

Examination Preparation Learning Resource 2018

MATHEMATICS

GRADE 11 WINTER SCHOOL INTERVENTION PROGRAM

TOPIC: EUCLIDEAN GEOMETRY

LEARNER WORKSHEET

· · · · · · · · · · · · · · · · · · ·	
M Muhamad	Desiree Mare
Senior Mathematics Specialist	D12 Subject Advisor
E-mail: mumu.muhamad@yahoo.com	E-mail: desiree.mare@gau

NAME:

DISCUSSION WILL BE OPEN

1.1 O is the centre of the circle, and ST is a tangent to the circle at T.

Use the diagram to prove the theorem which states that $\hat{STP} = \hat{Q}$.

1.2 CD and CE are produced to A and B respectively so that AE is a tangent to the circle and AB = AE. $A\hat{E}D = 32^{\circ} and \ C\hat{D}E = 63^{\circ}$.

	a) Ĉ	
	b) AÊB	
1.2.2	Prove that ABED is a cyclic quadrilateral.	
1.2.3	Prove that AB is a tangent to the circle through B, D and C.	
1.2.4	Calculate, giving reasons, the size of BDE.	

(a) In the figure below A, B, C and D are points on the circumference of the circle centre O.

- (i) What type of quadrilateral is ABCD? (1)
- (ii) Using the above diagram, prove the theorem which states that $\hat{A}+\hat{C}=180^{\circ}$ (4)

(b) In the diagram below, O is the centre of the circle. BD is a diameter of the circle.

GEH is a tangent to the and C are two points on the FE, BC, CE and BE are $32^{\circ} \text{ and } \widehat{E}_3 = 56^{\circ}.$ with reasons, the values of:

circle at E. F circle and FB, drawn. $\hat{E}_1 =$ Calculate,

(i) \hat{E}_2

(ii) $E\widehat{B}C$	(3
(II) EDC	(5

(iii) \hat{F}

QUESTION 3

(a)
$$A\widehat{D}B = 3x$$
, $A\widehat{D}C = x - 25^{\circ}$. Given $AD = DB$

Determine, with reasons, the numerical value(s) of x for which CD is a tangent to the circle.

(b) Two circles, centres A and B intersect at C and D. CA is produced to point E. AC and AD are tangents to the smaller circle at C and D respectively.
A 1 B
Prove $\hat{A}_1 = C\hat{B}D$
(Hint: you will need to draw in lines to 'complete' the diagram. With the addition of these
lines, you will be able to make use of the facts that:
✓ EC and AD are tangents
$\checkmark \widehat{B}$ is the centre of the smaller circle.)

In the diagram below, PQRS is a cyclic quadrilateral. ST is a tangent to the circle at S and chord SR is produced to V. PQ = QR, $\hat{S}_1 = 42^{\circ}$ and $\hat{S}_2 = 108^{\circ}$.

Determine, with reasons, the size of the following angles:

4.1	Ŷ			(2)

 $4.2 \qquad \stackrel{\wedge}{\mathbf{R}}_{2} \tag{2}$

 $\begin{array}{ccc}
 & & \\
\hline
4.3 & \hat{P}_2 & & \\
\end{array} \tag{2}$

 $4.4 \qquad \hat{R}_3 \tag{2}$

In the diagram below, PA and PT are tangents to a circle at A and T respectively. B and S are points on the circle such that BT produced and AS produced meet at

R and BR = AR. BS, AT and TS are drawn. $\hat{T}_3 = x$ and $\hat{B}_1 = y$.

5.1 Give a reason why $\hat{T}_3 = \hat{A}_2 = x$. (1)

5.2 Prove that:

5.2.1 AB
$$\parallel$$
 ST (5)

5.2.2	$\hat{\mathbf{T}}_4 = \hat{\mathbf{A}}_1$	(4)
5.2.3	DTAD is a avalia quadrilatoral	(2)
J.2.3	RTAP is a cyclic quadrilateral	(2)