

MATHEMATICS

MATERIAL FOR GRADE 12

FUNCTIONS

MEMORANDA

COMPILED BY EXPERTS: K. NCUBE & T. MJIKWA

info@mathsandscienceinfinity.org.za | www.mathsandscienceinfinity.org

1 Page

2nd Floor, 1B Stewart Drive, Berea, EAST LONDON, Eastern Cape | Tel: +27 43 748 2912 / 19

4th floor, West Tower, Nelson Mandela Sq, Sandton City, JOHANNESBURG, Gauteng | Tel: +27 11 100 2894 / Fax: +27 86 688 8

1.1.1

1.1 Sketched are the functions $f(x) = (x + p)^2 + q$, and g(x): (x + 2)(y + 3) = t If $g(0) = -\frac{5}{2}$ and g is a rectangular hyperbola with one of its asymptotes an axis of symmetry for f as shown. Answer the following:

Write down the equations of the asymptotes of g.

	1.1.2	Determine the values of:	
		1.1.2.1 t	(2)
		1.1.2.2 <i>p</i> and <i>q</i>	(3)
1.2	Write	g in the form $y = \frac{a}{x+p} + q$	(3)
1.3	If $h(x)$ points	(x - 1) = x - 1 is the line of symmetry to g , determine the co-ordinates of the of intersection h and g .	(6)
1.4	If $k =$	$x^2 + 4x + 3$. Determine the values of k if its roots are:	
	1.4.1	non-real	(2)
	1.4.2	negative and unequal	(2)
1.5 W	rite dov	vn the:	
	1.5.1	domain of <i>g</i>	(2)
	1.5.2	range of <i>f</i>	(1) [23]

info@mathsandscienceinfinity.org.za | www.mathsandscienceinfinity.org

2nd Floor, 1B Stewart Drive, Berea, EAST LONDON, Eastern Cape | Tel: +27 43 748 2912 / 19

4th floor, West Tower, Nelson Mandela Sq, Sandton City, JOHANNESBURG, Gauteng | Tel: +27 11 100 2894 / Fax: +27 86 688 8

24 Ennisdale Drive, Broadway, Durban North, **DURBAN,** Kwa Zulu Natal | Tel: +27 31 823 1825

(2)

2.1 Study the diagram which shows the sketch graphs of $v(x) = \pm \sqrt{x}$ and w(x) = logx then answer the questions that follow:

2.1.1 State whether v(x) is a function or not, motivate your answer. (2)

2.1.2 Write down conditions that will make v a function. (2)

2.1.3 Determine all values of:

2.1.3.1 y for which w(x) < 0 (1)

- 2.1.3.2 *x* for which $w(x) \le -\frac{7}{10}$ (2)
- 2.1.4 If a function v(x) is as determined in 5.1.2 write down the equation(s) of $v^{-1}(x)$. (3)
- 2.1.5 If $h(x) = w(x) \sqrt{x}$ where the range of \sqrt{x} is $(0; \infty)$, calculate the range of h(1). (1) [11]

info@mathsandscienceinfinity.org.za | www.mathsandscienceinfinity.org

3 | Page

2nd Floor, 1B Stewart Drive, Berea, EAST LONDON, Eastern Cape | Tel: +27 43 748 2912 / 19

4th floor, West Tower, Nelson Mandela Sq, Sandton City, JOHANNESBURG, Gauteng | Tel: +27 11 100 2894 / Fax: +27 86 688 8

²⁴ Ennisdale Drive, Broadway, Durban North, **DURBAN,** Kwa Zulu Natal | Tel: +27 31 823 1825

The functions $f(x) = -x^2 - 2x + 3$ and g(x) = mx + c are drawn below, with g passing through E, C and A.

A and B are the x – intercepts of , and CD is the axis of symmetry of f.

E is the y – intercept of g

3.1	Determine the coordinates of C, the turning point of the graph of f .	(3)
3.2	Determine the coordinates of A and B.	(3)
3.3	Write down the coordinates of the y – intercept of the graph of f .	(1)
3.4	Calculate the length of CE.	(6)

3.5 Determine the equation of
$$g^{-1}(x)$$
 in the form $y = \dots$ (2)

[15]

info@mathsandscienceinfinity.org.za | www.mathsandscienceinfinity.org

2nd Floor, 1B Stewart Drive, Berea, EAST LONDON, Eastern Cape | Tel: +27 43 748 2912 / 19

4th floor, West Tower, Nelson Mandela Sq, Sandton City, JOHANNESBURG, Gauteng | Tel: +27 11 100 2894 / Fax: +27 86 688 8

Below are graphs of the functions $f(x) = \frac{3}{x-p} + q$ and $g(x) = 2^x + e$.

Both f and g have the same horizontal asymptote and y –intercept B.

A is the point of intersection of g and the vertical asymptote of f.

[12]

info@mathsandscienceinfinity.org.za | www.mathsandscienceinfinity.org

5 | Page

2nd Floor, 1B Stewart Drive, Berea, EAST LONDON, Eastern Cape | Tel: +27 43 748 2912 / 19

4th floor, West Tower, Nelson Mandela Sq, Sandton City, JOHANNESBURG, Gauteng | Tel: +27 11 100 2894 / Fax: +27 86 688 8

The sketch below represents the graphs of: $f(x) = \frac{a}{x+p} + q$ and $g(x) = bx^2 + c$.

The point A (-3; 2) is the point of intersection of the asymptotes of f. The graph of f intersects the *x*-axis at (-1; 0). The graph of g intersects the *y*-axis at (0; -2).

.

5.1	Write down the equations of the asymptotes of f .	(2)
5.2	Determine the equation of f .	(3)
5.3	Write down the equation of the axes of symmetry of <i>f</i> in the form $y = mx + c$ if $m < 0$.	(2)
5.4	Write down the domain of $5f(x-1)$.	(2)
5.5	Write down the equation of k, the reflection of f about the y-axis. Leave your answer in the form $y = \frac{a}{x+p} + q$.	(2)
5.6	For which value(s) of x is $f(x) \cdot g'(x) \ge 0$?	(2)
5.7	Determine the equation of <i>g</i> .	(3)
5.8	Determine the equation of $h^{-1}(x)$ if $h(x) = g(x) + 2$. Leave your answer in the form $y =$	(3)
5.9	The inverse of h is not a function. Restrict the domain of h such that h^{-1} is a function. Sketch the restricted graph of h and h^{-1} on the same system of even	

function. Sketch the restricted graph of h and h^{-1} on the same system of axes. (2)

2nd Floor, 1B Stewart Drive, Berea, EAST LONDON, Eastern Cape | Tel: +27 43 748 2912 / 19

4th floor, West Tower, Nelson Mandela Sq, Sandton City, JOHANNESBURG, Gauteng | Tel: +27 11 100 2894 / Fax: +27 86 688 8

The graphs of $h(x) = 3^{-x}$, $f(x) = -(x+1)^2 + 9$ and $g(x) = a \cdot 2^x + q$ are represented in the sketch below. D, the turning point of *f*, is also a point of intersection of *g* and *f*. The asymptote of *g* passes through C, the *y*-intercept of *f*.

6.1	Write down the coordinates of C.	(2)
6.2	Calculate the values of a and q .	(3)
6.3	Write down the range of <i>g</i> .	(2)
6.4	Write down the coordinates of D', if D is reflected about the line $y = 8$.	(1)
6.5	If $k(x) = (x + 2)^2 + 9$, describe the transformation from f to k.	(3)
6.6	Write down the equation of $h^{-1}(x)$ in the form $y =$	(1)
6.7	Determine the minimum value of $y = \left(\frac{1}{3}\right)^{f(x)-5}$.	(2)
		[14]

info@mathsandscienceinfinity.org.za | www.mathsandscienceinfinity.org

7 | Page

2nd Floor, 1B Stewart Drive, Berea, EAST LONDON, Eastern Cape | Tel: +27 43 748 2912 / 19

4th floor, West Tower, Nelson Mandela Sq, Sandton City, JOHANNESBURG, Gauteng | Tel: +27 11 100 2894 / Fax: +27 86 688 8

Sketched alongside are the graphs of

$$f(x) = -(x+2)^2 + 4$$
 and

$$g(x) = ax + q$$

R is the turning point of f

7.6	Give the range of p if $p(x) = -f(x)$.	(2) [12]
7.5	Write down the equation of the axis of symmetry of <i>h</i> if $h(x) = f(-x)$.	(2)
7.4	For which values of x is $g(x) > f(x)$?	(2)
7.3	Determine the equation of g.	(2)
7.2	Calculate the length of AB.	(2)
7.1	Give the coordinates of R.	(2)

QUESTION 8

Given: $h(x) = \frac{2}{x-2} + 1$ 8.1 Give the equations of the asymptotes of h(2)Determine the *x*- and *y*-intercepts of the graph of *h*. 8.2 (3) 8.3 Sketch the graph of *h* using the grid on the DIAGRAM SHEET. (3) 8.4 Give the domain of *h*. (2)8.5 Describe the transformation of h to f if : 8.5.1 f(x) = h(x+3)(2)8.5.1 f(x) = h(x) - 2(2) [14]

info@mathsandscienceinfinity.org.za | www.mathsandscienceinfinity.org

8 | Page

2nd Floor, 1B Stewart Drive, Berea, EAST LONDON, Eastern Cape | Tel: +27 43 748 2912 / 19

4th floor, West Tower, Nelson Mandela Sq, Sandton City, JOHANNESBURG, Gauteng | Tel: +27 11 100 2894 / Fax: +27 86 688 8

9.1 The graph of $f(x) = 3^x$ is sketched alongside.

9.1.1	Give the coordinates of A.	(1)
9.1.2	Write down the equation of f^{-1} in the form $y = \dots$	(1)

- 9.1.3 For which value(s) of x will $f^{-1} \le 0$? (2)
- 9.1.4 Write down the equation of the asymptote of f(x-1)

(1)

9.2.1	Determine the equation of f in the form $y =$	(2)
9.2.2	Hence, write down the equation of f^{-1} in the form $y = \dots$	(2)
9.2.3	Give the coordinates of the turning point of $g(x) = f^{-1}(x+3) - 1$.	(1) [10]

info@mathsandscienceinfinity.org.za | www.mathsandscienceinfinity.org

2nd Floor, 1B Stewart Drive, Berea, EAST LONDON, Eastern Cape | Tel: +27 43 748 2912 / 19

4th floor, West Tower, Nelson Mandela Sq, Sandton City, JOHANNESBURG, Gauteng | Tel: +27 11 100 2894 / Fax: +27 86 688 8

Given: $f(x) = \frac{3}{x-2} + 1$	
10.1 Write down the equations of the asymptotes of f .	(2)
10.2 Determine coordinates of B, the <i>x</i> -intercept of <i>f</i> .	(2)
10.3 Write down the domain of g if $g(x) = f(x+1)$.	(3)
10.4 One of the axes of symmetry of f is an increasing function. Write down the equation of this axis of symmetry.	on (2) [9]
QUESTION 11	
Given $h(x) = 3^{-x}$ and $k^{-1}(x) = 2x^2$ for $x \ge 0$. A(0,57; 0,53) is a point of intersection between <i>h</i> and <i>k</i> .	
11.1 Write down the equation of k in the form $y =$	(2)
11.2 Sketch the graphs of <i>h</i> and <i>k</i> on the same set of axes, clearly indicating the intercepts	
with the axes.	(5)
11.3 Write down the range of <i>h</i> .	(1)
11.4 For which values of x is $k(x) \le h(x)$?	(2)
11.5 For which values of t will $k(x) + t = h(x)$ have no real roots?	(2)

[12]

info@mathsandscienceinfinity.org.za | www.mathsandscienceinfinity.org

10 | Page

2nd Floor, 1B Stewart Drive, Berea, EAST LONDON, Eastern Cape | Tel: +27 43 748 2912 / 19

4th floor, West Tower, Nelson Mandela Sq, Sandton City, JOHANNESBURG, Gauteng | Tel: +27 11 100 2894 / Fax: +27 86 688 8

The diagram below shows the graphs of $f(x) = \frac{4}{x}$; x > 0 and g(x) = 6-x. Line BA intersects f and g respectively at points C and D. BA is perpendicular to the x-axis.

12.1	Write down the <i>y</i> -intercept of <i>g</i> .	(1)
12.2	Write down the equation of h if h is a translation of f one unit to the right.	(1)
12.3	Calculate the values of x for which $h(x) = g(x)$.	(3)
12.4	Write down the length of CD in terms of x .	(2)
12.5	Determine the value of x for which CD has a maximum length.	(4)
		[11]

info@mathsandscienceinfinity.org.za | www.mathsandscienceinfinity.org

11 | Page

2nd Floor, 1B Stewart Drive, Berea, EAST LONDON, Eastern Cape | Tel: +27 43 748 2912 / 19

4th floor, West Tower, Nelson Mandela Sq, Sandton City, JOHANNESBURG, Gauteng | Tel: +27 11 100 2894 / Fax: +27 86 688 8

The diagram below shows the graph of $h(x) = \frac{a}{x+p} + q$. The lines x = 3 and y = -2 are asymptotes of *h*. P(4;-4) is a point on *h*.

	the value of c.	(2) [10]
13.5	If the graph of <i>h</i> is symmetrical about the line $y = -x + c$, determine	(2)
13.4	If $g(x) = h(x+2)$, write down the equation of the vertical asymptote of <i>g</i> .	(2)
13.3	Calculate the coordinates of the y – intercept of h .	(2)
13.2	Calculate the value of <i>a</i> .	(2)
13.1	Write down the values of p and q .	(2)

info@mathsandscienceinfinity.org.za | www.mathsandscienceinfinity.org

12 | Page

2nd Floor, 1B Stewart Drive, Berea, EAST LONDON, Eastern Cape | Tel: +27 43 748 2912 / 19

4th floor, West Tower, Nelson Mandela Sq, Sandton City, JOHANNESBURG, Gauteng | Tel: +27 11 100 2894 / Fax: +27 86 688 8

The sketch below shows the graphs of $g(x) = x^2 - 3x - 10$ and h(x) = ax + q. The graphs intersect at B and D. The graph of g intersects the x – axis at A and B and has a turning point at C. The graph of h intersects the y – axis at D and the x – axis at B.

14.1	Write down the coordinates of D.	(1)
14.2	Determine the coordinates of A and B.	(4)
14.3	Write down the values of a and q .	(2)
14.4	Calculate the coordinates of C, the turning point of g .	(3)
14.5	Write down the turning point of t, if $t(x) = g(-x) + 3$.	(2)
14.6	For which values of x will $g'(x).h'(x) \ge 0$?	(2) [14]

info@mathsandscienceinfinity.org.za | www.mathsandscienceinfinity.org

13 | Page

2nd Floor, 1B Stewart Drive, Berea, EAST LONDON, Eastern Cape | Tel: +27 43 748 2912 / 19

4th floor, West Tower, Nelson Mandela Sq, Sandton City, JOHANNESBURG, Gauteng | Tel: +27 11 100 2894 / Fax: +27 86 688 8

Given $p(x) = 3^x$.

- 15.1 Write down the equation of p^{-1} , the inverse of p, in the form y = ... (2)
- 15.2 Sketch in your ANSWER BOOK the graphs of p and p^{-1} on the same system of axes. Show clearly all the intercepts with the axes and at least one other point on each graph. (4)
- 15.3 Determine the values of x for which $p^{-1}(x) \le 3$ (4)

[10]

QUESTION 16

Two functions are defined by f(x) = (x - 4)(x + 2) and g(x) = 2x - 12. A is a point on f such that g is a tangent to f at A.

16.1	Write down the gradient of g .	(1)
16.2	Calculate the coordinates of A.	(5)
16.3	Determine the equation of the graph h which is the reflection of f	
	about the y – axis.	(2)
16.4	Determine value(s) of x for which $f(x)$. $g(x) < 0$, given that $x > 0$.	(2)
16.5	Determine g^{-1} , the inverse of g, in the form $y = \dots$	(2)
		[12]

info@mathsandscienceinfinity.org.za | www.mathsandscienceinfinity.org

14 | Page

2nd Floor, 1B Stewart Drive, Berea, EAST LONDON, Eastern Cape | Tel: +27 43 748 2912 / 19

4th floor, West Tower, Nelson Mandela Sq, Sandton City, JOHANNESBURG, Gauteng | Tel: +27 11 100 2894 / Fax: +27 86 688 8

The graphs of $f(x) = x^2 + 2x - 3$ and $g(x) = \frac{a}{x+p} + q$ are drawn below. A is the y - intercept of both f and g. The horizontal asymptote of g is also a tangent to f at the turning point of f. The equation of the vertical asymptote of g is x = -1.

		[14]
17.5	Write down the range of $-f(x)$.	(2)
17.4	Determine points of intersection of g with its axis of symmetry that has a positive gradient.	(4)
17.3	Determine the equation of g .	(4)
17.2	Write down the coordinates of A.	(1)
17.1	Determine the equations of the asymptotes of g .	

info@mathsandscienceinfinity.org.za | www.mathsandscienceinfinity.org

15 | Page

2nd Floor, 1B Stewart Drive, Berea, EAST LONDON, Eastern Cape | Tel: +27 43 748 2912 / 19

4th floor, West Tower, Nelson Mandela Sq, Sandton City, JOHANNESBURG, Gauteng | Tel: +27 11 100 2894 / Fax: +27 86 688 8

Given: $f(x) = 3^{-x+1} - 3$

18.1	Draw the graph of f showing all asymptotes and intercepts with the axes.	(3)
18.2	Calculate the x – value when $y = 5$.	(3)
18.3	If $h(x) = 3^x$; explain what transformations f has undergone to become h .	(3) [9]

QUESTION 19

Given: $f(x) = \frac{-3}{x-2} + 1$

19.1	Calculate the coordinates of the <i>y</i> -intercept of <i>f</i> .	
19.2	Calculate the coordinates of the <i>x</i> -intercept of <i>f</i> .	(2)
19.3	Sketch the graph of f in your ANSWER BOOK, clearly showing the asymptotes and the intercepts with the axes.	(3)
19.4	Write down the range of <i>f</i> .	(2)
19.5	Another function h , is formed by translating f 3 units to the right and 4 units down. Write down the equation of h .	(2)
19.6	For which value(s) of x is $h(x) \le -4$?	(3)
19.7	Determine the equations of the asymptotes of $k(x) = \frac{3x-5}{x-1}$.	(3) [17]

info@mathsandscienceinfinity.org.za | www.mathsandscienceinfinity.org

2nd Floor, 1B Stewart Drive, Berea, EAST LONDON, Eastern Cape | Tel: +27 43 748 2912 / 19

4th floor, West Tower, Nelson Mandela Sq, Sandton City, JOHANNESBURG, Gauteng | Tel: +27 11 100 2894 / Fax: +27 86 688 8

The graphs of $f(x) = 2(x+1)^2 - 8$ and $g(x) = \left(\frac{1}{2}\right)^x$ are represented in the sketch below. P and Q are the *x*-intercepts of *f* and R is the turning point of *f*. The point A(-2; 4) is a point on the graph of *g*.

17 Page		2nd Floor, 1B Stewart Drive, Berea, EAST LONDON, Eastern Cape Tel: +27 43 ⁻	748 2912 / 19	
	20.7.2	x. f(x) < 0 info@mathsandscienceinfinity.org.za www.mathsandsc	(4) ienceinfinity.org	
	20.7.1	$g^{-1}(x) \ge -2$	(2)	
20.7	For which value(s) of <i>x</i> will:			
20.6	Sketch the graph of g^{-1} in your ANSWER BOOK, clearly showing the intercept with the axis as well as ONE other point on the graph of g^{-1} . (3)			
20.5	Write down the equation of g^{-1} , the inverse of g, in the form $y = \dots$ (1)			
20.4	Write down the equation of k, if k is the reflection of f in the y-axis. Give your answer in the form $y = ax^2 + bx + c$. (3)			
20.3	Determin	(4)		
20.2	Write do	own the coordinates of the turning point of f .	(1)	
20.1	Write do	own the equation of the axis of symmetry of f .	(1)	

4th floor, West Tower, Nelson Mandela Sq, Sandton City, JOHANNESBURG, Gauteng | Tel: +27 11 100 2894 / Fax: +27 86 688 8

The diagram shows the graphs of $f(x) = -2x^2 - 4x + 6$ and g(x) = mx + c. A, B and C are the intercepts of f with the axes. T is the turning point of the graph of f. The graph of g is a straight line parallel to AC, and is a tangent to the graph of f at D.

[18]

info@mathsandscienceinfinity.org.za | www.mathsandscienceinfinity.org

2nd Floor, 1B Stewart Drive, Berea, EAST LONDON, Eastern Cape | Tel: +27 43 748 2912 / 19

4th floor, West Tower, Nelson Mandela Sq, Sandton City, JOHANNESBURG, Gauteng | Tel: +27 11 100 2894 / Fax: +27 86 688 8

The sketch of $f(x) = \frac{2+x}{x-1}$ is drawn below.

22.1 Write down the equation of the vertical asymtote of *f*.

22.2 Determine the coordinates of A, the *x*-intercept of the hyperbola.

- 22.3 Calculate the area of $\triangle AOB$.
- 22.4 Show that f(x) can be rewritten as $f(x) = \frac{3}{x-1} + 1$
- ^{22.5} The graph of f is shifted such that point A lies on the origin. What are the coordinates of the point of intersection of the asymptotes of the new graph?

info@mathsandscienceinfinity.org.za | www.mathsandscienceinfinity.org

2nd Floor, 1B Stewart Drive, Berea, EAST LONDON, Eastern Cape | Tel: +27 43 748 2912 / 19

4th floor, West Tower, Nelson Mandela Sq, Sandton City, JOHANNESBURG, Gauteng | Tel: +27 11 100 2894 / Fax: +27 86 688 8

- 23.1 Given: $f(x) = 2.2^x 1$
 - 23.1.1 Write down the range of f.
 - 23.1.2 g(x) = f(x-1) + 1. Write down the equation of g^{-1} , the inverse of g in the form y = ...

23.2 Given:
$$h(x) = -\sqrt{\frac{x}{3}}; x \ge 0$$

- 23.2.1 If k(x) is the inverse of *h*, give the equation of k(x)
- 23.2.2 Give the coordinates of the point of intersection of h(x) and k(x)

info@mathsandscienceinfinity.org.za | www.mathsandscienceinfinity.org

2nd Floor, 1B Stewart Drive, Berea, EAST LONDON, Eastern Cape | Tel: +27 43 748 2912 / 19

4th floor, West Tower, Nelson Mandela Sq, Sandton City, JOHANNESBURG, Gauteng | Tel: +27 11 100 2894 / Fax: +27 86 688 8