

QUESTION 1

1.1	D√√	(2)
1.2	C√√	(2)
1.3	A√√	(2)
1.4	C√√	(2)
1.5	B√√	(2)

[10]

QUESTION 2

2.1	B√√		(2)
••	2		(=)

2.3 Chloroethene $\checkmark \checkmark$ (OR 1-Chloroethene) (2)

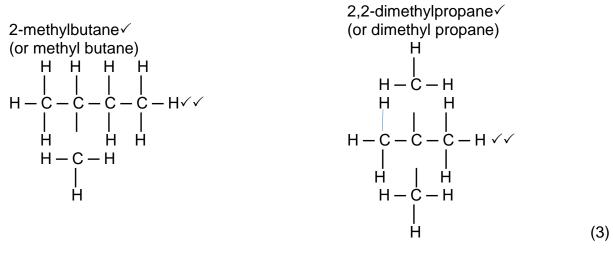
2.5 Carboxylic acid
$$\checkmark$$
 (1)

H H H H O $H - C - C - C - C - C - C - H \checkmark$ H - H H H H (2)

2.7
$$-C - H \checkmark$$
 (1) [10]

H- C- H√

Ĥ.


QUESTION 3

3.1.1 Boiling does not involve breaking the chemical (intra molecular) bonds between atoms. ✓ OR Boiling involves overcoming the intermolecular forces between molecules.
(1)

3.1.2 The longer chain in pentane provides greater surface area with stronger London forces. \checkmark

More energy is required to overcome the stronger forces. \checkmark (2)

3.1.3 **OPTION 1:**

3.2

н н н н $H - C - C = C - C - H \checkmark \checkmark$ (2)

OPTION 2:

3.3 A series of organic compounds that can be described by the same general formula OR in which one member differs from the next with a CH₂ group. \checkmark \checkmark (2) (1) 3.4.1 B√ (1)

3.5 - increase in branching (in A) makes the molecule more spherical (compact) with less surface area over which the London forces work.√

- This decreases the strength of London forces (in A). ✓
- Less energy is required to overcome the London forces (in A). \checkmark

-Tł	nere will be more molecules/ higher vapour pressure above the surface o	f the
	substance (A).	(3)
~ ·		

3.6.1 D	(1)
3.6.2 C	(1)
	[17]

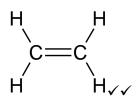
QUESTION 4

Ο

Esterification / Condensation ✓ 4.1.1

(1)

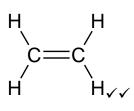
(1) 4.1.3 Propanoic acid ✓ (1)


4.2.1

	1		
Element	С	Н	0
m – m	3.758	0.316	1.251
$n = \frac{1}{M} \checkmark$	<u> </u>	-	$\frac{1}{1}$
171	12	1	16
	= 0.313	= 0.316	= 0.078
Divide by smallest	= 1	= 1	= 0,24 (x4)
	= 4	= 4	= 0,24 (x4) = 1 ×
Empirical formula:	C4H4O 🗸		

(6)

4.2.2 $(C_4H_4O)_n = 136$ $(12x4 + 1x4 + 16)_n = 136$ n = 2Molecular formula = $C_8H_8O_2 \checkmark \checkmark$ (2) 4.3.1 Dehydration / Elimination \checkmark (1) 4.3.2 Concentrated sulphuric acid / H₂SO₄ / Phosphoric acid / H₂PO₄ \checkmark (1)


4.3.3

(2)

4.4.1

4.4.2

Addition√

(2)

(1) [18] TOTAL: 55