Time: 1 hour Marks: 50

Question 1

1.1 Write down the next three terms and the general (or nth term) of each pattern:

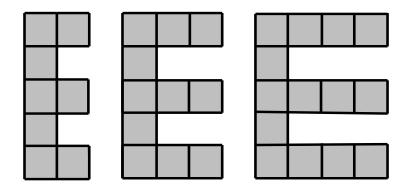
1.1.5
$$x-1; 2x-2; 3x-3; 4x-4;...$$
 1.1.6 $\frac{1}{2}; \frac{1}{3}; \frac{1}{4}; \frac{1}{5};...$

1.1.7
$$\frac{1}{2}$$
; 1; $\frac{3}{2}$; 2;... 1.1.8 $3\frac{3}{4}$; $3\frac{1}{2}$; $3\frac{1}{4}$; 3;... (24)

Question 2

2.1 Consider the following pattern.

 $\textcircled{\$ \textcircled{\$ \textcircled{\$} \textcircled{\$} \textcircled{\$} \textcircled{\$}}$


2.1.2 How many flowers will be used in the
$$n^{th}$$
 arrangement (2)

2.2 The height of water in a tank is recorded whilst the tank is being filled. The results have been recorded at five minute intervals:

	First reading	After 5 minutes	After 10 minutes	After 15 minutes	After 20 minutes
Level in cm	3	11	19	27	35

- 2.2.1 What will be the height of the water after 25 minutes? (1)
- 2.2.2 What will be the height after an hour? (2)
- 2.2.3 At what rate is the level rising? Give your answer in cm/minute. (2)
- 2.2.4 What will be the water level after 5n minutes? (3)
- 2.2.5 After how many minutes will the water level be 403 cm? (3)

2.3 Consider the following sequence of Es:

- 2.3.1 How many blocks will be needed to build the 10th E? (3)
- 2.3.2 How many blocks will be needed for the *n*th E? (3)
- 2.3.3 116 blocks are needed for the kth E. Calculate the value of k. (3)
- 2.3.4 Can the total number of blocks ever be a multiple of 10? Explain. (3)

[26]