SECONDARY SCHOOL IMPROVEMENT PROGRAMME (SSIP) 2019

GRADE 12

SUBJECT: TECHNICAL MATHEMATICS

LEARNER SOLUTIONS

(Page 1 of 39)

SESSION 1

TOPIC: EUCLIDEAN GEOMETRY THEORY TO THE END OF GRADE 11

SECTION A: SOLUTIONS TO HOMEWORK QUESTIONS

1.1	$x = 60^{\circ}$ (tan chord theorem)	✓ statement ✓ reason
	$y = 60^{\circ}$ (Tans from same pt) or (tan chord theorem)	✓ statement ✓ reason
	$60^\circ + 60^\circ + z = 180^\circ$ (Int ∠s Δ PBT) ∴ $z = 60^\circ$	 ✓ statement ✓ reason ✓ angle size (7)
1.2	$PT = TB = BP$ (sides opp equal $\angle s$)	✓ statement ✓ reason (2)

3.1 a)	$R\hat{P}M = 90^{\circ}$ (tan \perp diameter)	✓ statement ✓ reason
		(2)
3.1 b)	$R\hat{B}P = 90^{\circ}$ (\angle s in semi circle)	✓ statement ✓ reason
		(2)
3.2	$x = 42^{\circ}$ (tan chord theorem)	✓ statement ✓ reason
	$y = 42^{\circ}$ tan chord theorem) or (\angle s in the same seg) because $x = y$	✓ statement ✓ reason
	$z + 42^\circ = 90^\circ$ (tan \perp diameter)	✓ statement &reason
	$\therefore z = 48^{\circ}$	✓ angle size (6)

SECTION B: SOLUTIONS TO RECOGNISING THEORY IN TYPICAL EXAM DIAGRAMS

1.1	$ \begin{array}{ll} \hat{A}_1 = \hat{E} \dots & (\text{corresp } \angle \mathbf{s}; DA BE) \\ \hat{F}_2 = \hat{B}_1 + \hat{B}_2 \dots & (\text{corresp } \angle \mathbf{s}; DA BE) \\ \hat{A}_2 = \hat{B}_1 \dots & (\text{alt } \angle \mathbf{s}; DA BE) \end{array} $	 ✓ statement ✓ reason ✓ statement ✓ reason ✓ statement ✓ reason (6)
1.2	$ \hat{D}_2 + \hat{B}_3 + \hat{B}_2 + \hat{B}_1 = 180^\circ \text{ (co-int } \angle \text{s; DA} \text{BE}) \hat{A}_2 + \hat{A}_3 + \hat{E} = 180^\circ \text{ (co-int } \angle \text{s; DA} \text{BE}) $	 ✓ statement ✓ reason ✓ statement ✓ reason (4)
1.3	$\hat{B}_1 + \hat{E} = \hat{A}_1 + \hat{A}_2$ (ext \angle of Δ) can state which triangle namely: ΔABE	$ \vec{A}_1 + \vec{A}_2 \vec{\mathbf{v}} reason $

2.1	There are 3 radii coming off O so KO = PO = LO $\hat{K}_1 = \hat{P}_1$ $\hat{K}_2 = \hat{L}_1$ (\angle s opp equal sides)	 ✓ statement ✓ statement ✓ reason (3)
2.2	In Δ LPN and Δ LMN PN = NM (given) LN = LN (common) $\hat{N}_1 = 90^\circ$ (given) $\hat{N}_1 + \hat{N}_2 = 180^\circ$ (\angle s on a str line) $\therefore \hat{N}_1 = \hat{N}_2$ $\therefore \Delta$ LPN $\equiv \Delta$ LMN (SAS) $\therefore \hat{L}_2 = \hat{L}_3$	 ✓ statement & reason ✓ statement & reason ✓ logical argument with reason ✓ statement & reason ✓ statement & reason Letters must correspond ✓ conclusion (5)
2.3	In Δ LNM, $\hat{N}_1 = 90^\circ$ (given) $LM^2 = LN^2 + NM^2$ (Pythagoras) $12^2 = LN^2 + x^2$ $LN^2 = 12^2 - x^2$ $\therefore LN = \sqrt{144 - x^2}$	 ✓ statement & reason ✓ statement & reason ✓ substitution ✓ answer (5)

3.1	$\hat{B}_1 = \hat{C}_2$. (tan chord theorem) $\hat{C}_2 = \hat{D}_2$. (\angle s in the same seg)	✓ reason✓ reason (2)
3.2	$\therefore \hat{B}_1 = \hat{D}_2.$	\checkmark conclusion (2)
3.3	Opposite AC: $\hat{B}_2 = \hat{D}_1$. Opposite CD: $\hat{B}_3 = \hat{A}_1$. Opposite DB: $\hat{A}_2 = \hat{C}_1$. (\angle s in the same seg)	 ✓ angle pair ✓ angle pair ✓ angle pair ✓ reason (4)
3.4	$\hat{A}_3 = \hat{D}_1 + \hat{D}_2$ (ext \angle of cyclic quad)	$\begin{array}{l} \checkmark \ \widehat{D}_1 + \widehat{D}_2\\ \checkmark \ \text{reason} \end{array} \tag{2}$
3.5	$A\hat{C}D + A\hat{B}D = 180^{\circ}$ $C\hat{A}B + B\hat{D}C = 180^{\circ}$ (opp \angle s of cyclic quad)	 ✓ statement ✓ statement ✓ reason (3)

4.1	$P\widehat{K}L = 90^{\circ}$ (\angle s in semi circle)	✓ statement ✓ reason (2)
4.2	$L\widehat{N}P = 90^{\circ}$ (\angle s in semi circle) (opp \angle s of cyclic quad)	 ✓ statement ✓ reason ✓ reason (3)
4.3	$\begin{array}{l} \widehat{K}_{2} + \widehat{L}_{1} + \widehat{O}_{1} = 180^{\circ} (\operatorname{Int} \angle s \Delta) \\ \widehat{O}_{1} = 68^{\circ} \qquad (\text{given}) \\ \widehat{K}_{2} = \widehat{L}_{1} \qquad (\angle s \text{ opp equal sides}) \\ \therefore 2\widehat{K}_{2} + 68^{\circ} = 180^{\circ} \text{or } 2\widehat{L}_{1} + 68^{\circ} = 180^{\circ} \\ \therefore 2\widehat{K}_{2} = 112^{\circ} \qquad \text{or } 2\widehat{L}_{1} = 112^{\circ} \\ \therefore \widehat{K}_{2} = \widehat{L}_{1} = 56^{\circ} \end{array}$	 ✓ statement & reason ✓ statement & reason ✓ statement & reason ✓ substitution ✓ logical argument ✓ angle size (6)
4.4	$ \hat{O}_1 = 2\hat{P}_1. (\angle \text{ at centre} = 2 \times \angle \text{ at circumference}) \\ \hat{O}_1 = 68^{\circ} \qquad (\text{given}) \\ \therefore 2\hat{P}_1. = 68^{\circ} \\ \therefore \hat{P}_1 = 34^{\circ}. $	 ✓ statement ✓ reason ✓ statement & reason ✓ logical argument ✓ angle size (5)

SESSION 2

TOPIC: EUCLIDEAN GEOMETRY EXAM TYPE QUESTIONS 1: (GRADE 11)

SECTION A: SOLUTIONS TO HOMEWORK QUESTIONS

1	$x + 62^\circ = 90^\circ$ (radius \perp tangent) $\therefore x = 28^\circ$	√reason √angle	
	$x = \hat{B}_2 = 28^\circ$ (\angle s opp equal sides in \triangle POB)	✓angle ✓ reason	
	28° + y + \hat{B}_2 = 180° (Int ∠s of Δ POB) ∴ y = 180° - 2 × 28° = 124°	✓reason ✓angle	
	y = 2 × z (∠ at centre = 2 × ∠ at circumference) ∴ $z = \frac{124^{\circ}}{2} = 62^{\circ}$	√reason √angle (8	8)

2.1	$\hat{P}_1 = \hat{B}_1$ (tan chord theorem)	✓ angle ✓ reason
	$\hat{B}_1 = \hat{C}_1$ (\angle s in the same seg) $\therefore \hat{P}_1 = \hat{C}_1$	✓ reason ✓ angle
	PC = PA (given) $\hat{C}_1 = \hat{A}_1$ (∠s opp equal sides) $\therefore \hat{P}_1 = \hat{A}_1$	✓ reason ✓ angle
	$\hat{P}_4 = \hat{A}_1$ (tan chord theorem) $\therefore \hat{P}_1 = \hat{P}_4$	✓ reason ✓ angle
	$\hat{P}_4 = \hat{B}_2$ (tan chord theorem) $\therefore \hat{P}_1 = \hat{B}_2$	✓ reason✓ angle(10)
2.2	If $\widehat{CPA} = 90^{\circ}$ then $\widehat{P}_1 = \widehat{P}_4 = 45^{\circ}$ (∠s on a str line) In order for $\widehat{P}A = 90^{\circ}$, CA must be a diameter of	✓∠s on a str line
	the circle.	\checkmark CA must be a diameter (2)

3.1	$\widehat{B}=90^{\circ}$ ($\angle s$ in semi circle)	✓ statement ✓ reason
	$\therefore y = 90^{\circ} - 20^{\circ}$	
	$=70^{0}$	✓angle & reason
	OD = OC (radii) ∴ x = 0DC (∠s opp equal sides) x = $\frac{180^{\circ}-60^{\circ}}{2}$ = 60 ⁰ (Int ∠s Δ)	 ✓ statement ✓ reason ✓ angle & reason (6)
3.2	$O\widehat{D}C = x = 60^{\circ} (\angle s \text{ opp equal sides})$	
	riangleODC is an equilateral triangle (all angles equal 60°)	✓ equilateral✓ reason (2)

10

SECTION B: SOLUTIONS TO TYPICAL EXAMINATION QUESTIONS 1

QUEST	QUESTION 1 $A\hat{B}E = 40^{\circ}$		
	$ \begin{array}{c} C \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 3 \\ B \\ B \\ B \\ $	$A\hat{B}E = 40^{\circ}$	
1.1	$A\hat{B}E = \hat{C}_2$ (tan chord theorem)	$\checkmark \hat{C}_2 \checkmark$ reason	
	$\hat{C}_2 = \hat{D}_2$ (\angle s in the same seg) $\therefore A\hat{B}E = \hat{D}_2$ OR $A\hat{B}E = \hat{D}_2$ (tan chord theorem)	√ D̂ ₂ √reason	
	$A\hat{B}E = \hat{A}_2$ (alt \angle s; AD BE) $\hat{A}_2 = \hat{A}_1$ (AD bisects $C\hat{A}B$, given) $\therefore A\hat{B}E = \hat{A}_1$	✓ \hat{A}_2 ✓ reason ✓ \hat{A}_1 ✓ reason	
	$\hat{B}_3 = \hat{A}_1$ (\angle s in the same seg) $\therefore \ A\hat{B}E = \hat{B}_3$	✓ \hat{B}_3 ✓ reason	
	$A\hat{B}E = \hat{A}_2$ (proved) $\therefore A\hat{B}E = \hat{C}_1$	✓ \hat{C}_1 ✓ reason	
	$ \hat{E} = \hat{A}_{1} (corresp \angle s; AD BE) $ $ \hat{ABE} = \hat{A}_{1} (proved) $ $ \therefore \ ABE = \hat{E} $	✓ \hat{E} ✓ reason (14)	
1.2	$\hat{A}_3 + \hat{E} + A\hat{B}E = 180^\circ (\text{Int } \angle \text{s } \Delta)$ $\hat{A}_3 = 180^\circ - 40^\circ - 40^\circ$ $\therefore \hat{A}_3 = 100^\circ$	✓ statement ✓ reason ✓ answer (2)	

3.1	$OB = OA = OE (radii)$ $OE = 8 + x$ $\therefore OB = 8 + x$	✓ answer	(1)
3.2	$D\widehat{D}B = 90^{\circ} \text{ (line from centre to midpt of chord)}$ $OB^{2} = OD^{2} + DB^{2} \text{ (Pythagoras)}$ $(8 + x)^{2} = x^{2} + 12^{2}$ $64 + 16x + x^{2} = x^{2} + 144$ $16x = 80$ $\therefore x = 5 \text{ cm}$ $OB = 8 + x$ $\therefore OB = 8 + 5 = 13 \text{ cm}$	 ✓ 90° ✓ formula ✓ substitution ✓ answer 	(4)

[Ignore EB = ED; and EB = 11cm on the diagram]

4.1	x lies in Δ BDA $B\widehat{D}A = 36^{\circ} + 32^{\circ} = 68^{\circ}$ AB = AD (Tans from same pt) $B\widehat{D}A + D\widehat{B}A + x = 180^{\circ}(Int ∠s \Delta)$	✓ statement✓ reason	
	$68^{\circ} + 68^{\circ} + x = 180^{\circ}$ $\therefore x = 44^{\circ}$	✓ answer	(3)
4.2	y lies in $\triangle BDC$ $B\widehat{D}C = 36^{\circ}$ (given) $\widehat{B}_1 = 32^{\circ}$ (tan chord theorem) $y = 180^{\circ} - 36^{\circ} - 32^{\circ}$ (Int $\angle s \Delta$) $\therefore y = 112^{\circ}$	 ✓ tan chord theorem ✓ (Int ∠s Δ) ✓ answer 	(3)

SESSION NO: 3

TOPIC: EUCLIDEAN GEOMETRY EXAM TYPE QUESTIONS 2: (GRADE 11)

SECTION A: SOLUTIONS TO HOMEWORK QUESTIONS

QUESTION 1

1	$x = \widehat{N}_1$ (\angle s opp equal sides in \triangle PLN)	✓ statement ✓ reason	
	x + \hat{N}_1 + 110° = 180° (Int ∠s Δ PLN) ∴ x = $\frac{(180^\circ - 110^\circ)}{2}$ = 35°	✓angle & reason	
	$y + 110^\circ = 180^\circ$ (opp ∠s of cyclic quad) ∴ $y = 70^\circ$	✓statement ✓ reason	
	$M\hat{L}N = z$ (\angle s opp equal sides in Δ LMN) 70° + $M\hat{L}N + z = 180^{\circ}$ (Int \angle s Δ LMN)	✓ statement ✓ reason	
	$\therefore z = \frac{180^\circ - 70^\circ}{2} = 55^\circ$	✓angle & reason	
	$a = 55^{\circ}$ (\angle s in the same segment)	✓angle & reason	(9)

$$\hat{P}_3 = 80^{\circ}; \, \hat{Q}_3 = 70^{\circ} \text{ and } \hat{S}_2 = 40^{\circ}$$

2.1	$\hat{Q}_3 = \hat{S}_1 + \hat{S}_2 \text{ (ext } \angle \text{ of cyclic quad)}$ $70^\circ = \hat{S}_1 + 40^\circ$ $\therefore \hat{S}_1 = 30^\circ$	✓ reason✓ answer	(2)
2.2	$\hat{R}_2 = 30^\circ$ (\angle s in the same seg) $\hat{P}_3 = \hat{R}_1 + \hat{R}_2$ (ext \angle of cyclic quad)	✓ answer ✓ reason✓ reason	
	$\hat{\kappa}_1 = 50^\circ$	✓ answer	(4)
2.3	$\hat{P}_1 = 40^\circ$ (∠s in the same seg)	✓ answer ✓ reason	
	$80^\circ + \hat{P}_2 + 40^\circ = 180^\circ$ (∠s on a str line) $\therefore \hat{P}_2 = 60^\circ$ OR	✓ reason✓ answer	(4)
	$50^{\circ} + 30^{\circ} + \hat{P}_2 + 40^{\circ} = 180^{\circ}$ (opp \angle s of cyclic quad)		
	$\therefore P_2 = 00^{\circ}$		

 $\widehat{D}_2 = 70^\circ$ and $\widehat{E} = 42^\circ$.

3.1	$x = 42^{\circ}$ (tan chord theorem)	✓ answer ✓ reason ((2)
	$\widehat{D}_1 = 42^\circ$ (vertically opposite angles) $\widehat{D}_3 + 42^\circ + 70^\circ = 180^\circ$ (\angle s on a straight line) $\therefore \widehat{D}_3 = 68^\circ$		
	$\therefore y = 68^{\circ}$ (tan chord theorem)		
3.2		✓ answer ✓ reason	
	$x = \widehat{D}_1 = 42^\circ$ (vert opp $\angle s =$)		
	$\widehat{D}_3 + 42^\circ + 70^\circ = 180^\circ$ (\angle s on a straight line) $\therefore \widehat{D}_3 = 68^\circ$	✓ reason✓ answer	
	$\therefore \widehat{D}_3 = y = 68^\circ$ (tan chord theorem)	✓ answer ✓ reason (6)

SECTION B: SOLUTIONS TO TYPICAL EXAMINATION QUESTIONS 2

AB = 40 and AC = 48

1.1	AT = 20 (line from centre \perp to chord)	✓ answer & reason	(1)
1.2	$\Delta \text{ AOT is right-angled at T}$ $A0^{2} = 0T^{2} + AT^{2} (Pythagoras)$ $25^{2} = x^{2} + 20^{2}$ $x = \sqrt{25^{2} - 20^{2}} = 15$	 ✓ substitution & reason ✓ answer 	(2)
1.3	AS = 24 (line from centre \perp to chord) Δ AOS is right-angled at S AO ² = OS ² + AS ² (Pythagoras) 25 ² = OS ² + 24 ² OS = $\sqrt{25^2 - 24^2} = 7$ $\therefore \frac{OS}{OT} = \frac{7}{15}$.	 ✓ substitution & reason ✓ answer ✓ answer 	(3)

2.1	P ₂ = 70° Alternate ∠s F	PQ∥SR	✓ reason	(1)
2.2(a)	$\hat{T}_2 = 70^{\circ}$	(∠s opp equal sides)	✓ answer ✓ reason	
	$ \hat{Q}_1 = 180^\circ - 2(70^\circ) = 40^\circ $	(Int ∠s Δ	✓ answer	(3)
2.2(b)	$\widehat{P}_1 = 40$		✓ answer ✓ reason	(2)

19

$$\widehat{\mathbf{E}}_1 = \widehat{\mathbf{E}}_2 = x \text{ and } \widehat{\mathbf{C}}_2 = y$$

3.1 a)	$\widehat{B}_1 = x$ (tan chord theorem)	✓ reason	(1)
3.1 b)	$B\hat{C}D = \hat{B}_1$ (corresp $\angle s FB DC$)	✓ reason	(1)
3.2	$\widehat{D}_2 = \widehat{E}_2$ (∠s in the same seg) Note these equal x	✓ statement & reasor	า
	$\widehat{D}_2 = F\widehat{B}D$ (alt $\angle s BF \parallel CD$) So $\widehat{B}_3 + \widehat{B}_2 = x$ also	✓ statement & reasor	ר (2)
3.3	$B\hat{C}D = x$ from 3.1 b) $\therefore \hat{C}_1 + \hat{C}_2 = x$		
	$\hat{C}_2 = y \text{(given)}$ $\therefore \hat{C}_1 = x - y$	✓ statement	
	$\widehat{B}_3 = \widehat{C}_2 = y$ ($\angle s$ in the same seg) $\widehat{B}_3 + \widehat{B}_2 = x$ from 3.2	✓ statement & reasor	า
	$\therefore y + \hat{B}_2 = x$ So $\hat{B}_2 = x - y = \hat{C}_1$	✓ statement	(3)

SESSION 4

TOPIC: COMPLEX NUMBERS OVERVIEW

SECTION A: SOLUTIONS TO HOMEWORK QUESTIONS			
1.1 a)	5	\checkmark	(1)
1.1 b)	4 <i>i</i>	 ✓ 	(1)
1.2 a)	2	×	(1)
1.2 b)	0	×	(1)
2.1	$-2i.3i = -6i^2 = -6(-1) = 6$	$\begin{array}{c} \checkmark 6(-1) \\ \checkmark 6 \end{array}$	(2)
2.2	$-4i^2 \times i^3$		
	= -4(-1)(-1)i = -4i	$\begin{array}{c} \checkmark -4(-1)(-1)i\\ \checkmark -4i \end{array}$	(2)
2.3	$ (1 + \sqrt{5}i)^2 = (1 + \sqrt{5}i)(1 + \sqrt{5}i) = 1 + \sqrt{5}i + \sqrt{5}i + 5i^2 = 1 + 2\sqrt{5}i + 5(-1) = -4 + 2\sqrt{5}i $	 ✓ removing brackets ✓ answer 	(2)
2.4	$ (1 + \sqrt{5}i)(1 - \sqrt{5}i) = 1 - 5i^2 = 1 - 5(-1) = 6 $	✓ removing brackets✓ answer	(2)
2.5	$ \sqrt{-25} - \sqrt{-7} \\ = \sqrt{25} \times \sqrt{-1} \times \sqrt{7} \times \sqrt{-1} \\ = 5\sqrt{7} \times (\sqrt{-1})^2 \\ = 5\sqrt{7} \times -1 \\ = -5\sqrt{7} $	✓ splitting up ✓ answer	(2)
			()

3	$\frac{3+2i}{2}$	
	- 3 <i>i</i>	
	$=\frac{3+2i}{\times}\times\frac{-3i}{\times}$	$\checkmark \times \frac{-3i}{}$
	-3i $-3i$	-3i
	$-9i - 6i^2$	✓ simplifying
	$-\frac{9i^2}{9i^2}$	
	-9i - 6(-1)	
	= <u>9(-1)</u>	
	$=\frac{-9i}{9}+\frac{6}{9}$	
	-9 -9	
	$=i-\frac{6}{9}$	
	$=\frac{-2}{3}+i$ or $-0.67+i$	√answer (3)
4	3x + 14yi - 6 = 6 + 7i	
	3x + 14yi = 12 + 7i add 6 to both sides	
	3x = 12 and $14yi = 7i$	$\checkmark a + bi$ on both sides
	$\therefore x = 4$ and $y = \frac{1}{2}$	$\checkmark x = 4$
		$\mathbf{v} y = \frac{1}{2} \tag{3}$
5.1	$\bar{z} = \sqrt{15} + 2i$	$\checkmark \sqrt{15} + 2i \tag{1}$
5.2	• <i>I</i>	
	· · · · · · · · · · · · · · · · · · ·	$z = \sqrt{15} - 2i$
	$z = \sqrt{15 + 21}$	✓ point
	(√15;2) Real	$\overline{z} = \sqrt{15 + 2i}$
	₃ • (√15; - 2)	✓ labels on points and
	$z = \sqrt{15} - 2i$	axes (3)

	•		
6.1	$z = 1 + 2\sqrt{2}i$ $a = 1$ $b = 2\sqrt{2}$		
	$r = \sqrt{a^2 + b^2}$		•
	$=\sqrt{(1)^2 + \left(2\sqrt{2}\right)^2}$	✓ formula & substitut	ION
	$=\sqrt{1+8}$		
	= 3 check using your calculator	√answer	(2)
6.2	$z = 1 + 2\sqrt{2}i$ lies in quadrant 1 (a and b are		
	positive),		
	$\theta = tan^{-1}\left(\frac{b}{a}\right)$		
	(u)	✓ formula & substitut	ion
	$\theta = tan^{-1}\left(\frac{1}{1}\right) = 70,53^{\circ}.$	<i>,</i>	(-)
	$\therefore \theta = 70,53^{\circ}$ check using your calculator	✓ answer	(2)
6.3	$z = 3(\cos 70.53^\circ + i \sin 70.53^\circ)$ Or $z = 3 cis 70.53^\circ$	 ✓ format of answer ✓ 3 	
	Or $z = 3 \overline{70,53^{\circ}} $	✓ 70,53°	(3)
7.1	<i>r</i> = 2	$\checkmark r = 2$	
	$\theta = 135^{\circ}$	$\checkmark \theta = 135^{\circ}$	
	t,	√ diagram	(3)
	 	ulugrum	(0)
	2 135		
	0 - R		
7.2	$z = 2 \operatorname{cis} 135^{\circ}$		
	$z = 2(\cos 135^\circ + i \sin 135^\circ)$	√expanding	
	$z = 2\cos 135^\circ + 2\sin 135^\circ i$	$\sqrt{-\sqrt{2}}$	
	$z = -\sqrt{2} + \sqrt{2} i$	$\checkmark + \sqrt{2} i$	(3)
			、 /

1.1 a) 3 \checkmark (1) \checkmark 1.1 b) 2i (1) \checkmark 0 1.2 a) (1) 1.2 b) - 3i ✓ (1) $2i.3i = 6i^2 = 6(-1) = -6$ 2.1 √6(-1) **√** - 6 (2) $2(5i^3) = 10i^2$, i = 10(-1)i = -10i $\sqrt{10(-1)i}$ 2.2 ✓ - 10*i* (2) $2i^4 = 2(i^2)^2 = 2(-1)^2 = 2$ 2.3 $\checkmark 2(-1)^2$ √2 (2)3.1 $\sqrt{-144} = \sqrt{144} \times \sqrt{-1} = 12i$ ✓ working √answer (2) 3.2 $\sqrt{-21} = \sqrt{21} \times \sqrt{-1} = \sqrt{21} i$ ✓ working √answer (2) 3.3 $\sqrt{-75} = \sqrt{25} \times \sqrt{3} \times \sqrt{-1} = 5\sqrt{3}i$ ✓ working √answer (2) 4.1 (2+i)(3-i) = 2(3-i) + i(3-i) $= 6 - 2i + 3i - i^2 \checkmark$ ✓ working = 6 - 2i + 3i - (-1)✓ working $= 6 - 2i + 3i + 1\checkmark$ √answer $= 7 + i\checkmark$ (3) 4.2 √-12 $-\sqrt{144} - \sqrt{-1} + \sqrt{-25}$ = -12 - i + 5i**√**+5i = -12 + 4i√answer (3) $\frac{3+2i}{-3} = \frac{3}{-3} + \frac{2i}{-3}$ √-1 4.3 $\sqrt{\frac{2i}{3}}$ or $+\frac{2}{3}i$ (2) $= -1 - \frac{2}{3}i$ $\bar{z} = 1 - 3i$ ✓ 1 – 3*i* 5.1 (1)

SECTION B: SOLUTIONS TO PRACTICING THE BASICS OF COMPLEX NUMBERS

5.2	$\frac{3+i}{1+3i}$	
	$= \frac{3+i}{1+3i} \times \frac{1-3i}{1-3i} \times by \text{ complex conjugate}$	$\checkmark \times \frac{1-3i}{1-3i}$
	$= \frac{3(1-3i)+i(1-3i)}{1(1-3i)+3i(1-3i)}$ $= \frac{3-9i+i-3i^2}{1-3i+3i-9i^2}$ $3-8i-3(-1)$	$√3 - 9i + i - 3i^2$ $√1 - 3i + 3i - 9i^2$
	$= \frac{6-8i}{1-9(-1)}$ $= \frac{6-8i}{1-9(-1)}$ $\Rightarrow each term by 10$	x^{3} or 0.6
	$= \frac{3}{5} - \frac{4}{5}i \text{or } 0,6 - 0,8i$	$\sqrt{-\frac{4}{5}}i$ or 0,6 - 0,8 <i>i</i> (5)
5.3	$\overline{z} \times \overline{z}$ $= (1 - 3i)(1 - 3i)$ $1(1 - 2i) = 2i(1 - 2i)$	✓ substitution
	= 1(1 - 3i) - 3i(1 - 3i) = 1 - 3i - 3i + 9i ² = 1 - 3i - 3i + 9(-1)	✓ simplification
	= 1 - 3i - 3i - 9 = -8 - 6i	√answer (3)
6	i - (x + iy) + 2(x + iy) - 3i = -2 + 7i	
	i - x - iy + 2x + 2yi - 3i = -2 + 7i	✓ simplification
	-x - iy + 2x + 2yi = -2 + 7i - i + 3i	
	-x + 2x + 2yi - iy = -2 + 7i - i + 3i	
	x + yi = -2 + 9i	$\checkmark a + bi$ on both sides
	$x = -2$ and $yi = 9i \therefore y = 9$	$\checkmark x = -2$
		$\checkmark y = 9 \tag{4}$

7.1 to 7.3		$z = -2 + i$ $\checkmark \text{ point}$ $\checkmark \text{ either label}$ $z = 2i$ $\checkmark \text{ point}$ $\checkmark \text{ either label}$ $z = -2 - i$	
	z = -2 + i (-2; 1)• (0; 2)	✓ point ✓ either label	
	$z = -2 - i \int_{z}^{z} (-2; -1)^{-1} z$	✓axes labels	7)
8.1	$z_1 = -2 + i$ $a = -2$ $b = 1$		
	$r = \sqrt{a^2 + b^2} = \sqrt{(-2)^2 + (1)^2}$	✓ formula & substitutio	n
	$=\sqrt{5}$ $= 2,24$	√answer	(2)
	To check using your calculator see: Converting from rectangular co-ordinates to polar co-ordinates: to find the answer		
8.2	$z_1 = -2 + i$ lies in quadrant 3 so,		
	$\theta = tan^{-1} \left(\frac{b}{a}\right)$		
	$z_1 = -2 + i$ lies in quadrant 2 so,	✓ substitution	
	$\theta = 180^{\circ} - tan^{-1} \left(\frac{1}{+2}\right)$ substitute positive values		
	$\therefore \theta = 153,43^{\circ}$	✓ answer	(2)
	If not told to find θ you could or write the answer as		
	$arg(z) = 153,43^{\circ}$		
	from rectangular co-ordinates to polar co-ordinates: to find the answer		

SESSION 5

TOPIC: EXAM TYPE QUESTIONS ON COMPLEX NUMBERS

SECTION A: SOLUTIONS TO HOMEWORK QUESTIONS

1.1	$ \begin{array}{l} \sqrt{-5} - \sqrt{-2} + \sqrt{-4} \\ = \sqrt{5}\sqrt{-1} - \sqrt{2}\sqrt{-1} + \sqrt{4}\sqrt{-1} \\ = \sqrt{5}i - \sqrt{2}i + 2i \end{array} $	✓ splitting up✓ answer (2)
1.2	$(2i)^{3} + 14i^{2} - (9 + 2i)$ = $8i^{3} + 14i^{2} - 9 - 2i$ = $8(-1)i + 14(-1) - 9 - 2i$ = $-8i - 14 - 9 - 2i$ = $-10i - 23$	✓ remove brackets ✓ $-8i - 14 - 9 - 2i$ ✓ answer (3)
1.3	(1+i)(5-3i) = (1)(5-3i) + i(5-3i) = 5-3i + 5i - 3i ² = 5-3i + 5i - 3(-1) = 2i + 8	 ✓ remove brackets ✓ answer (2)
2.1	$\bar{z} = \frac{3}{5} - \frac{4}{5}i$	$\checkmark \frac{3}{5} \\ \checkmark -\frac{4}{5}i \tag{2}$
2.2	z = 0, 6 + 0, 8i $z = 0, 6 + 0, 8i$ $(0, 6; 0, 8)$ $z = 0, 6 - 0, 8i$ $(0, 6; - 0, 8i$ $(0, 6; - 0, 8i)$	$z = \frac{3}{5} + \frac{4}{5}i = 0,6 + 0,8i$ $\checkmark \text{ point & either label}$ $\bar{z} = \frac{3}{5} - \frac{4}{5}i = 0,6 - 0,8i$ $\checkmark \text{ point & either label}$ $\checkmark \text{ axes labels}$ (3)

 $\ensuremath{\textcircled{\text{\scriptsize C}}}$ Gauteng Department of Education

2.3	$a = \frac{3}{5} \text{ and } b = \frac{4}{5}$ $r = \sqrt{a^2 + b^2}$ $= \sqrt{\left(\frac{3}{5}\right)^2 + \left(\frac{4}{5}\right)^2} \text{ or substitute 0,6 and 0,8}$	✓ formula & substitution
	= 1	✓answer (2)
	Or by using the calculator method	OR ✓✓ answer if calculator
		method used
2.4	$z = \frac{3}{5} + \frac{4}{5}i$ lies in quadrant 1 so, $\theta = tan^{-1} \left(\frac{0.8}{0.6}\right)$ or substitute $\frac{4}{5}and \frac{3}{5}$ $\therefore \theta = 53,13^{\circ}$ Or by using the calculator method	 ✓ substitution ✓ answer (2) OR ✓ ✓ answer if calculator method used
2.5	$\theta = 53,13^{\circ}$	 ✓ r and label ✓ θ° and label Length and angle size should be correct (2)
2.6	$z = 1 \ (\cos 53,13^\circ + i \sin 53,13^\circ)$ or $z = 1 \ cis 53,13^\circ$ or $1 \underline{53,13^\circ}$	 ✓ format ✓ substitution (2)

3	3 - 2i		
	$\overline{i-3}$		
	3 - 2i i + 3	$\sqrt{\frac{i+3}{2}}$	
	$=$ $\frac{1}{i-3} \times \frac{1}{i+3}$	i+3	
	$=\frac{(3-2i)(3+i)}{(i-3)(i+3)}$ swop $i + 3$ to $3 + i$ so both in same		
	$=\frac{3(3+i)-2i(3+i)}{i(i+3)-3(i+3)}$		
	$=\frac{9+3i-6i-2(-1)}{(-1)+3i-3i-9}$	✓simplify	
	$=\frac{11-3i}{-10}$	11	
	$=\frac{-11}{10}+\frac{3i}{10}$ or $-1,1+0,3i$	$\sqrt{\frac{11}{10}}$ or $-1,1$ $\sqrt{+\frac{3i}{10}}$ or $+0,3i$	(4)
4	$5(\cos 0^\circ + i \sin 0^\circ)$	✓ format	
	$= 5 \times 1 + 5 \times 0i$ $= 5$	✓ answer	(2)
5	(1-2i)(x+3i) = y - 3i		
	1(x+3i) - 2i(x+3i) = y - 3i		
	r + 3i - 2ri - 6(-1) = v - 3i	✓ simplification	
	x + 6 $2xi - y$ $6i$	$\checkmark a + bi$ on both sides	5
	x + 0 - 2xi - y - 0i		
	x + 6 = y and $-2xi = y - 6i$		
	$\therefore x = 3$ substitute into	$\checkmark x = 3$	
	x + 6 = y		
	(3) + 6 = y		
	$\therefore y = 9$	$\checkmark y = 9$	(4)

6	E = I.Z	(aubatitution
	= (2 + 6i)(3 - 4i)	
	= 6 - 8i + 18i - 24(-1)	✓ simplification
	= 30 + 10i volts	\checkmark 30 + 101 \checkmark volts (4)

SECTION B: SOLUTIONS TO TYPICAL EXAMINATION QUESTIONS

1.1	$-\sqrt{16} - \sqrt{-1} + \sqrt{-81} \\ = -4 - \sqrt{-1} + \sqrt{81 \times -1}$	√ splitting up
	= -4 - i + 9i	• spitting up
	= -4 + 8i	✓ -4
		✓ +8 <i>i</i> (3)
1.2	$3 + 14i^3 - 6 - (6 + 7i)$	
	$= 3 + 14i^3 - 6 - 6 - 7i$	
	= 3 + 14(-1)i - 6 - 6 - 7i	✓ splitting up & remove
	= 3 - 14i - 12 - 7i	Drackets
	= -9 - 21i	✓ _9
		$\checkmark -21i$ (3)
1.3	$7 + i_{7} + i_{1}$	✓ split up
	$\frac{1}{2} = \frac{1}{2} + \frac{1}{2}$	
	$-\frac{7}{2}+\frac{1}{2}i$ or 35 + 05 i	√ answer
		(2)
2.1	a = -2 and $b = 2$	
	z = -2a + 2i	$\checkmark -2a$ $\checkmark 2i$ (2)
		· 21 (2)
2.2	a = -2 and $b = 2$	
	$r = \sqrt{a^2 + b^2}$	✓ formula & substitution
	$=\sqrt{(-2)^2+(2)^2}$	√answer (2)
	$-\sqrt{2}$ or 2.02	OR
	$= \sqrt{8} \text{ or } 2,83$	\checkmark answer if calculator
		method used
2.3	z = -2a + 2i lies in quadrant 2 so,	(autatitution
	$\theta = 180^{\circ} - tan^{-1} \left(\frac{\tau^2}{2}\right) \dots$ substitute positive values	
	$\therefore \theta = 135^{\circ}$	✓ answer (2)
	Or by using the calculator method	OR
		\checkmark answer if calculator
		method used

2.4	$z = \sqrt{8} (\cos 135^\circ + i \sin 135^\circ)$ or $z = \sqrt{8} cis 135^\circ$ or $\sqrt{8} \underline{135^\circ}$ OR $z = 2,83(\cos 135^\circ + i \sin 135^\circ)$ or abbreviations	 ✓ format ✓ substitution ((2)
3	(1+i)(5+3i) = 1(5+3i) + i(5+3i) = 5+3i+5i+3i ² = 5++3i+5i+3(-1)	✓removing brackets	
	= 5 + +3i + 5i - 3 = 2 + 8i	$\begin{array}{c} \checkmark 2\\ \checkmark +8i \end{array} \tag{3}$	3)
4	$2\sqrt{2}(\cos 315^\circ + i \sin 315^\circ)$ = $2\sqrt{2} \times \frac{\sqrt{2}}{2} + 2\sqrt{2} \times \left(\frac{-\sqrt{2}}{2}\right)$ = $2 - 2i$	✓2 ✓-2i	(2)
5	y - 4i = (2 - i)(3x + i) y - 4i = 6x + 2i - 3xi - (-1) y - 4i = 6x + 2i - 3xi + 1 y - 6i = 6x + 1 - 2xi	✓ simplification	
	y = 6x + 1 = 3xt So $y = 6x + 1$ and $6i = -3xi$ i.e. $6 = -3x$ $\therefore -2 = x$ substitute into	$\checkmark a + bi$ on both sides	
	y = 6x + 1 y = 6(-2) + 1 $\therefore y = 11$	$\checkmark x = -2$	
	·· y – 11	$\checkmark y = 11$	(4)

6	$z_1 = 2 - 3i$ and $z_2 = 1 + 4i$	
	$Z_T = \frac{Z_1 Z_2}{Z_1 + Z_2}$	
	$=\frac{(2-3i)(1+4i)}{2-3i+1+4i}$	
	$=\frac{2+4i-3i-4(-1)}{3+i}$	✓ substitution
	$=\frac{2+4i-3i+4}{3+i}$.2+4i-3i+4
	$=\frac{6+i}{3+i}\times\frac{3-i}{3-i}$	$\sqrt{\frac{2+11}{3+i}}$
	$=\frac{18-6i+3i-(-1)}{9-(-1)}$	$\checkmark \times \frac{3-i}{3-i}$
	$=\frac{19-3i}{10}$	
	or 1,9 – 0,3 <i>i</i> ohms	✓answer& unit (4)

SESSION NO: 6

SECTION A:

TOPIC: CIRCLES, ANGLES AND ANGULAR MOVEMENT

	47.000		(1)
1.1	45 rev/min = $\frac{45 rev}{60 s}$ = 0,75 rev/s	✓ correct method	(1)
1.2	n = 0,75 rev/s		
	$\omega = 2\pi n$	✓ correct formula	
	$= 2 \times \pi \times 0.75$	✓ substitution	
	$= 1,5\pi$		
	$\omega = 4,71 \text{ rad/s}$	✓ answer & unit	(3)
2.1	s = vt		
	= 2(10)	✓ correct formula & sub	stitution
	s = 20 m	✓ answer & unit	(2)
<u> </u>	D A America 2m		
2.2	D = 0,4m; $v = 2m$		
	$v = \pi D n$		
	$2 = \pi(0,4)(n)$	✓ correct formula & sub	stitution
	$n = \frac{2}{2}$		
	$0,4\pi$	\checkmark for making <i>n</i> the sub	ject of the
	n = 1,59 r/s	formula	
		✓ answer & unit	(3)

SOLUTIONS TO HOMEWORK QUESTIONS

2.3	1 rev = 2π radians		
	12 rev = $12 \times 2\pi$ radians		
	12 rev = 75,398 radians	\checkmark 12 \times 2 π radians or 75,39)8
	$\omega = \frac{\theta}{t}$	rac	lians
	$t = \frac{\theta}{\omega} \dots \dots (1)$	\checkmark for making t the subject c formula	of the
	But: $\omega = 2\pi n$		
	$= 2\pi(1,59)$	$\checkmark \omega = 9,99$	
	ω = 9,99rad/s(2)		
	Substitute (2) into (1)		
	$t = \frac{75,398}{9,99}$	✓ <i>t</i> = 7,55	(4)
	<i>t</i> = 7,55 <i>s</i>		
3.1	$s = r\theta$		
	430 cm = <i>r</i> (2,8)		
	<i>r</i> = 153,57 cm	✓ answer	(1)
3.2	Area of sector = $\frac{\theta r^2}{2}$		
	$=\frac{2,8\times(153,57)^2}{2}$	✓ correct formula & substitu	tion
	$= 33017.86 \text{ cm}^2$	✓ answer	(2)
4.1	$CA^2 = AO^2 - OC^2$ Theorem of Pythagoras	✓ statement & reason	
	$=(10)^2-(6)^2$		
	CA = 8 m	✓ answer	(2)
4.2	AB = 16 = x; D = 20; h = ?		
	$20 = h + \frac{16^2}{4h}$	✓ correct substitution	
	$80h = 4h^2 + 256$		
	$4h^2 - 80h + 256 = 0$	\sqrt{for} quadratic equation in	
	$h^2 - 20h + 64 = 0$	standard form	
	(h-16)(h-4) = 0	 ✓ factors or correct substituti into the quadratic formula 	tion
	h = 16 OR h = 4	\checkmark h = 16	(5)
		v <i>II</i> = 4	(၁)

SECTION B: SOLUTIONS TO TYPICAL EXAMINATION QUESTIONS 2

1.1	$s = r\theta$ $50 = r \times (1,3)$ $\frac{50}{50} = r$	✓ formula & substitution
1.0	r = 38,461 = 38,46 cm	✓ Answer (2)
1.2	Area of sector $=\frac{1}{2}r^2\theta$	
	$=\frac{1}{2} \times 38^2 \times 1,3$	✓ substitution
	$= 938,6 \text{ cm}^2$	✓ answer & unit (2)
2	$\theta = 35^{\circ} d = 32 \ cm \therefore r = 16 \ cm$	
	$s = r\theta$	V substitution into corroct
	$= 16 \times 35^{\circ} \times \frac{\pi}{180^{\circ}}$	formula
	$=\frac{28}{9}\pi$	
	= 9,773	
	$\therefore s = 9,77 \ cm$	✓ answer & unit (2)
3	$D = h + \frac{x^2}{4h}$	✓ formula
	$25 = h + \frac{(20)^2}{4h}$	
	$100h = 4h^2 + 400$	
	$0 = 4h^2 - 100h + 400 \dots \dots \div 4$	
	$0 = h^2 - 25h + 100$	✓ standard form
	$h = \frac{-(-25)\pm\sqrt{(-25)^2 - 4(1)(100)}}{2(1)} \text{ or } (h - 20)(h - 5) = 0$	 ✓ substitution into quadratic formula or factorising
	h = 20 cm or $h = 5 cm$	\checkmark answers & unit (5)
4	Area of sector	
	$=\frac{1}{2}r^2\theta$	\checkmark substitution into correct
	$=\frac{1}{2} \times 35^2 \times 75 \times \frac{\pi}{180} \text{ mm}^2$	formula
	$= 801,760,6251 \text{ mm}^2$	$\checkmark 75 \times \frac{\pi}{180}$
	$\approx 802 \text{ mm}^2$	l ✓ answer & unit (3)

5.1	500 rev/ minute = $\frac{540}{60}$ = 9 rev/s	✓ answer	(1)
5.2	$w = 2\pi n$ = 2 × π × 9 rev/s = 18 π rev/s = 56.55 rad/s	 ✓ correct formula ✓ substitution ✓ answer & unit 	(3)
6.1	For <i>n</i> revolutions per second $v = \pi Dn$ m. s^{-1}		
	For <i>n</i> revolutions per hour $v = \pi Dn \ km \cdot h^{-1}$		
	Train does $\frac{2}{3}$ revolution in 40 minutes $\times 3$		
	Train does 2 revolutions in120minutes ÷ 2		
	Train does 1 revolution in 60 minutes	✓ time for 1 revolution	
	We are also given that $D = 8 \ km$		
	So, $v = \pi Dn$ $= \pi \times 8 \text{ km} \times 1 \text{ rev/h}$ $= 8\pi \text{ km/h}$ = 25.122 km/h	 ✓ formula ✓ substitution 	
	= 25,132 km/h = 25,13 km/h	✓ answer & unit	(4)
6.2	From 5.1 the train does 1 revolution in 60 minutes (1 hour), so it will take the train 4 hours to do 4 revolutions OR Using $v = \pi Dn$ $8\pi = \pi \times 8 \times n$ do not use rounded off answers $n = \frac{8\pi}{\pi \times 8}$ $n = 1$ rev /hour \therefore 4 hours for 4 revolutions	 ✓ explanation ✓ 4 hours OR ✓ substitution into correct formula ✓ 4 hours 	ct
6.2	From 5.1 the train does 1 revolution in 60 minutes (1 hour), so it will take the train 4 hours to do 4 revolutions OR Using $v = \pi Dn$ $8\pi = \pi \times 8 \times n$ do not use rounded off answers $n = \frac{8\pi}{\pi \times 8}$ $n = 1$ rev /hour \therefore 4 hours for 4 revolutions OR $v = \frac{s}{t}$ so $t = \frac{s}{v} = \frac{4\pi \times 8}{8\pi} = 4$ hours	 ✓ explanation ✓ 4 hours OR ✓ substitution into correct formula ✓ 4 hours 	ct (2)
6.2	From 5.1 the train does 1 revolution in 60 minutes (1 hour), so it will take the train 4 hours to do 4 revolutions OR Using $v = \pi Dn$ $8\pi = \pi \times 8 \times n$ do not use rounded off answers $n = \frac{8\pi}{\pi \times 8}$ $n = 1$ rev /hour \therefore 4 hours for 4 revolutions OR $v = \frac{s}{t}$ so $t = \frac{s}{v} = \frac{4\pi \times 8}{8\pi} = 4$ hours 4 km = 400 000 cm 1 852 revolutions = 400 000 cm \therefore 1 revolution = $\frac{400\ 000}{1\ 852}$ cm $C = \pi d$	✓ explanation ✓ 4 hours OR ✓ substitution into correct formula ✓ 4 hours ✓ $C = \pi d$	ct (2)
6.2	From 5.1 the train does 1 revolution in 60 minutes (1 hour), so it will take the train 4 hours to do 4 revolutions OR Using $v = \pi Dn$ $8\pi = \pi \times 8 \times n$ do not use rounded off answers $n = \frac{8\pi}{\pi \times 8}$ $n = 1$ rev /hour \therefore 4 hours for 4 revolutions OR $v = \frac{s}{t}$ so $t = \frac{s}{v} = \frac{4\pi \times 8}{8\pi} = 4$ hours 4 km = 400 000 cm 1 852 revolutions = 400 000 cm \therefore 1 revolution = $\frac{400\ 000}{1\ 852}$ cm $C = \pi d$ $\therefore d = \frac{C}{\pi}$	✓ explanation ✓ 4 hours OR ✓ substitution into correct formula ✓ 4 hours ✓ $C = \pi d$	ct (2)
6.2	From 5.1 the train does 1 revolution in 60 minutes (1 hour), so it will take the train 4 hours to do 4 revolutions OR Using $v = \pi Dn$ $8\pi = \pi \times 8 \times n$ do not use rounded off answers $n = \frac{8\pi}{\pi \times 8}$ $n = 1$ rev /hour \therefore 4 hours for 4 revolutions OR $v = \frac{s}{t}$ so $t = \frac{s}{v} = \frac{4\pi \times 8}{8\pi} = 4$ hours 4 km = 400 000 cm 1 852 revolutions = 400 000 cm \therefore 1 revolution $= \frac{400\ 000}{1\ 852}$ cm $C = \pi d$ $\therefore d = \frac{C}{\pi}$ $= \frac{\frac{400\ 000}{1\ 852}}{\pi}$	✓ explanation ✓ 4 hours OR ✓ substitution into correct formula ✓ 4 hours ✓ $C = \pi d$ ✓ substitution	ct (2)

