SOLVING TRIANGLES IN TWO AND THREE DIMENSIONS

Any triangle can be solved, if THREE properties of the triangle are given/known, by using:

- ✓ The trig ratios in RIGHT-ANGLED triangles
- The area, sine or cosine rule

Remember:

3 properties of a triangle must be given in a triangle in order to work in that triangle (NOT angle, angle, angle)

COSINE RULE if

- 3 sides of the triangle are given
- 2 sides and an included angle of the triangle is given

SINE RULE if

Any condition that does NOT satisfy the cosine rule

AREA RULE if

Only if "area" is mentioned

IN ANY AABC THE RULES ARE APPLIED AS FOLLOW:

Sine rule

If an ANGLE is asked
$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

If a SIDE is asked
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule

If an ANGLE is asked

$$\bullet \quad cosA = \frac{b^2 + c^2 - a^2}{2bc}$$

$$\bullet \quad cosB = \frac{a^2 + c^2 - b^2}{2ac}$$

$$\bullet \quad cosC = \frac{a^2 + b^2 - c^2}{2ab}$$

If a SIDE is asked

•
$$a^2 = b^2 + c^2 - 2bc \cdot cosA$$

• $b^2 = a^2 + c^2 - 2ac \cdot cosB$

•
$$b^2 = a^2 + c^2 - 2ac \cdot cosB$$

$$• c^2 = a^2 + b^2 - 2ab \cdot cosC$$

Area rule
$$\longrightarrow$$
 Area of $\triangle ABC = \frac{1}{2}ab.sinC$ or $= \frac{1}{2}bc.sinA$ or $= \frac{1}{2}ac.sinB$

TIPS FOR SOLVING 2D & 3D PROBLEMS

- 1. The diagram usually consists of 2 or more triangles with COMMON sides.
- 2. One of the triangles is often right-angled, so use the trig ratios to solve it. (In triangles without right angles, the Sine, Cosine and Area rules must be applied.)
- Make use of basic Geometry to obtain additional information, such as vertical opposite angles, interior angles of a triangle, etc.
- 4. In Grade 12, be on the lookout for Compound and Double angles when simplifying a problem.
- Start in the triangle that contains the most information, then move along to the triangle in which the required line/angle is. mmon side
 - 6. When solving problems in three dimensions:

 - In the diagram, right angles may not look like right angles, e.g. * 3 d person

7. In applications, we often use angles of DEPRESSION and ELEVATION. Both are measured from the horizontal.

Three-dimensional Trigonometry

In any triangle:

Sin rule •
$$\frac{\sin \hat{A}}{\alpha} = \frac{\sin \hat{B}}{b} = \frac{\sin \hat{C}}{c}$$

• $\frac{\alpha}{\sin \hat{A}} = \frac{b}{\sin \hat{B}} = \frac{c}{\sin \hat{C}}$

Cos rule •
$$\alpha^2 = b^2 + c^2 - 2bc\cos \hat{A}$$

Area rule • area
$$\triangle ABC = \frac{1}{2} \alpha b \sin \hat{C}$$

NB NB

Must be an included angle.

- · In a 90° (right-angled) triangle:
- ⇒ use "normal" trig, eg. $\sin x = \frac{0}{h}$, $\cos x = \frac{\alpha}{h}$ and $\tan x = \frac{\alpha}{\alpha}$
 - · When you need to prove something in a non-right-angled triangle:
 - → always use sin rule
 - or ()2 when you need a V

the length the magnitu

angle D.

1/EBD = 180°-

 $ED^2 = EB$

 $ED^2 = (7,1)^2$

 $\left(ED^{2}\right) = \sqrt{103}$

ED = 10,16

sind = sind