

GRADE 12 MATHEMATICS SOLUTIONS

ANAYTICAL GEOMETRY MIND MAP

ANALYTICAL GEOMETRY

1. REVISION

Distance Midpoint Gradient Straight line inclination

3. EQUATION OF THE TANGENT TO A CIRCLE

2. EQUATION OF A CIRCLE

Circle centred at the origin Circle centred off the origin

SOLUTIONS

SECTION A

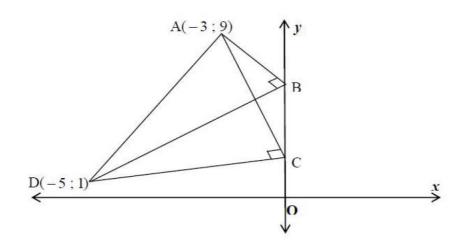
1.1.1	$E = \left[\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right]$ $= \left[\frac{3+5}{2}; \frac{5+3}{2}\right]$ $E = (4; 4)$	✓ substitution into correct formula ✓ co-ordinates of E.	(2)
1.1.2	$m_{AB} = m_{DC}$ $\frac{y - y_1}{x - x_1} = \frac{3 - 1}{5 + 1}$ $\frac{y - 5}{x - 3} = \frac{2}{6}$ $\therefore y - 5 = 2 & x - 3 = 6$ $\therefore y = 7 & x = 9$ $B(9; 7)$ OR $\frac{-1 + x}{x} = 4 , \qquad \frac{1 + y}{x} = 4$ $x = 9, y = 7$ $B(9; 7)$	✓ equating two gradients. ✓ simplification ✓ co-ordinates for B $ \frac{-1+x}{x} = 4 $ ✓ $\frac{1+y}{x} = 4$ ✓ co-ordinates for B	(3)
1.1.3	$F = \frac{-1+5}{2}; \frac{1+3}{2}$ $F = [2; 2]$ $y - y_1 = m(x - x_1)$ $y - 2 = 1(x - 2)$ $y = x - 2 + 2$ $y = x$	✓ co-ordinates of F ✓ formula ✓ correct value of m ✓ correct substitution into formula ✓ Answer	(5)
1.2	$m_{\text{DE}} = m_{\text{EG}}$ $\frac{2,5-4}{t+1-4} = \frac{3}{5}$ $\frac{-1,5}{t-3} = \frac{3}{5}$	✓ equating gradients ✓ correct substitution	
	3t - 9 = -7.5 3t = 1.5 t = 0.5	✓ simplification ✓ answer	(4)

1.3			
	AB = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ = $\sqrt{(9 - 3)^2 + (7 - 5)^2}$ = $\sqrt{40}$ = $\sqrt{(-1 - 3)^2 + (1 - 5)^2}$ = $\sqrt{32}$ ∴ ABCD is NOT a rhombus because AB ≠AD	✓ substitution in formula ✓ answer ✓ answer ✓ statement ✓ reason	
	OR $m_{AC} = \frac{y_2 - y_1}{x_2 - x_1}$ $= 5 - 3$	✓ substitution in formula	
	$= \frac{5-3}{3-5} = -\frac{2}{3} m_{DB} = \frac{3}{5} m_{AC} \times m_{DB} = -\frac{2}{5} \times \frac{3}{5}$	✓ answer ✓ answer	
	$m_{AC} \times m_{DB} = -\frac{2}{3} \times \frac{3}{5}$ $= -\frac{2}{5}$ $\neq -1$ \therefore ABCD is not a rhombus because: $m_{AC} \times m_{DB} \neq -1$	✓ statement ✓ reason	(5)
			[19]

2.1	$m_{PR} = \frac{2+4}{9+4} = \frac{6}{13}$	✓ vervang met die formule antwoord ✓ (3)
2.2	$\tan \theta = \frac{6}{13}$ $\theta = 24.78^{\circ}$ $\alpha = 90^{\circ} - 24.78^{\circ}$ $= 65.22^{\circ}$	$\sqrt{\tan \theta} = \frac{6}{13}$ $\sqrt{\theta} = 24.78^{\circ}$ $\sqrt{\alpha} = 90^{\circ} - 24.78^{\circ}$ $\sqrt{\text{antwoord}}$ (4)
2.3	$(a-9)^2 + (10-2)^2 = (4\sqrt{5})^2$ $a^2 - 18a + 81 + 64 = 80$ $a^2 - 18a + 65 = 0$ (a-13)(a-5) = 0 $a = 13N/A$ or $\therefore a = 5$	✓ vervang met die formule $\checkmark 4\sqrt{5}$ $\checkmark a^2 - 18a + 65 = 0$ $\checkmark (a - 13) (a - 5)$ $\checkmark a = 13_{NA}$ \checkmark antwoord (6)

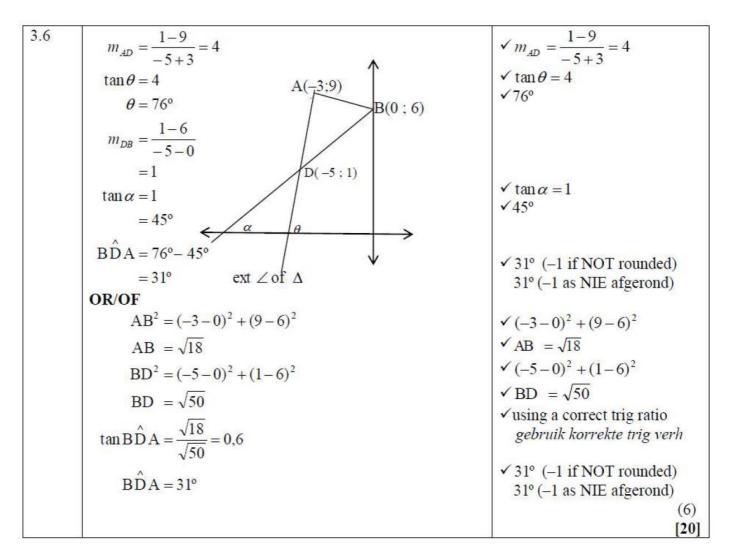
2.4
$$m_{PR} = \frac{6}{13} \text{ and } Q(5; 10)$$

$$y - y_1 = m(x - x_1)$$

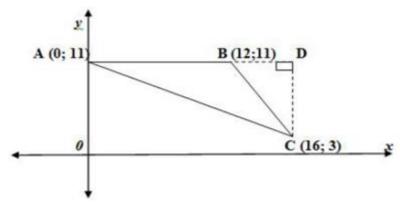

$$y - 10 = \frac{6}{13}(x - 5)$$

$$y = \frac{6}{13}x + \frac{100}{13}$$

$$\sqrt{m_{PR}} = \frac{6}{13}$$


$$\sqrt{vervang met die korrekte formule}$$

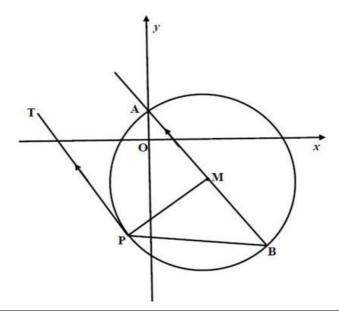
$$\sqrt{antwoord}$$
(3)


3.1	$M\left(\frac{-3-5}{2}; \frac{9+1}{2}\right)$ M(-4; 5)	$\sqrt{x} = -4$ $\sqrt{y} = 5$	(2)
3.2	$AM^2 = (-4+3)^2 + (5-9)^2$ OR/OF $DM^2 = (-5+4)^2 + (1-5)^2$ = 1 + 16 = 17 \therefore r = $\sqrt{17}$	✓ correct substitution into distance formula korrekte vervanging in afstand formule ✓ $r = \sqrt{17}$	
	OR/OF $AD^{2} = (-5+3)^{2} + (1-9)^{2}$ $= 4 + 64$ $= 68$ $\therefore AD = \sqrt{68}$ $\sqrt{68}$	✓ correct substitution into distance formula korrekte vervanging in afstand formule	
	$\therefore \text{ radius} = \frac{\sqrt{68}}{2}$ $= \sqrt{17}$	\checkmark r = $\sqrt{17}$	(2)
3.3	Yes, the circle will pass through point C Ja, die sirkel gaan deur punt C $\hat{B} = \hat{C} = 90^{\circ}$, AD is the diameter line subtends equal $\angle s$.	✓ yes / ja ✓ reason / rede	
	$B = C = 90^{\circ}$, AD die middellyn <i>lynstuk onderspan gelyke</i> $\angle e$		(2)

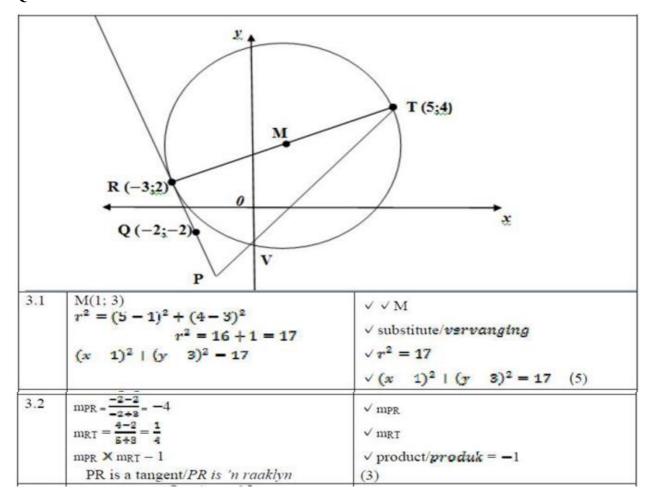
3.4	B(0;y)	
	$m_{\rm AB} \times m_{\rm BD} = -1$	$\checkmark m_{\rm AB} \times m_{\rm BD} = -1$
	$\left(\frac{9-y}{-3-0}\right)\left(\frac{1-y}{-5-0}\right) = -1$ $(9-y)(1-y) = -15$	$\checkmark \left(\frac{9-y}{-3-0}\right) / \left(\frac{1-y}{-5-0}\right)$
	$9-10y + y^{2} = -15$ $y^{2}-10y + 24 = 0$ $(y-6)(y-4) = 0$	✓ standard form standaardvorm ✓ factors / faktore
	$\therefore y = 6 \text{ or } y = 4 \qquad \therefore B(0; 6)$ OR/OF	✓ B(0; 6) (5)
	$AB^2 + BD^2 = AD^2$	
	$(9-y)^{2} + (-3-0)^{2} + (-5-0)^{2} + (1-y)^{2} = (-5+3)^{2} + (1-9)^{2}$ 81-18y + y ² + 9 + 25 + 1 - 2y + y ² = 4 + 64	$\sqrt{(9-y)^2 + (-3-0)^2} +$
		$(-5-0)^2 + (1-y)^2$
	$2y^2 - 20y + 48 = 0$	$\checkmark (-5+3)^2 + (1-9)^2$
	$y^2 - 10y + 24 = 0$	✓ standard form/ Standaardvorm
	(y-6)(y-4) = 0 y = 6 or y = 4	✓ factors / faktore
	∴ B(0;6)	✓ B(0; 6)
2.5		(5)
3.5	$m_{AB} = \frac{9 - 6}{-3 - 0}$ = -1	
	$m_{\parallel} = -1$	$\checkmark m_{\parallel} = -1$
	$y - y_1 = m(x - x_1)$ OR/OF $y = -x + c$	
	y-1 = -1(x+5) $-5 = -1+cy-1 = -x-5$ $c = -4$	✓ substitution of (-1; 5) vervanging van (-1; 5)
	y = -x - 4 $y = -x - 4$ $y = -x - 4$	$\checkmark y = -x-4$
		(3)

4.1	$\frac{x_D - 1}{2} = 2 \qquad \frac{y_D + 0}{2} = 2$ $x_D = 5 \qquad x_D = 4$ D(5; 4)	$\sqrt{x_D} = 5$ $\sqrt{y_D} = 4$ (2)
4.2	$m_{CD} = \frac{4 - (-2)}{5 - 2}$ $= 2$ $\tan \alpha = 2$ $\therefore \alpha = 63,4^{\circ}$	✓ substitution into gradient formula ✓ tan α = 2 ✓ answer (3)

4.2		
4.3	$m_{AB}=m_{CD}=2$ AB CD, equa	al gradients $\sqrt{m_{AB}} = 2$
	y = 2x + c	
	0 = 2(-1) + c	✓ subst (-1; 0)
	c = 2	✓ answer
	y = 2x + 2	(3)
4.4		
	$m_{AD} = \frac{4 - (0)}{5 - (-1)}$	
	$=\frac{2}{3}$	$\sqrt{m} = \frac{2}{3}$
	$\tan (\angle \text{ of inclination of AD}) = \frac{2}{3}$	
	\angle of inclination of AD = 33,7°	√33,7°
	$\theta = 63.4^{\circ} - 33.7^{\circ}$ $= 29.7^{\circ}$	√29,7°
	= 29,7°	(3)
4.5		
	3AB = DC	
	$\therefore 9AB^2 = DC^2$	
	$9[(x+1)^2 + (y-0)^2] = (5-2)^2 + (4+1)^2$	- 2) ² ✓ substitution
	$9[(x+1)^2 + y^2] = 45$	
	$AB//DC$, $\therefore \frac{y-0}{x+1} = 2$	
	$(x+1)^2 + y^2 = 5$ (1)	
	$(x+1) + y = 3 \dots (1)$ $y = 2x + 2 \dots (2)$	
	Substitute (2) in (1) $(x + 1)^2 + (2x + 2)^2 = 5$	✓ substitute $y = 2x + 2$
	$x^2 + 2x + 1 + 4x^2 + 8x + 4 - 5 =$	= 0 ✓ standard form
	$5x^2 + 10x = 0$ 5x (x + 2) = 0	(National State S
	x # 0 ; x = -2	$\checkmark x = -2$
	Substitute $x = -2$ in (1) y = -2	✓ y = -2
	B(-2: -2)	. y2
		(5)
		38.00
		[16]


5.1	y = 11 $AB = 12$	$\checkmark \lor y = 11$ $\checkmark AB = 12 $ (3)
52	D(16;11)	✓ ✓ (2)
5.3	M(8; 7)	✓ ✓ (2)
5.4	$m_{AC} = \frac{3-11}{16} = -\frac{8}{16} = -\frac{1}{2}$ $m_{line} = 2$ $y - 7 = 2(x-8)$ $y = 2x - 9$	$\sqrt{-\frac{1}{2}}$ $\sqrt{\text{mine}} = 2$ $\sqrt{\text{substitution/}vervanging}$ $\sqrt{\text{equation /}vergelyking}$ (4)
5.5	y = 2(12) - 9 = 15 ≠11 No, it does not pass through B/ /Nee, dit gaan nie deur B	√ substitute/vervang √ ≠ 11 No, it does not pass through B/ Nee, dit gaan nie deur B (2)
5.6	$\tan \theta = \text{mBC} = \frac{11-8}{12-16}$ $\tan \theta = -2$ $\theta = 116,57^{\circ}$	√ tan θ √ -2 √ 116,57° (3)

ubstitute/vervang


SECTION B

1.1		
	3x - 4y + 8 = 0	
	3(0) - 4y + 8 = 0	$\checkmark x = 0$
	y = 2	
	B(0;2)	✓ answer (2)
1.2		
	$BC^2 = (0-3)^2 + (2+2)^2$	✓ substitution
	= 25	✓ answer
	$(x-3)^2 + (y+2)^2 = 25$	✓ equation
	$x^2 - 6x + 9 + y^2 + 4y + 4 = 25$	✓ expansion (4)
	$x^2 - 6x + y^2 + 4y - 12 = 0$	
1.3		
	x = 8 or $x = -2$	√√ equations
	t = -8 or t = 2	√√1-values
		Answer only full
		marks
		(4)
1.4.1		
	BD = BC = 5	√ answer
		(1)
1.4.2		

	B(0;2) and $D(x;y)$	BD: $3x - 4y + 8 = 0$	
	$25 = (x-0)^2 + (y-2)^2$		✓ distance formula
	$25 = x^2 + y^2 - 4y + 4$	$x = \frac{4y - 8}{3}$	✓ substitution
	$25 = \left(\frac{4y - 8}{3}\right)^2 + y^2 - 4y + 4$		√ expansion
	$25 = \frac{16y^2 - 64y + 64}{9} + y^2 - 4y + 4$ $225 = 16y^2 - 64y + 64 + 9y^2 - 36y + 4$	36	✓ standard form
	$0 = 25y^{2} - 100y - 125$ $0 = y^{2} - 4y - 5$ $0 = (y - 5)(y + 1)$ $y = 5 \text{ or } y = -1$		✓ <i>y</i> -value ✓ <i>x</i> - value (6)
	∴ $y = 5$ D(4;5) OR $25 = x^2 + y^2 - 4y + 4$	$y = \frac{3x + 8}{4}$	✓ distance formula
	$25 = x^{2} + \left(\frac{3x+8}{4}\right)^{2} - 4\left(\frac{3x+8}{4}\right) + 4$ $125 = \frac{9y^{2} + 48x + 64}{16} - 3x - 8$		✓ substitution
	$0 = 25x^2 - 400$ $0 = x^2 - 16$		✓ expansion ✓ standard form
	0 = x - 10 $0 = (x - 4)(x + 4)$		✓ x-value
	$x = 4 \text{ or } x = -4$ $\therefore x = 4$ $D(4;5)$		✓ <i>y</i> - value (6)
1.5	-		
	E(2;-9) $C(3;-2)$ $D(4;5)$		
	$m_{EC} = \frac{-2+9}{3-2}$ = 7 $m_{CD} = \frac{5+2}{4-3}$ = 7	$m_{ED} = \frac{-9 - 5}{2 - 4}$ $= 7$	✓ gradient of EC ✓ gradient of CD ✓ conclusion (3)
	$\therefore E, C \text{ and } D \text{ are collier}$		Any two gradients
			[20]

2.1	$x^2 - 2x + y^2 + 4y - 5 = 0$	$\checkmark (x-1)^2 + (y+2)^2$
	$x^{2}-2x + (1)^{2} + y^{2} + 4y + (2)^{2} = 5 + 1 + 4$ $(x-1)^{2} + (y+2)^{2} = 10$ $M(1;-2)$	✓10 ✓✓answer (4)
2.2		
	$T\stackrel{\circ}{P}M = 90^{\circ}$ (radius \perp tangent) $P\stackrel{\circ}{MB} = T\stackrel{\circ}{P}M$ (alternate $\angle s$) $= 90^{\circ}$	✓ TPM = 90° ✓ radius ⊥ tangent ✓ answer (3)
2.3		
	PM: $3y - x + 7 = 0$ $y = \frac{1}{3}x - \frac{7}{3}$ $m_{AB} = -3$ Equation of AB: $y - y_1 = m(x - x_1)$ y + 2 = -3(x - 1) y = -3x + 1	\checkmark m _{PM} = $\frac{1}{3}$ \checkmark m _{AB} = -3 \checkmark sub. $(1; -2)$ \checkmark answer (4)
2.4	A (0; 1)	$\checkmark x$ - coordinate $\checkmark y$ -coordinate (2)
2.5	$TM = \sqrt{80}$: $PM = \sqrt{10}$	$\checkmark\sqrt{10}$
	PT = $\sqrt{TM^2 - PM^2}$ (Pythagoras thm) = $\sqrt{80-10}$ = $\sqrt{70}$ or 8,37	$\sqrt{80-10}$ $\sqrt{70}$ or 8,37 (3) [16]

3.3	Y int: $(0-1)^2 + (y-3)^2 = 17$ $1+y^2-6y+9=17$ $y^2-6y-7=0$ (y-7)(y+1)=0 y=-1 or/of y=7 V(0;-1)	$ \sqrt{\text{let } x} = 0 $ $ \sqrt{\text{ standard/standaard vorm}} $ $ \sqrt{y} = -1 \text{ or/of } y = 7 $ $ \sqrt{V(0; -1)} $ (4)
3.4	$mpT = \frac{4+1}{5-0} = 1$ $tan\alpha = 1$ $\alpha = 45^{\circ}$ $tan\beta = -4$ $\beta = 104^{\circ}$	\sqrt{mpT} $\sqrt{\tan \alpha} = 1$ $\sqrt{\alpha} = 45^{\circ}$ $\sqrt{\tan \beta} = -4$
	0 = 59°	$\sqrt{\beta} = 104^{\circ} \sqrt{\theta} = 59^{\circ}$ (6)

4.1	$r^2 = (2-4)^2 + (3-5)^2$ = 8		✓ subst into distance formula
	$(x-2)^2 + (y-3)^2 = 8$		√ 8
			$\begin{array}{c} \checkmark (x-2)^2 \\ \checkmark (y-3)^2 \end{array}$
4.2	5.2		(4)
4.2	$m_{NP} = \frac{5-3}{4-2} = 1$		$\checkmark m_{NP} = 1$
	$m_{PT} = -1$ $y = -x + c$	NP \perp PT, product of gradients = -1	$\checkmark m_{PT} = -1$
	5 = -4 + c		\checkmark subst (5; 4) \checkmark $c = 9$
	c = 9 $y = -x + 9$		v c = 9
	0 = -x + 9		$\checkmark y = -x + 9$
	$x = 9$ $\therefore T(9; 0)$		
			✓ coordinates of T (6)
4.3	$PT = \sqrt{(9-4)^2 + (5-0)^2}$		✓ substitution into distance formula
	$= \sqrt{50}$ $= 5\sqrt{2}$		$\sqrt{50}$ or $5\sqrt{2}$ (2)
4.4	$Area = \pi \times PT^2$		✓ substitution into
	$=\pi \times 50$		area formula ✓ 157
4.5	= 157		(2)
	$\tan N\hat{P}T = \frac{\sqrt{8}}{\sqrt{50}}$		$\sqrt{\tan N\hat{P}T} = \frac{\sqrt{8}}{\sqrt{50}}$
	$N\hat{P}T = 21.8^{\circ}$		√21,8° (2)
4.6	NP = NM	radii radii	✓ S/R
	PT = TM	two pairs of adjacent sides equal in	✓ S/R
	∴ MNPT is a kite	length	✓ reason
			(3)
			[23]