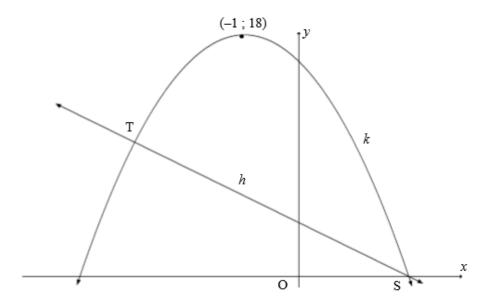
NATIONAL (May/June)

QUESTION 4

Given the exponential function: $g(x) = \left(\frac{1}{2}\right)^x$

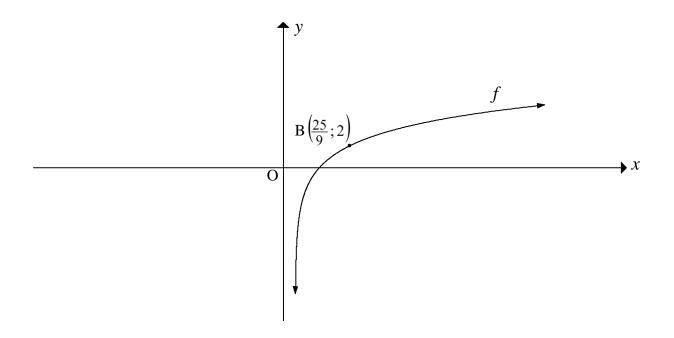

- 4.1 Write down the range of g. (1)
- 4.2 Determine the equation of g^{-1} in the form y = ... (2)
- 4.3 Is g^{-1} a function? Justify your answer. (2)
- 4.4 The point M(a; 2) lies on g^{-1} .
 - 4.4.1 Calculate the value of a. (2)
 - 4.4.2 M^{\prime} , the image of M, lies on g. Write down the coordinates of M^{\prime} . (1)
- 4.5 If h(x) = g(x+3) + 2, write down the coordinates of the image of M on h. (3) [11]

QUESTION 5

- 5.1 Given: $f(x) = \frac{1}{x+2} + 3$
 - 5.1.1 Determine the equations of the asymptotes of f. (2)
 - 5.1.2 Write down the y-intercept of f. (1)
 - 5.1.3 Calculate the x-intercept of f. (2)
 - 5.1.4 Sketch the graph of f. Clearly label ALL intercepts with the axes and any asymptotes. (3)

(2)

Sketched below are the graphs of $k(x) = ax^2 + bx + c$ and h(x) = -2x + 4. Graph k has a turning point at (-1; 18). S is the x-intercept of h and k. Graphs h and k also intersect at T.


- 5.2.1 Calculate the coordinates of S.
- 5.2.2 Determine the equation of k in the form $y = a(x+p)^2 + q$ (3)
- 5.2.3 If $k(x) = -2x^2 4x + 16$, determine the coordinates of T. (5)
- 5.2.4 Determine the value(s) of x for which k(x) < h(x). (2)
- 5.2.5 It is further given that k is the graph of g'(x).
 - (a) For which values of x will the graph of g be concave up? (2)
 - (b) Sketch the graph of g, showing clearly the x-values of the turning points and the point of inflection. (3)

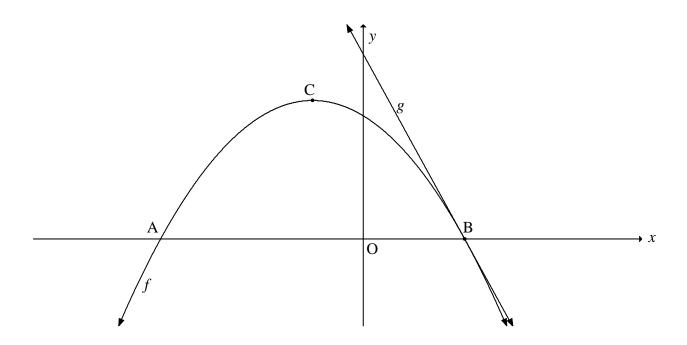
 [25]

FREE STATE

QUESTION 4

In the diagram, the graph of $f(x) = \log_a x$ is drawn. $B\left(\frac{25}{9}; 2\right)$ is a point on f.

- 4.1 Determine the value of a. (2)
- 4.2 Determine the value(s) of x for which $f(x) \le 0$. (2)
- 4.3 Write down the equation of f^{-1} , the inverse of f, in the form y = ... (2)
- 4.4 B" is the reflection of B on the graph $g(x) = \left(\frac{3}{5}\right)^x$.


 Write down the coordinates of B". (2)
- 4.5 Determine for which value(s) of x will $f^{-1}(x) > \frac{25}{9}$. (2) [10]

In the diagram below, the graph of $g(x) = \frac{-2}{x+4} - 3$ is drawn. The graph f passes through A, the point of intersection of the asymptotes of g, and cuts the x-axis and the y-axis at L and R respectively. K is the y-intercept of g.

- 5.1 Determine the equation of f in the form y = mx + c. (3)
- 5.2 Write down the equation of the asymptotes of g(x-2) + 1. (2)
- 5.3 Calculate the length of KR. (3)
- 5.4 The graph of h, where h is the reflection of f in the line y = -7, passes through the point S(-4; p). Calculate the area of ΔARS . (4) [12]

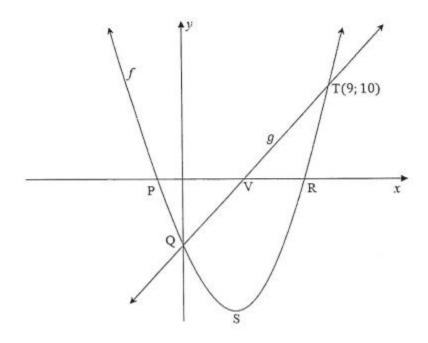
In the diagram below, the graphs of $f(x) = ax^2 + bx + 16$ and g(x) = -12x + 24 are drawn. The graph of g is a tangent to the graph of f at B. A and B are the x-intercepts of f and C, the turning point.

- 6.1 Calculate the coordinates of B. (2)
- 6.2 Determine the values of a and b. (6)
- 6.3 If it is given that $f(x) = -2x^2 4x + 16$, determine:

6.3.1 The range of
$$f$$
 (5)

6.3.2 The value(s) of
$$x$$
 for which $f'(x)$. $g(x) > 0$ (2) [15]

EASTERN CAPE


QUESTION 4

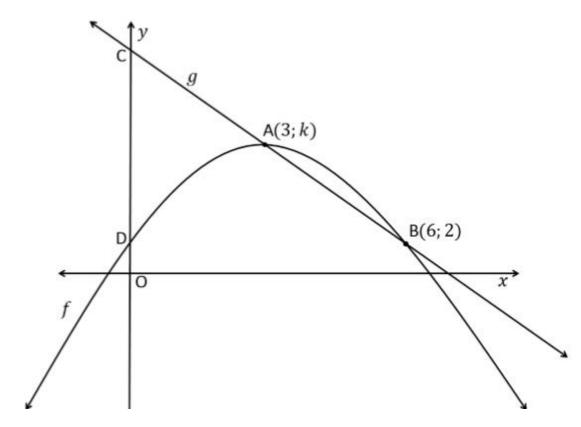
Given:
$$f(x) = 1 + \frac{2}{x+3}$$

- 4.1 Write down the equations of the asymptotes of f. (2)
- 4.2 Calculate the x and y intercepts of f. (3)
- 4.3 Draw a neat sketch of f, clearly indicating all intercepts with the axes and any asymptotes.
 (4)
- 4.4 Given that h is a reflection of f in the x-axis, determine the equation of the axis of symmetry of h having a positive gradient. (4)[13]

QUESTION 5

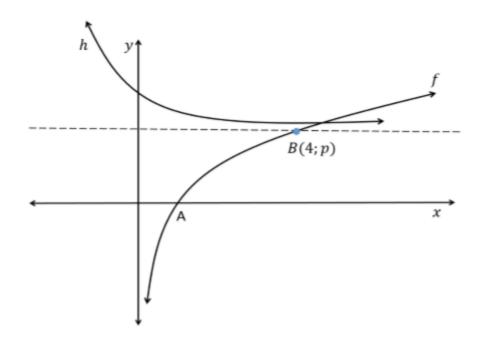
The diagram below shows the graphs of $f(x) = x^2 - 7x - 8$ and g(x) = mx + c. P and R are x-intercepts of f, and V is the x-intercept of g. S is the turning point of f. f and g intersect on the y-axis at Q and also at T(9; 10).

- Write down the coordinates of Q.
- 5.2 Determine the equation of g. (3)
- 5.3 Write down the equation of f in the form $y = a(x+p)^2 + q$. (2)
- 5.4 Hence, or otherwise, determine the coordinates of S, the turning point of f. (2)
- 5.5 Determine the coordinates of a point W, on f, such that the average gradient between T and W is 1.
 (5)
- 5.6 Determine the values of x for which f(x). g(x) < 0. (4) [17]


Given: $f(x) = \log_m x$

- 6.1 Determine the value of m, if the point (64;3) lies on f. (2)
- 6.2 Determine the equation of f^{-1} in the form y = ... (2)
- Draw a neat sketch of f^{-1} , showing all intercepts with the axes. Indicate at least one other point on your graph. (2)
- 6.4 Write down the range of h if: $h(x) = f^{-1}(x) 2$ (1)

WESTERN CAPE (Practice paper)


QUESTION 5

Sketched below are the graphs of g(x) = -3x + 20 and $f(x) = ax^2 + bx + c$. Graph f has a turning point at A(3; k). Graph f and g intersects at A and B(6; 2).

- 5.1 Calculate the numerical value of k, the y-coordinate of A. (2)
- 5.2 Determine the range of y = -f(x). (2)
- 5.3 Calculate the numerical values of a, b and c. (6)
- 5.4 Determine the value(s) of x for which f(x) > g(x). (2)
- 5.5 Describe the nature of the roots for f(x) 11. (2)
- 5.6 Determine the value(s) of x for which f'(x). g'(x) > 0. (2) [16]

Sketched below are the graphs of $h(x) = \left(\frac{1}{2}\right)^x + q$ and $f(x) = \log_2 x$. Graph f and the asymptote of h intersect at B(4; p).

- 6.1 Write down the coordinates of A, the x –intercept of f. (1)
- 6.2 Determine the domain of f. (1)
- 6.3 Determine the equation of f^{-1} in the form y = ... (2)
- 6.4 Sketch the graph of f^{-1} . Clearly labelling the intercept(s) with the axes as well as the coordinates of any one other point on the graph. (3)
- 6.5 Determine the equation of the asymptote of h. (2)
- Describe, in words, the transformation of h to f^{-1} . (2) [11]

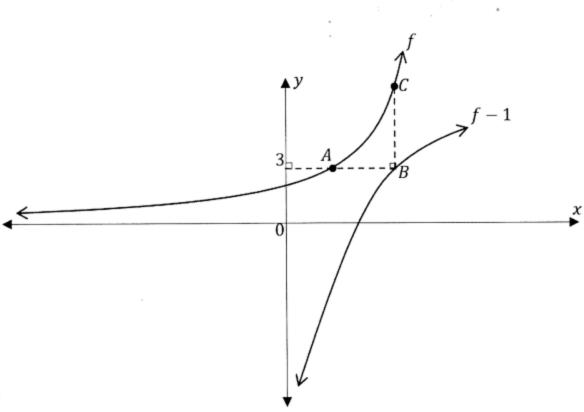
LIMPOPO

QUESTION 4

- 4.1 The sum to n terms of a sequence of numbers is given as : $S_n = \frac{n}{2}(5n+9)$.
 - 4.1.1 Calculate the sum to 23 terms of the sequence. (3)
 - 4.1.2 Hence calculate the 23^{nd} term of the sequence. (2)
- 4.2 If x is a real number, show that the following sequence can NOT be geometric:

$$1; x+1; x-3; \dots$$
 (4)

[9]


QUESTION 5

- 5.1 Consider the function: $f(x) = \frac{-6}{x-3} 1$.
 - 5.1.1 Calculate the y-intercept of f. (2)
 - 5.1.2 Calculate the x-intercept of f. (3)
 - 5.1.3 Sketch the graph of f, showing the asymptotes and the intercepts with the axes. Use the ANSWER SHEET given. (4)
 - 5.1.4 For which values of x is f(x) > 0? (2)
 - 5.1.5 Calculate the average gradient of f between x = -2 and x = 0. (4)
- 5.2 Draw a sketch graph of $y = ax^2 + bx + c$, a < 0, b < 0, c < 0 and $ax^2 + bx + c = 0$ has only ONE solution. (4)

[19]

In the diagram below $f(x) = 2^x$ and f^{-1} are given. A and C are points on f.

B is a point on f^{-1} . CB and AB are perpendicular to each other.

- 6.1 Write down the equation of $f^{-1}(x)$ in the form $y = \dots$ (2)
- 6.2 Calculate the length of AB. (5)
- 6.3 Calculate the length of CB, where CB \perp AB. (3)
- 6.4 Write down the domain of $f^{-1}(x)$. (1)

[11]