# **CH524: bioinorganic chemistry**

What do you think is bioinorganic chemistry?

# Progressive modification of Nomenclature

1960s - Inorganic biochemistry
1980s - Bioinorganic Chemistry
2000 - Biological Inorganic
Chemistry

# What would we roughly cover in this course?

## INTRODUCTORY ASPECTS

Introductory awareness of the role of metal ions in biology and medicine

Very general features of coordination chemistry, biomolecules, spectral and biochemical techniques

## **BIOINORGANIC CHEMISTRY APPROACH**

Metalloproteins, metalloenzymes & metal activated enzymes

Some anion based aspects

## Metalloproteins, metalloenzymes and metal activated enzymes

- Transport of alkali and alkaline earth ions and functioning of ATPases
- Toxic role of chromium
- Vanadium in haloperoxidases and nitrogenases
- Role of manganese in the oxygen evolution cluster of photosystem II
- Iron proteins & Enzymes: Transport & storage;
- Porphyrin and non-porphyrin based: Electron Transport; Monooxygenases, Dioxygenases; Phosphatases; Reductases; Superoxide dismutase
- Cobalt: Cobalamine based enzymes
- Nickel: Urease; Hydrogenases; Carbonmonooxide Dehydrogenases
- Copper: Electron Transport; Oxidases; Monooxygenases; Dioxygenases; Various types of copper centers; Super oxide dismutase
- Zinc: Hydrolases; Peptidases; Lyases; Ligages; Oxido-reductases; Transferases
- Molybdenum: Nitrogenase; all types of Oxido-reductases
- Selenoenzymes (if time permits)

# **Periodic table**

|   | 1                     | 2                   | 3                      | 1                    | 5                     | 6                   | 7                    | 8                                | 10                         | 1 10               | 11                   | 112                 | 112                  | 11                  | 1 15                  | 16                 | 17                  | 19                 |
|---|-----------------------|---------------------|------------------------|----------------------|-----------------------|---------------------|----------------------|----------------------------------|----------------------------|--------------------|----------------------|---------------------|----------------------|---------------------|-----------------------|--------------------|---------------------|--------------------|
|   | (1A)                  | ( <u>2</u> A)       | (3A)                   | (4A)                 | (5A)                  | (6A)                | (7A)                 | (8)                              | (8)                        | (8)                | (18)                 | (28)                | (3B)                 | (4B)                | (58)                  | (68)               | (78)                | (0)                |
| 1 | H<br>H                |                     | .(                     | ) deno               | ites the              | IUPA<br>e mas       | C 1991               | A <sub>f</sub> ( <sup>12</sup> ( | C) = 12                    | ngost.li           | ivad is              | ntone               |                      |                     |                       |                    |                     | 2<br>He            |
| 2 | 3<br>LI<br>6.941      | 4<br>Be<br>9.012182 |                        | /                    |                       |                     |                      |                                  |                            | 1                  |                      |                     | 5<br>B<br>10.811     | 5<br>C<br>12.011    | N<br>11,00571         | 0                  | 3<br>F<br>18 79540  | Ne                 |
| 3 | Na<br>22.98976        | Mg<br>24. 3050      | 41                     |                      |                       |                     |                      |                                  | 1010                       |                    |                      | r <del></del>       | 13<br>Al<br>26,98154 | 14<br>Si<br>28.0055 | 115<br>P<br>30.97376  | 16<br>S<br>32.066  | 17<br>CI<br>35.627  | 18<br>Ar<br>39.945 |
| 4 | 19<br>39.0983         | Ca<br>40.078        | SC<br>(41.9559)        | 47.86                | 50.9415               | Cr<br>51.996t       | 29<br>Mn<br>54.93805 | Fe<br>55.847                     | CO                         | Ni<br>58.6934      | CU<br>63.546         | Zn<br>65.39         | Ga<br>69.723         | Ge<br>72.61         | AS<br>74.92159        | Se<br>78.96        | Br                  | KI<br>N BO         |
| 5 | 37<br>Rb -<br>65.4678 | 38<br>Sr<br>87.62   | 39<br>¥<br>88.90585    | 40<br>Zr<br>91.224   | 41<br>ND<br>92.90638  | 47<br>MO<br>95.94   | 43<br>TC<br>(99)     | 4<br>Ru<br>101.07                | 45<br>Rh<br>102.9055       | 46<br>Pd<br>105.12 | 47<br>AB<br>107.8582 | 40<br>Cd<br>112.411 | 49<br>In<br>114.818  | 50<br>Sn<br>118.710 | 51<br>Sb<br>121.757   | 52<br>Te<br>127,60 | 53<br> <br>126.9044 | я<br>Хе<br>131.29  |
| 6 | Cs                    | Se<br>Ba<br>137.327 | 57 •<br>La<br>138_9055 | 12<br>Hf<br>178.49   | 73<br>Ta<br>100.9479  | 74<br>W<br>183.84   | 75<br>Re<br>185.207  | 76<br>OS<br>190-21               | 77<br>  <b>r</b><br>192.22 | 78<br>Pt<br>195.08 | 79<br>Au<br>196.9665 | 80<br>H8<br>200.59  | 81<br>TI<br>204.3933 | 82<br>Pb<br>207.2   | 83<br>Bi<br>208.9603  | PO<br>(210)        | 85<br>At<br>(210)   | *<br>An            |
| 7 | Fr<br>(223)           | 88<br>Ra<br>(226)   | AC<br>(227)            | Ung<br>(261)         | 105<br>Unp<br>(262)   | 106<br>Unh<br>(253) | 107<br>Uns<br>(262)  | 108<br>Uno<br>(265)              | 199<br>Une<br>(766)        | in<br>Uun          | m<br>Uuu             | Uub                 | Uut                  | iu<br>Uuq           | us<br>Uup             | us<br>Uuh          | ur<br>Uus           | una<br>Una         |
|   | * Lar                 | nthan               | ides                   | 58<br>Ce             | 59<br>Pr<br>140. 5076 | 50<br>Nd            | 51<br>Pm<br>(145)    | 62<br>Sm<br>150.36               | 63<br>EU<br>151,965        | 64<br>Gd           | 65<br>Tb<br>158.9253 | 66<br>Dy<br>162.50  | 67<br>HO<br>164,9303 | 68<br>Er<br>167.26  | 69<br>Tm<br>168, 9342 | 70<br>Yb           | 71<br>Lu<br>174.967 |                    |
|   | ≪ Act                 | inide               | s                      | 00<br>Th<br>232.0381 | 91<br>Pa<br>231.0359  | 97<br>U<br>738.0289 | 9)<br>Np<br>(237)    | 94<br>Pu<br>(239)                | 95<br>Am<br>(243)          | %<br>Cm<br>(247)   | 97<br>Bk<br>(247)    | 54<br>Cf<br>(252)   | 99<br>Es<br>(252)    | 100<br>Fm<br>(257)  | 101<br>Md<br>(256)    | 102<br>No<br>(259) | 103<br>Lr<br>(260)  |                    |

#### Aspects concerned in bioinorganic chemistry

•Which are the elements ESSENTIAL for living cells in biology?

•What AMOUNTS are these present?

•How are these CHOSEN?

•Are there any MUTUAL INTERACTIONS AMONG these elements of biology? (either cooperatively or antagonistically?)

•HOW and WHERE are these present in biological systems?

•WHAT do these elements DO in biological systems?

•HOW do these elements DO THOSE FUNCTIONS/JOBS?

## **Recent Concerns**

•HOW important is that particular element in that particular function?

- •WHAT HAPPENS when you replace that element of biology by a different one?
- •WHAT HAPPENS when you replace that particular binding site or amino acid residue by another?

## Chronological order of the discovery of the essential elements of biology

| Iron                             | 17 <sup>th</sup> century |
|----------------------------------|--------------------------|
| lodine                           | 1850                     |
| Copper                           | 1928                     |
| Manganese, Zinc, Cobalt          | 1931-35                  |
| Molybdenum, Selenium, Chromium   | 1953-59                  |
| Tin, Vanadium, Fluorine, Silicon | 1970-72                  |
| Nickel, Arsenic                  | 1974-75                  |
| Lithium, Bromine, Cadmium, Lead  | Essentially was not well |
|                                  | proven                   |
| Tungsten                         | 1985                     |

| <b>Elemental Composition of Humar</b>  | Element                                      | g/mean        |
|----------------------------------------|----------------------------------------------|---------------|
| 4 - H                                  | Main group metals                            |               |
| ► O                                    | Sociaan                                      | 70            |
| 3 C                                    | Pol mium                                     | 250           |
| 5                                      | Magnesium                                    | 42 -          |
|                                        | Calcium                                      | 1 700         |
|                                        | D-sessition series metals                    |               |
| Z BULK OR<br>CONSTITUENT               | 'anadium                                     | <0-1          |
| ELEMENTS                               | Chromium                                     | < 0-1         |
| - Ca,P                                 | Manganese                                    | </td          |
| 1-                                     | Iron                                         | ~6            |
|                                        | Cobal                                        | 1-2           |
|                                        | Niczel                                       | <0-1          |
| 0                                      | Copper                                       | <1            |
|                                        | Zine                                         | 1-2           |
| 5                                      | Molybdenum                                   | <1            |
| 2 -1_ <sup>-</sup> F                   | Main group elements                          |               |
| 🖻 🍽 Fe                                 | llydro_en                                    | 6 350         |
|                                        | Carbon                                       | 12 590        |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | Nitrogen                                     | 1815          |
| <u> </u> -2−                           | Oxygen                                       | 43 55         |
|                                        | Phosp.vc. 18                                 | 680           |
| Br Br                                  | Sulphur                                      | 100           |
| § -3                                   | Chlorine                                     | :15           |
|                                        | louine                                       | < 1           |
|                                        | Siliern                                      | <b>≤</b> I    |
|                                        | Bromine, IL 151.30, selection and the        | < l g in toto |
|                                        | Others                                       |               |
|                                        | Arser.s., .admuum, lead and polluting metals | ~ l g in 1010 |

#### Intake and/or utility of metal ions in life

# (those other than through food particularly through drug preparations)

| Element | Compound as           | Used for                  |
|---------|-----------------------|---------------------------|
| AI      | Hydroxide             | antacid                   |
|         | Silicate              | antidiarrhoeal            |
| Sb      | Gluconate             | antileishmaniasis         |
| Bi      | Tripotassiumdicitrate | antacid & antiulcer       |
| В       | Boric acid            | antifungal                |
| Со      | Vitamin B12           | pernicious anaemia        |
| Fe      | Glycine sulphate      | Iron deficiency – anaemia |
| Au      | Thiomalate            | antiarthritis             |
| Mg      | sulphate, hydroxide   | laxative, antacid         |
| Pt      | dichlorodiammine      | antineoplastic disorders  |
| Se      | sulphate              | antidandruff              |
| Ag      | sulphadiazene         | antibacterial             |
| Sn      | Fluoride              | anticaries                |
| Zn      | sulphate              | nutrition & wound healing |

#### **Criteria for ESSENTIALITY of Elements in biology**

•Should be present in the tissues of different animals at comparable concentrations

- •A specific biochemical function (structural or catalytic or regulatory type) should be associated with that particular element
- •Physiological deficiency appears when the element is removed from a purified diet
- •The deficiency can be relieved by the addition of that specific element

Additional Criterion that needs to be met before the element is accepted as essential is

•The essentiality of that particular element should be demonstrated by at least two research groups

#### **Periodic Table Relevant to Biology** 1 2 3 8 9 10 11 12 13 14 15 6 5 7 16 18 17 H He Li 80 Ne Ar Ge As: Se Br; Kr Zn Ga Sc Ti Zr Nb Mo To Ru Rh Pd Ag Cd: In Rb i Y Sn Sb Te Xe Hf Ta W Re Os Ir Pt Au Hg Cs B Pb Bi Po Rn TI At Fr Ra Ac Th Pa U **Bulk biological Possibly essential** Trace elements believed

elements

to be essential for bacteria, trac plants or animals son

trace elements for some species

# Elemental concentrations present in body, blood, sea water, earth crust

|            |         |                          |                 | -                        | u 1                |                           |
|------------|---------|--------------------------|-----------------|--------------------------|--------------------|---------------------------|
|            | Table d | of quan                  | litative        | paramet                  | ers of varlo       | us elémon                 |
| Sr.<br>No. | Element | Total (<br>(70 kg<br>(g) | adult)<br>(ppm) | Blood<br>panama<br>(prm) | Sen water<br>(ppm) | Earth's<br>crust<br>(ppm) |
| BIO        | LOGICAL |                          |                 |                          |                    |                           |
| (A)        | Bulk St | ructura                  | Elemen          |                          |                    |                           |
| 1.         | 0 H -   | . 7000                   | 100000          | -                        | 110000             | 1400                      |
| 2,         | С       | 16000                    | 230000          | -                        | 28                 | 200                       |
| з.         | N       | 1800                     | 26000           | -                        | 0.5                | 20                        |
| 4;         | 0       | 43000                    | 610000          | -                        | 900000             | 500000                    |
| 5.         | P       | 780                      | i 1000          | -                        | 0.07               | 1000                      |
| 6,         | S       | 140                      | 2000            | -                        | 885                | 260                       |
| (B)        | Macromi | nerals                   | :               |                          |                    |                           |
| 7.         | Na      | 100                      | 1400            | 3220                     | 10500              | 23300                     |
| 8.         | ĸ       | 140                      | 2000            | 76                       | 380                | 25900                     |
| 9.         | Mg      | 19                       | 270             | 24                       | 1350               | :20900                    |
| 10.        | Ca      | 1000                     | 14000           | 120                      | 400                | 36300                     |
| 11.        | C1      | 95                       | 1200            | 3550                     | - 19000            | 130                       |
| (C)        | Tracé E | lements                  | Т               |                          |                    |                           |
| 12.        | Fe      | 4                        | 60              | 1.1                      | 0.01               | 50000                     |
| 13.        | Zn      | 2-3                      | 30-40           | 1.3                      | 0,007              | 70                        |
| 14         | . Cu    | 0.05-                    | 0.7-1.7         | 1.0                      | 0.003              | 75                        |
| (D         | 1114-4  | Ele                      | maate I         | •                        |                    |                           |

| (D) <u>Ultratrace Elements</u> : |     |        |          |      |         |        |
|----------------------------------|-----|--------|----------|------|---------|--------|
| 15.                              | v   | 0.015  | 0.2      | -    | 0.002   | 135    |
| 16.                              | Cr  | 0.002  | 0.03     | -    | 0.00005 | 100    |
| 17.                              | Mn  | 0.012- | 0.17-0.3 |      | 0.002   | 950    |
| 18.                              | Co  | 0.002  | 0:02     | 0.12 | 0.0001  | 25     |
| 19.                              | Ni  | 0.01   | 0.15     | -    | 0.002   | 75     |
| 20.                              | Mo  | 0.01   | 0.15     | -    | 0.01    | 1.5    |
| 21.                              | Cd  | 0.05   | 0.7      | -    | 0.0001  | 0.2    |
| 22.                              | Sn  | 0.014  | 0.2      | -    | 8000.0  | 2      |
| 23.                              | РЬ  | 0.12   | 1.7      | -    | 0.0003  | ; 13   |
| 24.                              | Li  | 0.003  | 0.04     | -    | 0.07    | 20     |
| 25.                              | F   | 2.6    | 37       | -    | 1.3     | •625   |
| 26.                              | I   | 0.014  | 0.2      | -    | 0.06    | 0,5    |
| 27.                              | Se  | 0.014  | 0.2      |      | 0.0004  | 0.05   |
| 28.                              | 51  | -      | -        | **   | 3.0     | 277000 |
| 29.                              | Λs  | 0.007  | 0.1      | -    | 0.003   | 1.8    |
| 30.                              | в   | 0.05   | 0.7      | -    | 4.6     | 10     |
| NON-BIOLOGICAL                   |     |        |          |      |         |        |
| ·1.                              | ×1  | -      | -        | -    | 0.01    | 81300  |
| 2.                               | TI  | -      | -        |      | 0.101   | 4400   |
| 3.                               | Sr  | -      | -        | **   | 8.0     | 375    |
| 4.                               | 7.r | -      | -        | -    | -       | 165    |
| 5.                               | 58  | -      |          | -    | 0.03    | 425    |

g. Car- is taken to reproduce the quantitative parameter: that are most consistent in the literature.

#### **Criteria for the selection of elements**

Elemental abundance is not only the determining factor

- •Solubility of the element
- •Charge type/Oxidation state
- •Ionic Radius
- •Ligating atoms
- •Preferential coordination geometry
- •Spin-pairing stablization
- •Kinetic reactivity and other controls
- •Thermodynamic aspects
- •Chemical reactivity

#### Some essential elements: Syndromes of deficiency & excess

| Metal     | Intaky day | Essential or beneficial | Disease arising                              | Disease associated with            |
|-----------|------------|-------------------------|----------------------------------------------|------------------------------------|
| Sodium    | 4400       | element                 | from deficiency                              | an excess of the element           |
| Potassium | 3300       | Cateium                 | Rone deformities totany                      | Cataracte gall stonas              |
| Magnesium | 310        | Calcium                 | bone deformatios, tetany                     | atherosclerosis                    |
| Calcium   | 1100       | Cobalt                  | Anaemia                                      | Coronary failure, poly-            |
| Vanadium  | A10        | Copper                  | Anacmia, kinky hair                          | S.A.K. Wilson's disease            |
| Manganese | 2.56       | Chromium .              | syndrome<br>Incorrect-glucose<br>metabolism  | Caveinogenie                       |
| Iron      | 10         | Irqn                    | Anaemias                                     | Haemochomatosis, siderosis         |
|           | 6          | Lithium                 | Manic depression                             |                                    |
|           | 20         | Magnesium.              | Convulsions                                  | Anaesthesia                        |
|           |            | Manganese               | Skeletal deformities<br>gonadal dysfunctions | Ataxia                             |
| Cobalt    | 0.3        | Potassium               |                                              | Addison's disease                  |
| Nickel    |            | Selenium                | Necrosis of liver, white muscle disease      | Blind staggers in cattle           |
| Copper    | 2 \$55     | Sodium                  | Addison's disease,<br>stoker's cramps        |                                    |
| Zinc      | 15         | Zinc                    | Dwarfism, hypogonadism                       | Metal fume fever                   |
|           |            | Polluting element       |                                              |                                    |
|           | 0.155      | Cadmium                 | -                                            | Nephritis                          |
| Tungsten  | 0.5        | Lead, Marcuny           | -                                            | Anaemia, encephalitis,<br>neuritis |

|  | Inta | ke | per | day |
|--|------|----|-----|-----|
|--|------|----|-----|-----|

| Metal     | Intaky          |
|-----------|-----------------|
| Sodium    | 4400            |
| Potassium | 3300            |
| Magnesium | 310             |
| Calcium   | 1100            |
| Vanadium  | £100            |
| Manganese | 2.56            |
| Iron      | 10<br>60<br>200 |
| Cobalt    | 0.3             |
| Nickel    |                 |
| Copper    | 2 505           |
| Zinc      | 5               |
| Molybde   | num<br>0.155    |
| Tungsten  |                 |

RESPONSE

# **Dose – Response Relation** (Bertrend's plot) Sur

ESSENTIAL ELEMENT, DOSE \_\_\_\_\_  $\mu_{3}/d = 10 - 50 - 50 - 50 - 200 - 10^{3} - 10^{4}$  $m_{1d}/d = .5 - 2 - F - 10 - 20 - 100$ 

#### Iron absorption by intestines and release into blood



#### Antagonism among different metal ions during uptake



Synergism among different metal ions during uptake

Increasing intake of copper in creases the hemoglobin as the same is coupled with the increase uptake of iron through its mobilization

#### Naturally occurring amino acids

| Nonpolar                    |                                                                                                         |
|-----------------------------|---------------------------------------------------------------------------------------------------------|
| Alanine (Ala, A, 89)        | сн <sub>3</sub> —сн < 000-                                                                              |
| Glycine (Gly, G, 75)        | H-ch<00-                                                                                                |
| Isoleucine (Ile, I, 131)    | CH3-CH2-CH-CH-CH-COO-<br>CH3-CH2-CH-CH-NH3+<br>CH3                                                      |
| Leucine (Leu, L, 131)       | СН <sub>3</sub> СН-СН <sub>2</sub> -СН СОО-<br>СН <sub>3</sub> СН-СН <sub>2</sub> -СН NH <sub>3</sub> + |
| Methionine (Met, M, 149)    | CH3-S-CH2-CH2-CH-COO-<br>NH3                                                                            |
| Phenylalanine (Phe, F, 165) | CH2-CH2-CH                                                                                              |
| Proline (Pro, P,115)        | H <sub>2</sub> C CH <sub>2</sub> COO-<br>H <sub>2</sub> C NH <sub>2</sub> H                             |
| Valine (Val, V, 117)        | сн <sub>3</sub> >сн—сн <sup>соо—</sup><br>сн <sub>3</sub> >сн—сн <sup>соо—</sup>                        |
| Acidic                      |                                                                                                         |
| Aspanic acid (Asp, D,132)   | HOOC-CH2-CH-COO-NH3                                                                                     |
| Glutamic acid (Glu, E,147)  | HOOC-CH2-CH2-CH_NH3                                                                                     |
| Tyrosine (Tyr, Y,181)       | но-СН2-СН2-СН                                                                                           |



Basic



#### **Protein groups which participate in metal ion binding**

| Ionizable group             | Location/Residue                | Intrinsic pKa |
|-----------------------------|---------------------------------|---------------|
| α-COOH                      | Carboxyl terminal               | 3.5 – 4       |
| β,γ-COOH                    | Aspartic (Asp) & Glutamic (Glu) | 4 – 5         |
| Imidazole                   | Histidine (His)                 | 6 – 8         |
| $\alpha$ -NH <sub>3</sub> + | Amino terminal                  | 7.5 – 8       |
| Sulfhydryl (-SH)            | Cysteine (Cys)                  | 10            |
| ε <b>-NH3+</b>              | Lysine                          | 10            |
| Phenolic                    | Tyrosine (Tyr)                  | 9.5 – 10.5    |
| Guanidine                   | Arginine (Arg)                  | 12            |
| Hydroxyl (-OH)              | Serine (Ser), Threonine (Thr)   | 12 - 14       |

#### Some metal ion binding motifs in biology (in proteins)



AT3187, a calcium-binding ionophor

# Structure of human serum transferrin – Coordination about Fe





HUMAN SERUM TRANSFERRIN pdb code:1a8e

#### Structure of plastocyanin – Coordination about Cu & Zn



PLASTOCYANIN-pdb code:2w88

#### **Primary coordination spheres in different Zn-enzymes**



#### **Primary coordination spheres in different Cu-enzymes**



#### **Primary coordination spheres in different Fe-enzymes**



#### Likely binding groups for biologically active metal ions

ion Binding group(s)

Geometry

- K<sup>+</sup> Singly charged or neutral oxygen ligands
- Mg<sup>2+</sup> Carboxylate; Phosphate; Nitrogen ligands
- Ca<sup>2+</sup> Carboxylate particularly 'gla' proteins proteins; Less affinity than Mg<sup>2+</sup> for N-ligands; Phosphate
- Mn<sup>2+</sup> Similar to Mg<sup>2+</sup>
- Mn<sup>3+</sup> Imidazole; Tyrosine; sulfur donor (in acid phosphate)
- Fe<sup>2+</sup> Porphyrin; S<sup>2-</sup>; thiols (-SH); NH<sub>2</sub>; carboxylates; O<sup>2-</sup>
- Fe<sup>3+</sup> Porphyrin; carboxylate; tyrosine and other phenolic groups; NH<sub>2</sub>; S<sup>2-</sup>; hydroxamic acids; O<sup>2-</sup>
- Co<sup>2+</sup> Corrin
- Ni<sup>2+</sup> Porphyrin; -SH
- Cu<sup>1+</sup> -SH
- Cu<sup>2+</sup> Amines; carboxylates; imidazole
- Zn<sup>2+</sup> Imidazole; cysteine (-SH); glutamic acid (COO-)
- Cd<sup>2+</sup> Cysteine (-SH)

#### **General functions performed by essential elements in biology**

| Metal     | Intaky         | Function                                                                                                                        |
|-----------|----------------|---------------------------------------------------------------------------------------------------------------------------------|
| Sodium    | 4400           | Charge Carrier, Osmotic Balance                                                                                                 |
| Potassium | 3300           | Charge Carrier, Osmotic Balance                                                                                                 |
| Magnesium | 310            | Structure, Hydrolase & Isomerase                                                                                                |
| Calcium   | 1100           | Structure, Trigger, Charge carrier                                                                                              |
| Vanadium  | £100           | Nitrogen Fixation, Oxygenation, Halogenation, ATPase inhibition                                                                 |
| Manganese | 2.56           | Photosynthesis, Oxidase, St <sup></sup> ucture,<br>Superoxide Dismutase, Dehydrogenase                                          |
| Iron      | 10<br>60<br>20 | Oxygenation and deoxygenation, Dioxygen<br>transport and storage, Electron transfer,<br>Nitrogen fixation, Superoxide dismutase |
|           |                |                                                                                                                                 |
| Cobalt    | 03             | Oxidase, group transfer                                                                                                         |
| Nickel    |                | Hydrogenase, Hydrolase, Dehydrogenase                                                                                           |
| Copper    | 2 \$ 55        | Oxidase, Dioxygen Transport, Electron<br>Transfer, Oxygenation, Superoxide Dismutase                                            |
| Zinc      | 15             | Structure, Hydrolase, Oxidoreductases,<br>Transferase, Lipases, Ligases                                                         |
| Molybde   | num<br>0.155   | Nitrogen fixation, Oxidoroductases,<br>Oxotransfer                                                                              |
| Tungsten  |                | Dehydrogenase                                                                                                                   |

#### **Biological essential ions:**

#### **Functions, recommended intake & binding groups**

| Elecent              | Function(s)                                                                                                                    | necommonaea<br>intake per<br>day (mg) | groups                                                                                                                                                                                 |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sodium               | Osmotic balance, charge neutralization, .<br>gradients and control mechanisms                                                  | 4400                                  | Charged or neutral oxygen ligands                                                                                                                                                      |
| Potassium            | as above + structure stabilization, enzy activation, etc.                                                                      | 3300                                  | do                                                                                                                                                                                     |
| Megnesium            | Enzyme activation, structure stabilizati                                                                                       | 310                                   | Carboxylate; phos-<br>phate; nitrogen                                                                                                                                                  |
| Calcium              | as above + trigger effects                                                                                                     | نىلد                                  | as above, but less<br>affinity for 'N'<br>ligands                                                                                                                                      |
| Crissine             | As counter charge for cations                                                                                                  | 5100                                  | -                                                                                                                                                                                      |
| Vanadiua<br>Carcaium | Control of sodium pump; inhibition of AT<br>F-tignsfergnces.<br>Potentigtion of insulin, action on<br>carbohydrates and lipids | -<br>C.05<br>to<br>U.5                | -                                                                                                                                                                                      |
| kanganese            | Carbohydrate metabolism, superoxide dism<br>pyruvate carolxy+ase, etc.                                                         | 2.5<br>to<br>5.0                      | Similar to magnesium.<br>Mn <sup>3+</sup> : imidazole,<br>tyrosine, 5-donors                                                                                                           |
| Iron                 | öxygen, electron tr∋nsport                                                                                                     | 10 (maies)<br>18 (Fema-<br>145)       | Fe <sup>2+</sup> :Porphyrin; 5 <sup>2-</sup> ;<br>thiols; NH <sub>2</sub> ; CO <sub>2</sub> ; O <sub>2</sub><br>Fe <sup>3+</sup> : as above +<br>phenolic groups +<br>hydroxymic acids |

#### **Biological essential ions:**

#### **Functions, recommended intake & binding groups**

| Cobalt<br>Nickel | Part of vitamin B <sub>12</sub><br>Constituent g urease; reduced hemopoiesi:<br>nickej hydrogenase                                  | 0.3               | Corrin ,<br>Porphyrin, SH etc.                         |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------|
| Copper           | Oxidative enzymos; interaction with iron;<br>Linking of elastin                                                                     | 2 to 5            | SH; amines; car-<br>boxylates;<br>imidazole            |
| Cadmium          | Stimulates eion ation factors in ribosome                                                                                           |                   | SH                                                     |
| Zinc             | as Lewisacid; structure stabilization; inv<br>in enargy metabolism; intranscription and<br>tion                                     | 15                | imidazoie; SH;<br>glutamic acid                        |
| iic Lybdenua     | n Oridases; aldehyde, sulfite, xanthine mei                                                                                         | 0.15<br>to<br>0.5 | Oxo <b>, SH and 'N'</b><br>cont <b>aining Liga</b> nds |
| .ithium          | Control of sodium pump                                                                                                              |                   |                                                        |
| Tin              | (interaction with riboflaven)                                                                                                       |                   | . 5                                                    |
| bat              | (many anzyme effects)                                                                                                               |                   | SH                                                     |
| Fiorine          | Structure of teath and benes; seplaces of<br>inhibits enclase, pywophesphetese                                                      | 1.5<br>to         |                                                        |
| Iodine           | Donstituent of thyroid hermones                                                                                                     | 4<br>4            |                                                        |
| Serenium         | Constituent of gutathione peroxidase and<br>enlymes; protection against exidation of<br>er; thrucytes; interaction with heavy meta. | 0.J5<br>to<br>J.2 | n 1                                                    |
| Silicon          | Carcification; structurar rere incommentiv<br>tissue and osteogenic certs                                                           | 3                 |                                                        |
| Arsenic          | increased arginine -> usea + ornithines; me<br>bolism of methy: compounds                                                           |                   |                                                        |
| Boron            | control of membrane function; nucleic acic<br>synthesis; lignin biosynthesis                                                        |                   |                                                        |

#### **Books where you may find SOME relevant material**

| S.<br>No | Name of the book                                                                      | Author(s)                                                      | Year of<br>Publi-<br>cation | Publisher                          |
|----------|---------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------|------------------------------------|
| 1        | Bioinorganic Chemistry: a short course                                                | Rosette M.<br>Roat-Malone                                      | 2007                        | John Wiley & sons, Inc.            |
| 2        | Bioinorganic Chemistry- an inorganic perspective of life                              | Dimitris P.<br>Kessissoglou                                    | 1995                        | Kluwer Academic Publishers         |
| 3        | Principles of Bioinorganic Chemistry                                                  | Stephen J.<br>Lippard, Jeremy<br>Mark Berg                     | 1994                        | University Science Books           |
| 4.       | Inorganic Biochemistry: An Introduction                                               | James A Cowan                                                  | 1993                        | VCH                                |
| 5        | Bioinorganic Chemistry                                                                | Eckhard Bill                                                   | 1991                        | Springer-Verlag                    |
| 6        | Bioinorganic Chemistry                                                                | Ivano Bertini                                                  | 1994                        | University Science Books           |
| 7        | Bioinorganic Chemistry: The Biological<br>Chemistry of Transition Metals              | Michael<br>Watkinson                                           | 2009                        | John Wiley & Sons, Limited         |
| 8        | Physical methods in bioinorganic chemistry: spectroscopy and magnetism                | Lawrence Que                                                   | 2000                        | University Science Books           |
| 9        | Handbook on metalloproteins                                                           | Ivano Bertini,<br>Astrid Sigel,<br>Helmut Sigel                | 2001                        | CRC Press                          |
| 10       | Bioinorganic chemistry: transition metals in biology and their coordination chemistry | Alfred<br>Trautwein,<br>Deutsche<br>Forschungsgeme<br>inschaft | 1997                        | Deutsche<br>Forschungsgemeinschaft |