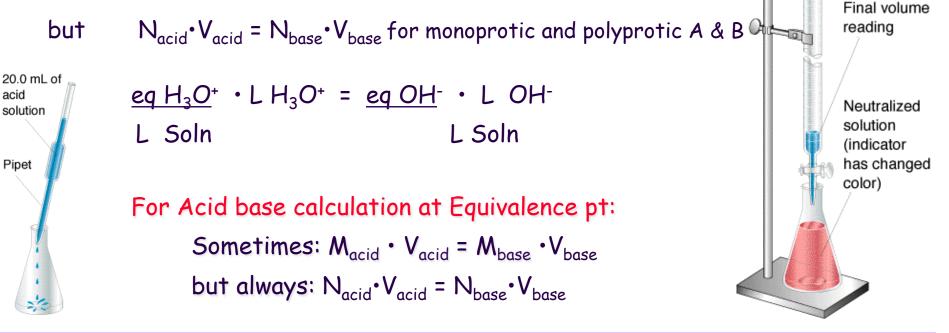
co lovices

Mechanism for phenolphthalein indicator. At Low pH phenolphthalein is colorless and has a structure in which there is a five membered ring. In the presence of excess acid the five membered ring is broken and the resulting change in conformation gives rise to a compound which is pink.

Conjeaveto baso at

phonolpht haldin, Brænetod bærgi pind

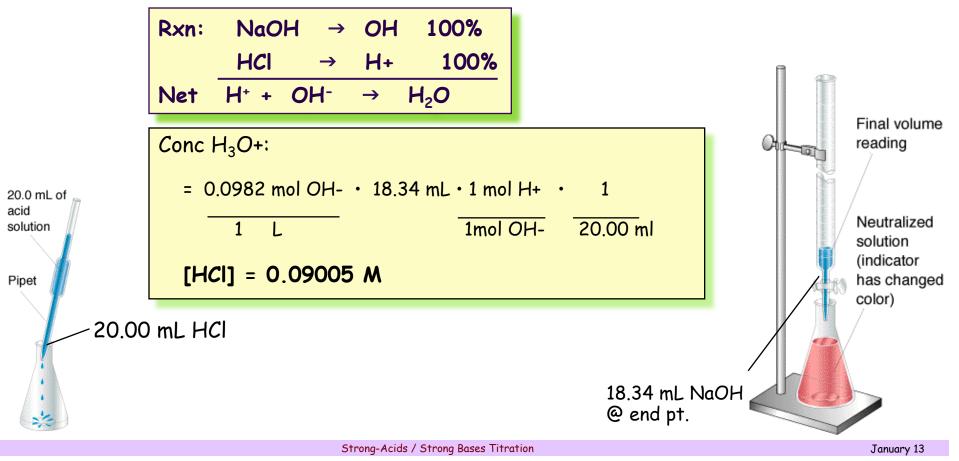
S Acid- S Base Analysis


Indicator changes color @ endpoint.

Indicator is chosen so that endpoint occurs at equivalent pt.

The following is true at the equivalence point.

moles H_3O^+ = moles OH^-

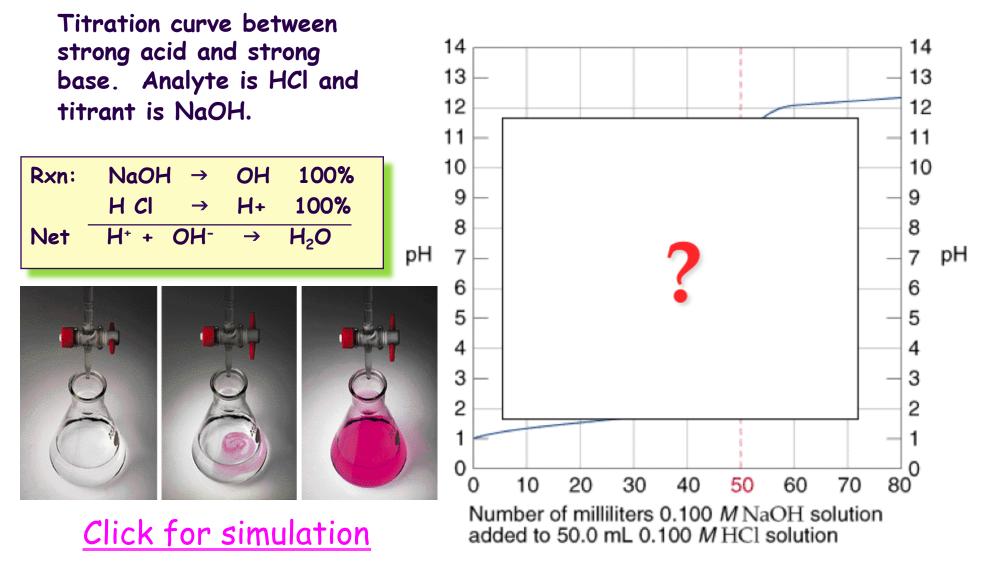

 $M_{acid} \cdot V_{acid} = M_{base} \cdot Vbase$ For monoprotic A & B $M_{acid} \cdot V_{acid} = M_{base} \cdot Vbase$ For polyprotic A & B

S Acid- S Base Calculation

Titration of HCl with NaOH (Reger 14.1)

A titration is used to detm' conc. of HCl solution. Exactly 20.00mL of the acid solution was placed in a flask, with phenolphthalein added. 18.34mL of 0.0982 M NaOH was needed to reach the endpoint. What is the conc. of the HCl ?

Titration: Thought Experiment


Consider the titration of a Strong acid with a Strong Base.

What is the pH after incremental addition of some moles of base to the acid.

Amt	Amt	Amt	Remaining	рН
NaOH	HCI	H₂O	(mol)	or
[OH-]	[H₂O⁺]			рОН
0	100 H+	-	100H ⁺	pH = - log [100 / v _T]
20	100-20	20 H ₂ O	80 H⁺	- log [80 / v _T]
50	100-50	50 H ₂ O	50 H⁺	- log [50 / v _T]
99	100-99	99 H ₂ O	1 H⁺	- log [1 / v _T]
100	100-100	100 H ₂ O	0 H⁺	- $\log [0 / v_T]$ pH = ?*
101	100-101	100 H ₂ O	1 OH-	$pOH = - \log [1 / v_T]$
200	100-200	100 H ₂ O	100 OH-	pOH = - log [100 / v _T]
* Neutral pH is	determine by t	he Autoioniza	tion of water pH =	7.0

Titration S Acid - S Base: Example

A 0.100M HCl (50.00mL) is to be titrated with 0.100 M NaOH. What is the pH after addition of 0.00, 20.00, 49.00, 50.00, 51.00 and 60.00 mL of base.

Titration Strong Acid - Strong Base: Example (0.0 & 25.0 ml)

i) 0.00 mL Base

0.100M HCl (50.00mL) is to be titrated with 0.100 M NaOH 0.00mL of base.

pH based on the [H₃O+] of HCl

HCl is a strong acid, therefore $[HCl] = [H_3O^+]$ [HCl] = $[H_3O^+] = 0.100 \text{ M} = 1 \cdot 10^{-1} \text{ M} \rightarrow \text{pH} = 1.00$

ii) 25.00 mL Base: V_{total} = 75 ml solution

0.100M HCl (50.00mL) is to be titrated with 0.100 M NaOH 25.00mL of base mol HCl = $0.100M \cdot (50mL) = 5.00 \cdot 10^{-3}$ mol HCl or 5.0 mmol = H_3O^+ mol NaOH = $0.100M \cdot (25mL) = 2.5 \cdot 10^{-3}$ mol NaOH or 2.5 mmol = OH⁻ pH based on the excess HCl remaining. Since HCl is a strong acid.

	HCI	+ NaOH	→	H ₂ O	+	Na⁺	+	Cl-
S	5 mmol	2.5 mmo)I	-		-		-
R	2.5	2.5		2.5		2.5		2.5
f	2.5	0		2.5		2.5		2.5
[c]	2.5 mmol	/ 75.00 ml =	3.3•1	10 ⁻² M				

 $[HCI] = [H_3O^+] = 3.3 \cdot 10^{-2} \text{ M} \rightarrow \text{pH} = 1.48$

Titration S Acid - S Base: Example (49.0 & 50.0 mL)

iii) 49..00 mL Base: V_{total} = 99 ml solution

0.100M HCl (50.00mL) is to be titrated with 0.100 M NaOH 49.00mL of base.

mol HCl = 0.100M \cdot (50mL) = 5.0 mmol HCl = H₃O⁺

mol NaOH = $0.100M \cdot (49mL) = 4.9 \text{ mmol NaOH} = OH^{-1}$

	HCI +	NaOH →	H ₂ O	+	Na	+	CI-
S	5.0 mmol	4.9 mmol	-		-		-
R	-4.9	-4.9	-		-		-
f	0.1 mmol	0	-		-		-
[c]	0.1 mmol /	99.0 ml = 1.0	1 ·10 ⁻³ M				

 $[HCI] = [H_3O^+] = 1.01 \cdot 10^{-3} \text{ M} \rightarrow \text{pH} = 3.0$

iv) 50.00 mL Base: V_{total} = 99 ml solution

0.100M HCl (50.00mL) is to be titrated with 0.100 M NaOH 50.00mL of base. mol HCl = 0.100M \cdot (50mL) = 5.0 mmol HCl = H₃O⁺ mol NaOH = 0.100M \cdot (50mL) = 5.0 mmol NaOH = OH⁻

	HCI +	NaOH →	H ₂ O	+	Na	+	CI-
S	5.0 mmol	5.0 mmol	-		-		-
R	-5.0	-5.0	-		-		-
f	0.1 mmol	0	-		-		-
[c]	0.1 mmol /	100.0 ml = 0 M	Is the	pH = z	ero?		

No, Autoionization Water has $[H_3O^+] = 1.00 \cdot 10^{-7} \text{ M} \rightarrow \text{pH} = 7.0$

Titration S Acid - S Base: Example (51.0 & 60.0 mL)

v) 51.00 mL Base: V_{total} = 101 ml solution

0.100M HCl (50.00mL) is to be titrated with 0.100 M NaOH 51.00mL of base.

mol HCl = $0.100M \cdot (50mL) = 5.0 \text{ mmol HCl} = H_3O^+$

mol NaOH = $0.100M \cdot (51mL) = 5.1 \text{ mmol NaOH} = OH^{-1}$

	HCI +	NaOH →	H ₂ O	+	Na	+	CI-
s	5.0 mmol	5.1 mmol	-		-		-
R	-5.0	-5.0	-		-		-
f	0 mmol	0.1	-		-		-
[c]		0.1 mmol /	101.0 ml	= 9.9	0 • 10-4	Μ	

 $[NaOH]_{excess} = [OH^{-}] = 9.90 \cdot 10^{-4} M \rightarrow pOH = 3.00 \rightarrow pH = 11.0$

vi) 60.00 mL Base: V_{total} = 110 ml solution

0.100M HCl (50.00mL) is to be titrated with 0.100 M NaOH 60.00 mL of base. mol HCl = 0.100M \cdot (50 mL) = 5.0 mmol HCl = H₃O⁺

mol NaOH = $0.100M \cdot (60 \text{ mL}) = 6.0 \text{ mmol NaOH} = OH^-$

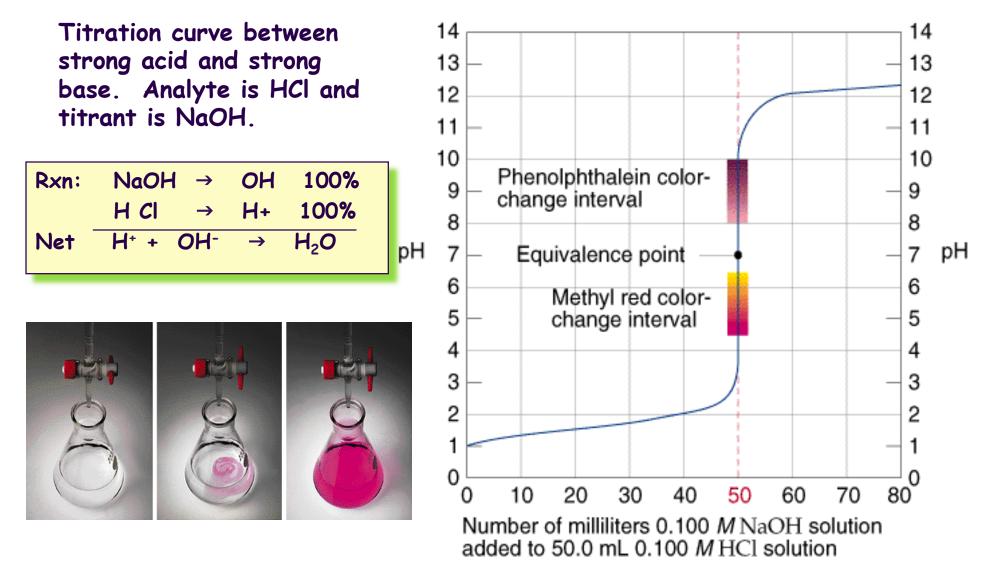
	HCI +	NaOH	→ H ₂ O	+ Na	+ Cl-
S	5.0 mmol	6.0 mmol	-	-	-
R	-5.0	-5.0	-	-	-
f	0 mmol	1.0	-	-	-
[c]		1.0 mmol /	′ 110.0 ml	= 9.90 · 10 ⁻³ M	٨
[No	OH] = [(OH-] = 9.90 ·	-10 ⁻³ M -	→ pOH = 2	.04 →

Titration: Result Summary

Summary of the titration of 0.100 M HCl with 0.100 M NaOH.

What is the pH after incremental addition of some moles of base to the acid.

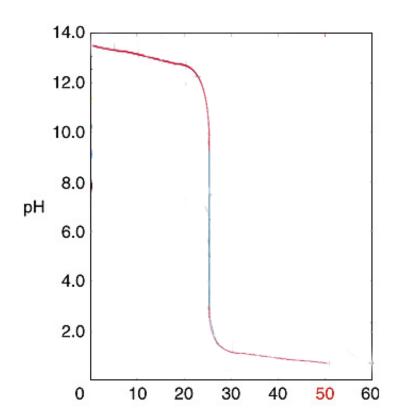
Vol	Amt	Amt	Net	Conc	рН
NaOH	NaOH	HCI-NaOH	H₃O⁺	H+ or OH-	or
(mL)	(mmol)	(mmol) (mmol)	(M)	рОН
0	0	5mmol - 0	5	5 / 50=0.1	pH = 1.0
25	2.5	5 - 2.5	2.5	2.5/75=3.3·10 ⁻²	pH = 1.48
49	4.9	5 - 4.9	0.1	0.1/99=1.01 10-3	pH = 3.00
50	5.0	5 - 5	0	0/100 = 0	pH = 7
51	5.1	5.1 [OH] - 5 C) H⁺	0.1/101=9.9e ⁻⁴	pOH=3, pH=11
60	6.0	6 [OH] - 5	1 OH-	1/110= 9.9e ⁻³	pOH=2, pH=12


Titration: Result Summary

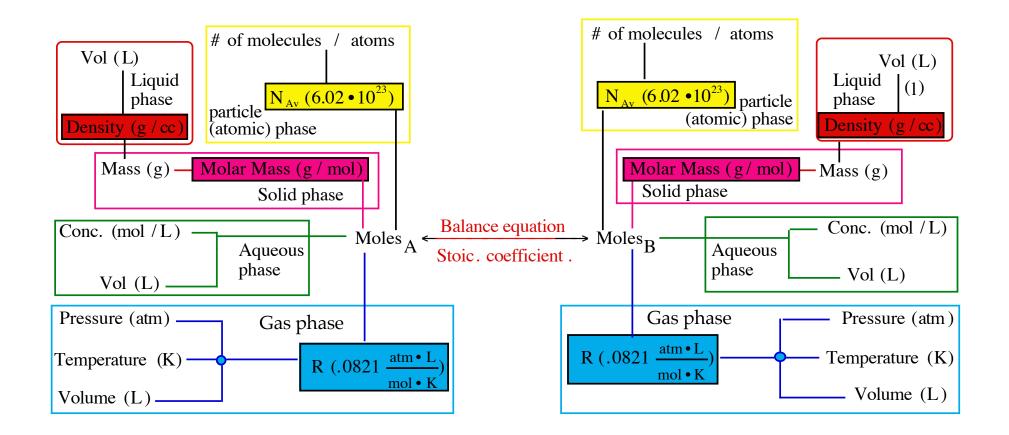
Summary of the titration of 0.100 M HCl with 0.100 M NaOH.

Titration	n of a Strong Ac	id with a Strong Ba	se	म्प्रेट्स क्रम्स्ट्र क्रम्स्ट्रस्ट		
analyte : Titrate: Net ionic:	itrate: 0.100 M NaOH NaOH + HCl → H ₂ O + Na ⁺ + Cl ⁻					
					E FU	
NaOH Vol. added	NaOH (mmol)	HCl (initial) (mmol)	H3O+ or OH- Net (mmol)	Total Vol (ml)	H3O+ or OH- conc [M]	pH or pOH
0.00m1	0	0.100 M • 50.00ml = 5 mmol	5 mmo1 - 0 = 5 mmo1 (H ₃ O+)	50m1	H ₃ O+ 0.100M	pH=1.00
5.00m1	0.100M•5.0ml = .5 mmol	5 mmol	5 mmol5 mmol = 4.5 mmol (H ₃ O+)	55m1	H ₃ O+ 8.18•10 ⁻²	pH=1.09
25.00ml	0.100M•25.0ml = 2.5 mmol	5 mmol	5 mmol - 2.5 mmol = 2.5 mmol (H ₃ O+)	75ml	H ₃ O+ 3.33•10 ⁻²	pH=1.48
49.00ml	0.100M•49.0ml = 4.9 mmol	5 mmol	5 mmol -4.9 mmol = 0.1 mmol (H ₃ O+)	99ml	H ₃ O+ 1.01•10 ⁻³	pH=3.00
50.00m1	0.100M•49.0ml = 5.0 mmol	5 mmol	5 mmol -5 mmol = 0.0 mmol (H ₃ O+)	100m1	77777	pH= ???
51.00ml	0.100M•51.0ml = 5.1 mmol	5 mmol	5 mmol -5.1mmol = 0.1 mmol (OH-)	101ml	OH- 9.90•10-4	pOH=3.00 pH=11.00
60.00ml	0.100M•60.0ml = 6.0 mmol	5 mmol	5 mmol -6.0 mmol = 1.0 mmol (OH ⁻)	110m1	OH- 9.09•10 ⁻³	pOH=2.04 pH=11.96

Result: Titration Curve


A 0.100M HCl (50.00mL) is to be titrated with 0.100 M NaOH. What is the pH after addition of 0.00, 20.00, 49.00, 50.00, 51.00 and 60.00 mL of base.

Titration Curve In or Out of Class Exercise


Design a problem in which NaOH (analyte) of some concentration and 50-mL volume is titrated with HCl of some concentration. Design the problem in such a way that the the following conditions are met.

	HCI Added	pH soln
1	0.00 mL	13.500
2	10.00 mL	13.199
3	15.0 mL	12.988
4	20.0 ml	12.655
5	24.6 ml	11.530
6	25.4 ml	2.475
7	30.0 ml	1.403
8	35.0 ml	1.290
9	40.0 ml	0.977
10	50.0 ml	0.801

... remember

That a titration problem is nothing more than a Stoichiometry problem

