ANSWERS: GR 11 2D TRIG

Exercise 1 (page 173)

PA is the side common to $\triangle PAX$ and $\triangle PAB$.

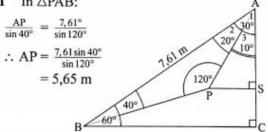
In △PAB:

$$\hat{P}_1 = 9.5^{\circ}$$

(exterior angle of △PAB)

$$\frac{PA}{\sin 40,2^{\circ}} = \frac{35}{\sin 9,5^{\circ}}$$

$$\therefore PA = \frac{35 \sin 40, 2^{\circ}}{\sin 9, 5^{\circ}}$$
= 136,9 m


In △PAX:

$$\sin 49,7^{\circ} = \frac{PX}{136,9}$$

(right-angled triangle)

$$\therefore$$
 PX = 136,9 sin 49,7°
= 104.4 m

2. 2.1 In △PAB:

2.2 $\hat{A}_1 = 30^{\circ}$

(three angles of △ABC) (three angles of △PAB)

$$\hat{A}_2 = 20^\circ$$
 $\hat{A}_3 = 10^\circ$

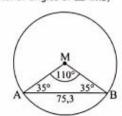
 $\therefore \hat{A}_3 = 10^\circ$

In △PAS:

$$\cos 10^\circ = \frac{AS}{AP}$$

:. AS = AP cos 10° $= 5,65 \cos 10^{\circ}$ = 5,56 m

 $\hat{A} = \hat{B}$ 3.1


 $= 35^{\circ}$

(In △AMB, AM = BM, radii) (interior angles of △AMB)

$$\frac{AM}{\sin 35^{\circ}} = \frac{75,3}{\sin 110^{\circ}}$$

:. $AM = \frac{75,3 \sin 35^{\circ}}{\sin 110^{\circ}}$

=45,96 m

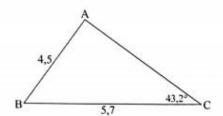
- 3.2 Area $\triangle AMB = \frac{1}{2} \cdot AM \cdot MB \cdot \sin AMB$ $= 12(45,96)^2 \sin 110^\circ$ $= 992,47 \text{ m}^2$
- 4. 240 m

In ABCD:

$$\cos 50^{\circ} = \frac{240}{BD}$$

$$\therefore BD = \frac{240}{\cos 50^{\circ}}$$
$$= 373.4$$

In △BAD:


 $\hat{\mathbf{B}}_1 = 50^{\circ}$ (AB || CD; alternate angles)

$$\therefore \frac{AD}{\sin 50^{\circ}} = \frac{373.4}{\sin 110^{\circ}}$$

$$AD = 304,4$$

∴ Area △ABD =
$$\frac{1}{2}$$
 BD . AD sin 20°
= $\frac{1}{2}$ 304,4 × 373,4 sin 20°
= 19 437,4 m²

5.

$$5.1 \quad \frac{\sin A}{5.7} = \frac{\sin 43.2^{\circ}}{4.5}$$

$$\therefore \sin A = \frac{5.7 \sin 43.2^{\circ}}{4.5}$$

 $\therefore \hat{A} = 60,1^{\circ} \text{ or } 119,9^{\circ}$ (Å is opposite the longer side, therefore an acute or an obtuse angle)

5.2 $\hat{B} = 76,7^{\circ} \text{ or } 16,9^{\circ}$

$$\frac{AC}{\sin 76,7^{\circ}} = \frac{4,5}{\sin 43,2^{\circ}} \text{ or } \frac{AC}{\sin 16,9^{\circ}} = \frac{4,5}{\sin 43,2^{\circ}}$$

$$AC^2 = 50^2 + 60^2 2(50)(60) \cos 60^\circ$$

= 3 100

ANSWERS: GR 11 2D TRIG

6.1
$$DC^2 = 7^2 + 4^2 - 2 \cdot 7 \cdot 4 \cdot \cos 80^\circ$$
 (cos rule)
= $49 + 16 - 56 \cdot \cos 80^\circ$
= $55,275...$
 $DC = 7.43 \text{ mm}$

6.2 Area
$$\triangle BCD = \frac{1}{2} \times 7 \times 4 \times \sin 80^{\circ} = 13,79 \text{ mm}^2$$

6.3
$$ABC = 130^{\circ}$$
 (Angles subtended by chord DA)

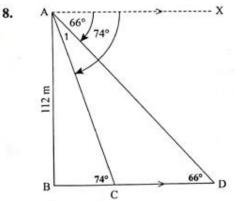
6.4
$$\hat{ADC} = 50^{\circ}$$
 (Opposite angles of cyclic quadrilateral supplementary) $\frac{\sin 80^{\circ}}{7,43} = \frac{\sin 50^{\circ}}{DA}$

$$\therefore DA = \frac{7,43 \times \sin 50^{\circ}}{\sin 80^{\circ}}$$

$$\therefore$$
 DA = 5,78 mm

7.1
$$PR^{2} = PQ^{2} \div QR^{2} - 2 \cdot PQ \cdot QR \cdot \cos Q$$

$$8^{2} = 4^{2} + 6^{2} - 2 \cdot 4 \cdot 6 \cdot \cos Q$$


$$48 \cos Q = 16 + 36 - 64 = -12$$

$$\cos Q = -\frac{12}{48} = -0.25$$

$$\therefore \hat{Q} = 104.5^{\circ}$$

7.2
$$\hat{S} = 180^{\circ} - 104,5^{\circ}(\hat{Q} + \hat{S} = 180^{\circ}, PQRS \text{ cyclic quad})$$

= 75,5°

7.3 SPR =
$$180^{\circ} - 133,4^{\circ} = 46,6^{\circ}$$

Area $\triangle PSR = \frac{1}{2}(7)(8) \sin 46,6^{\circ}$
= $20,34$

8.1
$$A\hat{C}B = C\hat{A}X$$
 (alt. \angle s, AX || BCD)
= 74°

8.2
$$\sin = 74^\circ = \frac{112}{AC}$$

9.2 In
$$\triangle PBC$$
: $\frac{PC}{\sin PDC} = \frac{BC}{\sin BPC}$
 $\therefore \frac{PC}{\sin 122.4^{\circ}} = \frac{5.5}{\sin 4.3^{\circ}}$ (BPC = 36,7° - 32,4°)
 $\therefore PC = \frac{5.5 \sin 122.4^{\circ}}{\sin 4.3^{\circ}}$
= 61,9 m

9.3 In
$$\triangle PAC$$
: $\frac{\triangle P}{PC} = \cos \triangle APC$
 $\therefore AP = PC \cos \triangle APC$
 $= 61.9 \cos 36.7^{\circ}$
 $= 49.7 \text{ m}$

10.1 In
$$\triangle ABD$$
: $\hat{D}_1 = 180^\circ - (x + y)$ (sum $\angle s$ of $\triangle BAD$)
$$\frac{BD}{\sin x} = \frac{p}{\sin [180^\circ - (x + y)]}$$

$$\therefore BD = \frac{p \sin x}{\sin (x + y)}$$
In $\triangle BCD$: $\hat{B}_1 = 90^\circ - y$

$$\sin (90^\circ - y) = \frac{DC}{BD}$$

$$\therefore \cos y = \frac{DC}{\frac{p \sin x}{\sin(x + y)}}$$

$$\therefore DC = \frac{p \sin x}{\sin(x + y)}$$

10.2 DC =
$$\frac{30 \sin 30 \cos 70}{\sin 150^{\circ}}$$

= 33,7 m

11.1 KTP =
$$90^{\circ} - y$$

11.2 In
$$\triangle$$
KTP:

$$\frac{KT}{\sin x} = \frac{h}{\sin (90^{\circ} - y)}$$

$$\therefore KT = \frac{h \sin x}{\sin (90^{\circ} - y)}$$

$$= \frac{h \sin x}{\cos y}$$

11.3 In
$$\triangle$$
HTS:

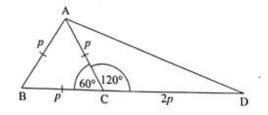
$$\frac{ST}{h} = \tan z$$

$$\therefore ST = h \tan z$$

11.4 Area
$$\triangle$$
KTS = $\frac{1}{2}$ KT . ST . $\sin y$
= $\frac{1}{2} \left(\frac{h \sin x . h \tan z . \sin y}{\cos y} \right)$
(11.2 and 11.3)
= $\frac{1}{2} h^2 \sin x \tan z \tan y$
($\frac{\sin y}{\cos y} = \tan y$)

ANSWERS: GR 11 2D TRIG

$$\therefore$$
 AC = $\frac{112}{\sin 74^{\circ}}$ = 116,51 m


3.3
$$\hat{D} = D\hat{A}X = 66^{\circ}$$
 (alt. ∠s, AX || BCD)
 $\hat{C}AD = 8^{\circ}$
 $\hat{I}n \triangle ACD$: $\frac{CD}{\sin 8^{\circ}} = \frac{116.51}{\sin 66^{\circ}}$
∴ $\hat{C}D = 17.75 \text{ m}$

9.1
$$P\hat{B}C = \hat{A} + A\hat{P}B$$
 (ext. $\angle \triangle ABP$)
= 90° + 32,4°
= 122,4°

11.5 Area △KTS

=
$$\frac{1}{2}$$
 (28)² sin 115,7° tan 61,6° tan 43,5°
= 620 m²

12.

