DIFFERENT METHODS TO FACTORISE A CUBIC POLYNOMIAL (3RD DEGREE)	
METHOD AND DESCRIPTION OF STEPS	EXAMPLES
FACTORISE BY GROUPING • Group terms in two pairs	A) $f(x) = x^3 + 27$ $= (x + 3)(x^2 - 3x + 9)$ Cannot factorise further B) $f(x) = 8x^3 - 1$ $= (2x - 1)(4x^2 + 2x + 1)$ Cannot factorise further $f(x) = x^3 + 3x^2 - 4x - 12$ $= x^2(x + 3) - 4(x + 3)$
 Take out common factor from each pair Two sets of brackets now become common factor Factorise bracket further if possible 	$= (x+3)(x^2-4)$ = (x+3)(x+2)(x-2)
FACTORISE BY INSPECTION • Find one linear factor using factor theorem • Find other factor (quadratic expression) by inspection	$f(x) = 2x^{3} - 2x^{2} - 10x - 6$ $f(-1) = 2(-1)^{3} - 2(-1)^{2} - 10(-1)$ $- 6 = 0$ $\therefore (x + 1) \text{ is a factor}$ $f(x) = (x + 1)(ax^{2} + bx + c)$ Now find these coefficients Start with a and c : $1 \times a = 2 \therefore a = 2$ $1 \times c = -6 \therefore c = 6$ You now need to find b : Multiply the two brackets; the two $x^{2}\text{-terms need to give you } -2x^{2}:$ $f(x) = (x + 1)(2x^{2} + bx + 6)$ $bx^{2} + 2x^{2} = -2x^{2} \therefore b = -4$ $\therefore f(x) = (x + 1)(2x^{2} - 4x + 6)$ $= (x + 1)(2x + 2)(x - 3)$
SYNTHETIC OR LONG DIVISION Find one linear factor using factor theorem Find other factor (quadratic expression) by long division or synthetic division (SEE NEXT PAGE)	$f(x) = 2x^3 - 2x^2 - 10x - 6$ $f(-1) = 2(-1)^3 - 2(-1)^2 - 10(-1)$ $- 6 = 0$ $\therefore (x + 1) \text{ is a factor}$ $f(x) = (x + 1)(ax^2 + bx + c)$ Find a, b, c using synthetic division