

GRADE 12

PHYSICAL SCIENCES MONTHLY TEST

APRIL 2020

TOPIC: NEWTON'S LAWS

QUESTION PAPER

MARKS: 55

TIME: 1:10 HOURS

This question paper consists of 6 pages

INSTRUCTIONS:

- 1. Attempt ALL questions.
- Round off your final answers to a minimum of TWO decimal places
- 3. Write neatly and legibly.

QUESTION 1: Multiple-choice questions

1.1 A block, being pulled by a force **F**, and moving to the left on a rough horizontal surface, is slowing down.

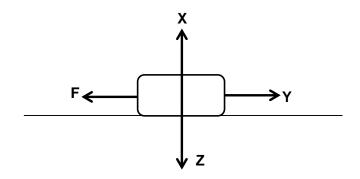
The directions of the resultant force and the acceleration are ...

	direction of resultant force	direction of acceleration
Α	to the right	to the left
В	to the right	to the right
С	to the left	to the left
D	to the left	to the right

(2)

1.2 The magnitude of the gravitational force exerted by one body on another body is *F*. When the distance between the centres of the two bodies is doubled, the magnitude of the gravitational force, in terms of *F*, will now be ...

A 1/4 F


B ½ F

C 2 F

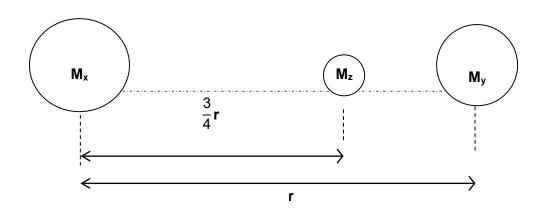
D 4 F

(2)

1.3 A learner pulls a block at a CONSTANT SPEED over a rough horizontal surface with a force **F**. The force diagram below shows all the forces acting on the block.

Which ONE of the following relationships between the magnitudes of the forces ${\bf F}$, ${\bf X}$, ${\bf Y}$ and ${\bf Z}$ is true?

(2)


A
$$F > Y$$
 and $X = Z$

B
$$F > Y$$
 and $X < Z$

C
$$F = Y$$
 and $X = Z$

D
$$F = Y$$
 and $X < Z$

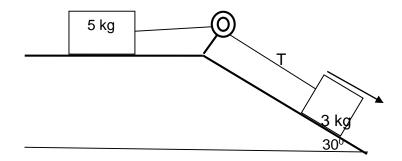
Two masses M_x and M_y are placed at a distance r apart. A third mass M_z experiences a ZERO resultant horizontal gravitational force when it is placed $\frac{3}{4}r$ from M_x on the line between M_x and M_y .

The ratio of the two masses M_x : M_y is:

A 3:1

B 4:3

C 9:1


D 16:1 (2)

- 1.5 When a spaceship moves at constant velocity, it means that the resultant force acting on the body is zero. This phenomenon is best explained by
 - A Newton's First Law.
 - B Newton's Second Law.
 - C Newton's Third Law.
 - D Newton's Universal Gravitational Law.

(2)

QUESTION 2

Two blocks of masses 5 kg and 3 kg respectively are connected by a light inextensible string that runs over a light frictionless pulley as shown in the diagram below. The 5 kg block experience a frictional force of 8 N and the coefficient of kinetic friction between the 3 kg block and the surface of the inclined plane is 0,15.

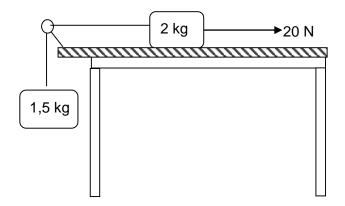
- 2.1 Define the term *frictional force*.
- 2.2 Draw a labelled free-body diagram to indicate all the forces acting on the 3 kg block.

(2)

(3)

- 2.3 Calculate the:
 - 2.3.1 Magnitude of the frictional force acting between the 3 kg block and the surface of the inclined plane

(3)


2.3.2 Magnitude of the tension **T** in the string

[14]

(6)

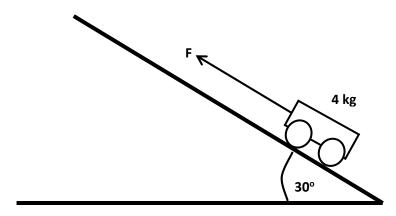
QUESTION 3

A block of mass 2 kg is at rest on a rough horizontal surface. The block is connected to another block of mass 1,5 kg by means of a light inextensible string which hangs over a frictionless pulley. The 2 kg block experiences a constant frictional force of 3,1 N when a force of 20 N is applied to the block as shown in the diagram below. Ignore the effects of air friction.

- 3.1 Define the term *kinetic frictional force*.
- 3.2 Draw a labelled free-body diagram indicating ALL the forces acting on the **2 kg block**.

(2)

(5)


(6)

[13]

3.3 Apply Newton's Second Law to each of the blocks and calculate the magnitude of the acceleration of the blocks.

QUESTION 4

4.1 A 4 kg trolley is at rest on a rough inclined surface, which makes an angle of 30° with the horizontal. A constant force is applied, causing the trolley to accelerate up the incline for 2m at 0, 43 m·s⁻². (Ignore the rotation effects of the wheels and air friction.)

- 4.1.1 State, in words, Newton's Second Law of Motion. (2)
- 4.1.2 Draw a labelled free body diagram showing ALL the forces acting on the trolley as it moves up the slope. (4)
- 4.1.3 If the coefficient of kinetic friction along the incline μ_k is 0,2, calculate the:
- (a) Frictional force on the trolley as it moves up the slope (3)
- (b) Applied force F (5)

4.2 A spaceship, mass 2 000 kg, is moving towards Earth. Calculate the magnitude of the gravitational force that the spaceship will experience when it is
100 km above the Earth's surface.

[18]

TOTAL: 55

DATA FOR PHYSICAL SCIENCES P1 GRADE 12 CAPS

TABLE 1: PHYSICAL CONSTANTS

NAME	SYMBOL	VALUE
Acceleration due to gravity	g	9,8 m⋅s ⁻²
Speed of light in a vacuum	С	3,0 x 10 ⁸ m⋅s ⁻¹
Planck's constant	h	6,63 x 10 ⁻³⁴ J⋅s
Gravitational constant	G	6,67 x 10 ⁻¹¹ N·m ² ·kg ⁻²
Coulombs constant	k	9,0 x 10 ⁹ N·m ² ·C ⁻²
Charge on electron	е	-1,6 x 10 ⁻¹⁹ C
Electron mass	m _e	9,11 x 10 ⁻³¹ kg

TABLE 2: MOTION

$v_f = v_i + a \Delta t$	$\Delta x = v_i \Delta t + \frac{1}{2} a \Delta t^2 \text{ or } \Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2$
$v_f^2 = v_i^2 + 2a\Delta x \text{ or } v_f^2 = v_i^2 + 2a\Delta y$	$\Delta x = \left(\frac{v_f + v_i}{2}\right) \Delta t \text{ or } \Delta y = \left(\frac{v_f + v_i}{2}\right) \Delta t$

TABLE 3: FORCE

F _{net} = ma	p=mv
$f_{s(max)} = \mu_s N$	$f_k = \mu_k N$
$F_{net}\Delta t = \Delta p$ $\Delta p = mv_f - mv_i$	w=mg
$F = \frac{Gm_1m_2}{r^2}$	$g = \frac{Gm}{r^2}$