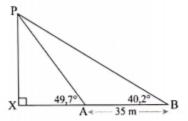
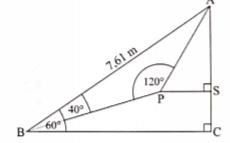
GR 11 REVISION: 2D TRIG

Exercise 1

1. In the diagram, AB = 35 m, $\hat{B} = 40.2^{\circ}$ and $\hat{PAX} = 49.7^{\circ}$. Calculate the height of PX.



- 2. Calculate the following from the diagram.
 - 2.1 AP
 - 2.2 AS

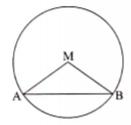


3. In the diagram, M is the centre of the circle.

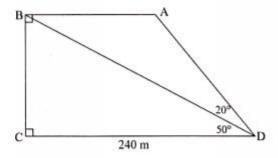
 $AB = 75.3 \text{ m} \text{ and } AMB = 110^{\circ}.$

Calculate the following correct to two decimal places.

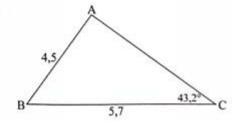
- 3.1 the length of AM
- 3.2 the area of △AMB



4. Calculate the area of △ABD.



- 5. Given: $\hat{C} = 43,2^{\circ}$, AB = 4,5 and BC = 5,7. Determine the following.
 - 5.1 Â
 - 5.2 AC

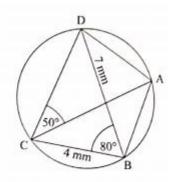


GR 11 REVISION: 2D TRIG

6. In the diagram, BC = 4 mm, BD = 7 mm, $D\hat{B}C = 80^{\circ}$ and $A\hat{D} = 50^{\circ}$. ABCD is cyclic.

Determine (correct to two decimal places):

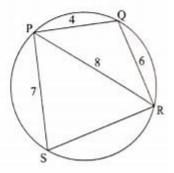
- 6.1 the length of DC
- 6.2 the area of △BCD
- 6.3 the size of ABC
- 6.4 the length of AD.



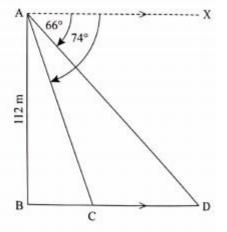
 P, Q, R, and S, in that order, are points on the circumference of a circle. PQ = 4, QR = 6, PR = 8 and PS = 7.

Calculate correct to one decimal place, the size of:

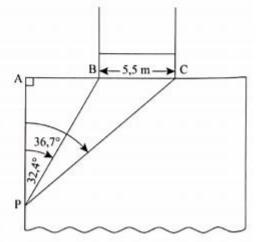
- 7.1 Q
- 7.2 Ŝ
- 7.3 Area △PSR



- In the diagram, AB represents a lighthouse with height 112 m. From A the angles of depression of C and D, two boats in the same horizontal line as B, are 74° and 66° respectively. AX || BCD.
 - 8.1 Write down the size of AĈB.
 - 8.2 Calculate AC.
 - 8.3 Calculate the distance between the two boats, i.e. calculate CD.



9. The result of an important rugby match is determined by a penalty kick during injury time. Point P, in the diagram, indicates where the ball is placed for the penalty kick. After the match, a surveyor determined that the angle between the touch-line and left post (APB) and the angle between the touch-line and right post (APC) were 32,4° and 36,7° respectively. The distance between the goal posts is 5,5 metres. Calculate:



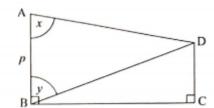
- 9.1 PBC
- 9.2 the distance to the right hand post
- 9.3 the shortest distance, PA, to the goal line.

GR 11 REVISION: 2D TRIG

10. 10.1 Use the diagram and prove that

$$DC = \frac{p \sin x \cos y}{\sin(x+y)}.$$

10.2 If $x = 80^{\circ}$, $y = 70^{\circ}$ and p = 50 m, calculate DC.



11. In the diagram, HTP is a straight line.

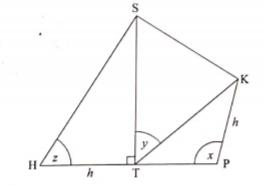
$$S\hat{H}T = z$$

$$S\hat{T}K = y$$

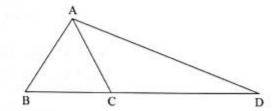
$$K\hat{P}T = x$$

$$HT = KP = h$$

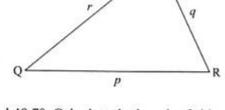
- 11.1 Write down K \hat{T} P in terms of y.
- 11.2 Prove that $KT = \frac{h \sin x}{\cos y}$
- 11.3 Prove that $ST = h \tan z$.
- 11.4 Prove that Area \triangle KTS = $\frac{1}{2}h^2 \sin x \tan z \tan y$.



- 11.5 Calculate the area of \triangle KTS to the nearest square metre if h = 28 metres, $x = 115,7^{\circ}$, $y = 43,5^{\circ}$ and $z = 61,6^{\circ}$.
- 12. ABC is an equilateral triangle and BC is produced to D such that CD = 2BC. If AB = p units, show that AD = $\sqrt{7} p$ units.



- 13. △PQR is an acute-angled triangle.
 - 13.1 Write down the area of △PQR in terms of p, q and R.
 - 13.2 Apply the sine rule in $\triangle PQR$ and determine q in terms of p, Q and P.
 - 13.3 Use 13.1 and 13.2 to prove that $p^2 = \frac{2(\operatorname{area} \triangle PQR) \sin P}{\sin Q \sin R}$



13.4 The area of $\triangle PQR = 65.4 \text{ cm}^2$ and two angles of the triangle are 30.6° and 49.7°. Calculate the length of side p, correct to one decimal place, if p is the longest side of the triangle.