



# **Copyright Notice:**

The theory summaries in this Smart Prep Book are the original work of Science Clinic (Pty) Ltd. You may distribute this material as long as you adhere to the following conditions:

- If you copy and distribute this book electronically or in paper form, you must keep this copyright notice intact.
- If you use questions or syllabus summaries from this book, you must acknowledge the author.
- This Smart Prep Book is meant for the benefit of the community and you may not use or distribute it for commercial purposes.
- You may not broadcast, publicly perform, adapt, transform, remix, add on to this book and distribute it on your own terms.

By exercising any of the rights to this Smart Prep Book, you accept and agree to the terms and conditions of the license, found on www.scienceclinic.co.za/terms-book-usage/

# **Content Acknowledgement**

Many thanks to those involved in the production, translation and moderation of this book: S Bouwer, E Britz, G Kyle, D Kotze, Q Meades, S Sapsford, S Stevens, G Swanepoel, GM van Onselen, L Vosloo





© Science Clinic (Pty) Ltd 2019 🕀



### **NATURE OF ROOTS**

SCIENCE CLINIC 2019 ©



2

# **NATURE OF ROOTS**

SCIENCE CLINIC 2019 ©

| EXAMPLES                                                                | DISCRIMINANT<br>( $A = b^2 - (120)$                                                                                      | NANT<br>NATURE OF ROOTS NUMBER OF REAL ROOTS                                                          |                   | b² - 4ac                                                                                                                  |                                           |  |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|
|                                                                         | $(\Delta = b^{4aC})$                                                                                                     |                                                                                                       |                   | a > 0                                                                                                                     | a < 0                                     |  |
| $x^{2} + x + 1 = 0$ $a \qquad b \qquad c$                               | $\Delta = b^{2} - 4ac$<br>= (1) <sup>2</sup> - 4(1)(1)<br>= 1 - 4<br>= - 3<br>$\Delta < 0$                               | Non real                                                                                              | 0                 | $ \xrightarrow{y} \\  \\ \checkmark $ | $\overset{y}{\longleftrightarrow} \times$ |  |
| $x^{2}-6x+9=0$ $ \begin{array}{c} 1\\ a\\ b\\ c \end{array} $           | $\Delta = b^{2} - 4ac$<br>= (-6) <sup>2</sup> - 4(1)(9)<br>= 36 - 36<br>= 0<br>$\Delta = 0$                              | Real ( $\Delta = +$ )<br>Rational ( $\Delta =$ perfect<br>square)<br>Equal ( $\Delta = 0$ )           | 1 (2 of the same) | $ \xrightarrow{y} \\ \longleftarrow \\ \times $                                                                           | × ×                                       |  |
| $x^{2} - 5x - 6 = 0$ $a \qquad b \qquad c$                              | $\Delta = b^{2} - 4ac$<br>= (-5) <sup>2</sup> - 4(1)(-6)<br>= 25 + 24<br>= 49<br>$\Delta > 0 \text{ (perfect square)}$   | Real ( $\Delta = +$ )<br>Rational ( $\Delta =$ perfect<br>square)<br>Unequal ( $\Delta \neq 0$ )      | 2                 | v ↑                                                                                                                       | ×                                         |  |
| $2x^{2} + 3x - 7 = 0$ $ \begin{array}{c} 1 \\ a \\ b \\ c \end{array} $ | $\Delta = b^{2} - 4ac$<br>= (3) <sup>2</sup> - 4(2)(-7)<br>= 9 + 56<br>= 65<br>$\Delta > 0 \text{ (not perfect square)}$ | Real ( $\Delta = +$ )<br>Irrational ( $\Delta \neq$<br>perfect square)<br>Unequal ( $\Delta \neq 0$ ) | 2                 | ×                                                                                                                         |                                           |  |

| DETERMINING THE NATURE                                                                                                                                          | FOR WHICH VALUES OF k                                                                                                                                                                                                                                                                                                                                                               | PROVE THE NATU                                                                                                                                   | URE OF THE ROOTS                                                                                                                                 |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| OF ROOTS WITHOUT<br>SOLVING THE EQUATION                                                                                                                        | WILL THE EQUATION HAVE<br>EQUAL ROOTS?                                                                                                                                                                                                                                                                                                                                              | The nature of the roots will be supplied and the discriminant can be used to prove the nature, with either one, or no, unknown value.            |                                                                                                                                                  |  |  |  |
| The roots of an equation can be deter-<br>mined by calculating the value of the discriminant $(\Lambda)$                                                        | The discriminant ( $\Delta$ ) can be used to calculate<br>the unknown value of k. (e.g. Ask yourself, for<br>which values of k will the discriminant be 02)                                                                                                                                                                                                                         | Steps to prove the nature of roots (NO unknown):                                                                                                 | Steps to prove the nature of roots (ONE unknown):                                                                                                |  |  |  |
| Steps to determine the roots using the discriminant:                                                                                                            | Steps to determine the values of k using<br>the discriminant:                                                                                                                                                                                                                                                                                                                       | <ol> <li>Substitute the correct values in and calculate the discriminant</li> <li>Determine the roots and confirm whether they are as</li> </ol> | <ol> <li>Substitute the correct values in and calculate the discriminant</li> <li>Determine the roots and confirm whether they are as</li> </ol> |  |  |  |
| 1. Put the equation in its standard form                                                                                                                        | 1. Put the equation in its standard form                                                                                                                                                                                                                                                                                                                                            | supplied                                                                                                                                         | supplied                                                                                                                                         |  |  |  |
| 2. Substitute the correct values in and<br>calculate the discriminant                                                                                           | 2. Substitute the correct values in and calculate the discriminant                                                                                                                                                                                                                                                                                                                  | EXAMPLE                                                                                                                                          | EXAMPLE                                                                                                                                          |  |  |  |
| 3. Determine the nature of the roots of the equation                                                                                                            | 3. Equate the discriminant to 0 and solve for k (quadratic equation)                                                                                                                                                                                                                                                                                                                | $x^2 = 2x + 9$                                                                                                                                   | For the equation $X(6X - 7m) = 5m^2$ , prove that the roots<br>are real, rational and unequal if m > 0                                           |  |  |  |
| EXAMPLE :                                                                                                                                                       | EXAMPLE                                                                                                                                                                                                                                                                                                                                                                             | 1. Standard form                                                                                                                                 | 1. Standard form                                                                                                                                 |  |  |  |
| Determine the nature of the roots of $x^2 = 2x + 1$ without solving the equation                                                                                | For which values of k the equation will have equal roots?                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} x^2 - 2x - 9 = 0 \\ a & b & c \end{array}$                                                                                     | $6x^2 - 7mx - 5m^2 = 0$ $a  b  c$                                                                                                                |  |  |  |
| 1. Standard form                                                                                                                                                | REMEMBER: $\Delta = 0$ for equal roots                                                                                                                                                                                                                                                                                                                                              | <b>2. Calculate the discriminant</b><br>$\Lambda = h^2 - 4ac$                                                                                    | 2. Calculate the discriminant $A = h^2 - 4ac$                                                                                                    |  |  |  |
| $x^{2} = 2x + 1$<br>$x^{2} - 2x - 1 = 0$                                                                                                                        | 1. Standard form                                                                                                                                                                                                                                                                                                                                                                    | $\Delta = (-2)^2 - 4(1)(-9)$<br>$\Delta = 4 + 36$                                                                                                | $\Delta = (-7m)^2 - 4(6)(-5m^2)$<br>$\Delta = 49m^2 + 120m^2$                                                                                    |  |  |  |
| a b c                                                                                                                                                           | $x^{2} + 2kx = -4x - 9k$<br>$x^{2} + 2kx + 4x + 9k = 0$                                                                                                                                                                                                                                                                                                                             | $\Delta = 40$                                                                                                                                    | $\Delta = 169 \text{m}^2$                                                                                                                        |  |  |  |
| 2. Calculate the discriminant                                                                                                                                   | a b c                                                                                                                                                                                                                                                                                                                                                                               | <b>3. Determine the roots</b><br>The Roots are:                                                                                                  | 3. Determine the roots<br>The Roots are:                                                                                                         |  |  |  |
| $\Delta = b^{2} - 4ac$ $\Delta = (-2)^{2} - 4(1)(-1)$ $\Delta = 4 + 4$ $\Delta = 8$                                                                             | 2. Calculate the discriminant<br>$\Delta = b^2 - 4ac$ $\Delta = (2k + 4)^2 - 4(1)(9k)$ $\Delta = 4k^2 + 16k + 16 - 36k$                                                                                                                                                                                                                                                             | Real ( $\Delta > 0$ )<br>Unequal ( $\Delta \neq 0$ )<br>Irrational ( $\Delta \neq$ perfect square)                                               | Real ( $\Delta > 0$ )<br>Unequal ( $\Delta \neq 0$ )<br>Rational ( $\Delta =$ perfect square)                                                    |  |  |  |
| 3. Determine the nature of the<br>roots<br>The Roots are:<br>Real ( $\Delta > 0$ )<br>Unequal ( $\Delta \neq 0$ )<br>Irrational ( $\Delta \neq$ perfect square) | $\Delta = 4k^2 + 16k + 16 - 36k$<br>$\Delta = 4k^2 - 20k + 16$<br><b>3. Equate to zero (0) and solve for k</b><br>$0 = 4k^2 - 20k + 16  (\div 4)$<br>$0 = k^2 - 5k + 4$<br>0 = (k - 1)(k - 4)<br>Therefore k = 1 or k = 4<br>k needs to either be 1 or 4 to ensure that<br>the discriminant of the equation is 0 (the<br>discriminant <b>must</b> be 0 in order for equal<br>roots) |                                                                                                                                                  |                                                                                                                                                  |  |  |  |

### **NATURE OF ROOTS**

SCIENCE CLINIC 2019 ©

### **QUADRATIC EQUATIONS**

**Quadratic Equations** are equations of the second degree (i.e. the highest exponent of the variable is 2). The degree of the equation determines the maximum number of real roots/solutions/x-intercepts/zeros. The standard form of a quadratic equation is:

 $ax^2 + bx + c = 0$  where  $a \neq 0$ 





### FUNCTIONS AND GRAPHS



### FUNCTIONS AND GRAPHS



### **FUNCTIONS AND GRAPHS**



### **FUNCTIONS AND GRAPHS**

SCIENCE CLINIC 2019 ©



### WHAT ARE:

**Exponents:** Exponents occur when multiplying or dividing expressions/ bases/variables numerous times by similar expressions/bases/variables

Surds: A surd is the Mathematical terminology for irrational roots, when numbers are left in "root-form" as opposed to rounding them off to a deep mal place.

### HELPFUL HINTS FOR EQUATIONS\EXPRESSIONS

1. Express larger numbers in exponential form by prime factorising

- 2. Remove a common factor if two unlike terms are separated by a +/-
- 3. Ensure your surds are always expressed in their simplest form
- 4. Express surds in exponential form for simplification

5. Take note of the following:

A common error, when solving for an unknown base with a fraction as an exponent, is to multiply the exponents on both sides by the unknown exponent's inverse (so that the exponent will be 1). However, if you express these fractions as surds, you will notice the following:

a. An even power will always produce a positive AND negative solution

| $x^{\frac{1}{3}} = 3$ |
|-----------------------|
| $3\sqrt{x^4} = 3$     |
| $x^4 = 27$            |
| $x = \pm 4\sqrt{27}$  |

b. A negative number inside an even root cannot solve for a real solutio

$$-2^{\frac{1}{2}} = x$$

 $\sqrt{-2} = x$ 

No real solution

c. An unknown inside an even root cannot solve for a negative solution

 $x\frac{3}{4} = -2$ 

 $4\sqrt{x^3} = -2$ 

EXAMPLE

No real solution

### ADDING AND SUBTRACTING LIKE-TERMS

Like terms are terms in an equation/expression that have identical variables and exponents. To add/subtract these, simply add/subtract their coefficients. Exponents **never** change when the operator is +/-

### 2 1. $3x^2y^4 - 5x^3y + 2x^2y^4 + x^3y = 5x^2y^4 - 4x^3y$

2.  $3\sqrt{2} + 5\sqrt{3} - 8\sqrt{2} + \sqrt{3} = -5\sqrt{2} + 6\sqrt{3}$ 

### **EXPONENTS AND SURDS**

LAWS OF EXPONENTS

Laws of exponents only apply to multiplication, division, brackets and roots. NEVER adding or subtracting

| ables humerous umes by similar expressions/bases/variables                                                                                                                                                |                                                                                                                                                                          |                                                 |                                                                                            |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                           |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| surd is the Mathematical terminology for irrational roots, when<br>are left in "root-form" as opposed to rounding them off to a deci-                                                                     | Algebraic Notation                                                                                                                                                       |                                                 | Exponential Notation                                                                       |                                                                                                                                                                                                                                                                                  | Exponential Law in operation                                                                                                                                                                                                                                                              |  |
| PFUL HINTS FOR EQUATIONS\EXPRESSIONS                                                                                                                                                                      | 1                                                                                                                                                                        | $1 	 16 = 2 \times 2 \times 2 \times 2$         |                                                                                            | $16 = 2^4$                                                                                                                                                                                                                                                                       | When we MULTIPLY the SAME bases we ADD the exponents.                                                                                                                                                                                                                                     |  |
| larger numbers in exponential form by prime factorising<br>a common factor if two unlike terms are separated by a +/-                                                                                     |                                                                                                                                                                          | 2 $\frac{64}{16} = 4$ $\frac{2^6}{2^4} = 2^2$ V |                                                                                            | $\frac{2^6}{2^4} = 2^2$                                                                                                                                                                                                                                                          | When we DIVIDE the SAME bases we MINUS the exponents (always top minus bottom).                                                                                                                                                                                                           |  |
| your surds are <u>always</u> expressed in their simplest form<br>surds in exponential form for simplification<br>te of the following:                                                                     | 3                                                                                                                                                                        | $4^3 = 64$                                      | (2                                                                                         | $(2^2)^3 = 2^6$                                                                                                                                                                                                                                                                  | When we have the exponents outside the BRACKETS we DISTRIBUTE them into the brackets.                                                                                                                                                                                                     |  |
| non error, when solving for an unknown base with a fraction as<br>onent, is to multiply the exponents on both sides by the unknown<br>ent's inverse (so that the exponent will be 1). However, if you ex- |                                                                                                                                                                          | $\frac{64}{64} = 1$                             | 22                                                                                         | $\frac{2^6}{2^6} = 2^0 = 1$                                                                                                                                                                                                                                                      | Any base to the POWER OF ZERO is equal to one. (But $0^{\circ}$ is undefined).                                                                                                                                                                                                            |  |
| hese fractions as surds, you will notice the following:<br>ven power will <u>always</u> produce a positive AND negative solution                                                                          | 5                                                                                                                                                                        | $^{3}\sqrt{64} = 4$                             | 3√2                                                                                        | $\overline{2^6} = 2^2$                                                                                                                                                                                                                                                           | The POWER inside the root is DIVIDED by the size of the root.                                                                                                                                                                                                                             |  |
| $= 3$ $\overline{x^4} = 3$                                                                                                                                                                                | 6 $4 \times 9 = 36$ $2^2 \times 3$ 7 $\sqrt{2} \times \sqrt{3} = \sqrt{6}$ $2^{\frac{1}{2}} \times 3^{\frac{1}{2}}$                                                      |                                                 | 2 <sup>2</sup>                                                                             | $\times 3^2 = 6^2$                                                                                                                                                                                                                                                               | When we have non-identical bases, but identical exponents, we keep the                                                                                                                                                                                                                    |  |
| = 27<br>= $\pm 4\sqrt{27}$                                                                                                                                                                                |                                                                                                                                                                          |                                                 | $\times 3^{\frac{1}{2}} = 6^{\frac{1}{2}}$                                                 | division).                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                           |  |
| gative number inside an even root <u>cannot</u> solve for a real solution $\frac{1}{2} = x$                                                                                                               | 8 $\sqrt{2} \times \sqrt{2} = \sqrt{4} = 2$ $2^{\frac{1}{2}} \times 2^{\frac{1}{2}} = 2^{1}$                                                                             |                                                 | $\times 2^{\frac{1}{2}} = 2^{1}$                                                           | Any square root multiplied by itself will equal the term inside the root.                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                           |  |
| 2 = x<br>real solution<br>aknown inside an even root <u>cannot</u> solve for a negative solution<br>= -2<br>$\overline{x^3} = -2$<br>real solution                                                        | CONVERTING SURDS INTO<br>EXPONENTIAL FORM<br>(AND VICE VERSA)<br>The power inside the root becomes<br>the NUMERATOR and the size of the<br>root becomes the DENOMINATOR. |                                                 | Steps for workin<br>1. Express the s<br>2. Identify like t<br>Note: If<br>i.e. $\sqrt{50}$ | <b>OPERATIONS WITH SURDS</b><br>and with surds:<br>surd in its simplest surd form<br>terms (+ and -) or use Laws of Exponents ( × and ÷ )<br>f you use your calculator, make sure to show the changes you made<br>$= \sqrt{25 \times 2} = \sqrt{25 \times \sqrt{2}} = 5\sqrt{2}$ |                                                                                                                                                                                                                                                                                           |  |
| ADDING AND SUBTRACTING LIKE-TERMS<br>ms are terms in an equation/expression that have identical<br>s and exponents. To add/subtract these, simply add/subtract                                            | Ē                                                                                                                                                                        | $D\sqrt{x^{N}} = x^{\frac{N}{D}}$               |                                                                                            | <b>EXAMPLE 1</b><br>Simplify $\sqrt{50} + 3\sqrt{18} - \sqrt{50}$                                                                                                                                                                                                                | <b>EXAMPLE 2</b><br>Simplify<br>$\sqrt{98}$<br>$5\sqrt{81} \times \sqrt{4}\sqrt{27}$<br>$= \frac{3^{\frac{31}{20}}}{\sqrt{7} + 1}$ and a width of<br>$\sqrt{7} + 1$ and a width of<br>$\sqrt{7} - 1$ . Determine the                                                                      |  |
| E                                                                                                                                                                                                         |                                                                                                                                                                          | $= x^{\frac{2}{5}}$                             | •                                                                                          | $= 5\sqrt{2} + 9\sqrt{2}$ $= 7\sqrt{2}$                                                                                                                                                                                                                                          | $ \begin{array}{c c} -7\sqrt{2} & \vdots & 5\sqrt{9} \times \sqrt{3} \\ \vdots & & -\frac{5\sqrt{3^4} \times 4\sqrt{3^3}}{2} \end{array} \end{array} \xrightarrow{9}{310} \\ & \vdots & \text{ length of the diagonal.} \\ & \vdots & (\sqrt{7}+1)^2 + (\sqrt{7}-1)^2 = r^2 \end{array} $ |  |
| $-5x^{3}y + 2x^{2}y^{4} + x^{3}y = 5x^{2}y^{4} - 4x^{3}y$                                                                                                                                                 | 2.                                                                                                                                                                       | $x^{\frac{3}{4}}$                               | •                                                                                          | ·<br>•<br>•<br>•                                                                                                                                                                                                                                                                 | $\begin{array}{c} & & -5\sqrt{3^2 \times \sqrt{3}} \\ & & & 5\sqrt{3^2 \times \sqrt{3}} \\ & & & \frac{4}{5} \times 3^{\frac{3}{4}} \end{array} \right) = 525 \\ & & & 7+2\sqrt{7}+1+7-2\sqrt{7}+1=r^2 \\ & & & 16=r^2 \\ & & & 16=r^2 \end{array}$                                       |  |
| $5\sqrt{3} - 8\sqrt{2} + \sqrt{3} = -5\sqrt{2} + 6\sqrt{3}$                                                                                                                                               | $= 4\sqrt{x^3}$                                                                                                                                                          |                                                 |                                                                                            |                                                                                                                                                                                                                                                                                  | $= \frac{1}{3^{\frac{2}{5}} \times 3^{\frac{1}{2}}} / = 2^{\frac{1}{5}} \sqrt{3^{\frac{1}{5}}} = 4 = r$                                                                                                                                                                                   |  |
| •••••••••••••••••••••••••••••••••••••••                                                                                                                                                                   | 1                                                                                                                                                                        | ••••••••••••••••••••••••••••••••••••••          | •••••  <br>•                                                                               |                                                                                                                                                                                                                                                                                  | ••••••                                                                                                                                                                                                                                                                                    |  |

### **EXPONENTS AND SURDS**

### **RATIONALISING THE DENOMINATOR**

(conjugate) 2. Simplify

The process of finding an equivalent fraction that can be expressed without a surd in the denominator

Steps for rationalising monomial denominators:

Steps for rationalising binomial denominators: 1. Multiply numerator and denominator by the

binomial in the denominator with the opposite sign

 Multiply the numerator and denominator by the denominator's surd
 Simplify

EXAMPLE 1 Why do we do this? Express the following with rational Multiplying the binomial by itself will give us a trinomial with an irrational middle term. To avoid this, denominators: we multiply the binomial by its **conjugate** (same  $1.\frac{3}{\sqrt{7}}$ 2.  $\frac{6+3\sqrt{2}}{2\sqrt{3}}$ binomial with the opposite sign) to create a difference of two squares.  $= \frac{3}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}} = \frac{6 + 3\sqrt{2}}{2\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$ EXAMPLE 1 Express the following fractions with rational  $=\frac{6\sqrt{3}+3\sqrt{6}}{2\times3}$  $=\frac{3\sqrt{7}}{7}$ denominators:  $1. \frac{3}{5 - \sqrt{7}} \qquad 2. \frac{7}{\sqrt{x} - \frac{1}{\sqrt{x}}}$  $=\frac{6\sqrt{3}+3\sqrt{6}}{6}$  $= \frac{3}{5 - \sqrt{7}} \times \frac{5 + \sqrt{7}}{5 + \sqrt{7}} = \frac{7}{\sqrt{x} - \frac{1}{\sqrt{x}}} \times \frac{\sqrt{x} + \frac{1}{\sqrt{x}}}{\sqrt{x} + \frac{1}{\sqrt{x}}}$  $= \frac{15 + 3\sqrt{7}}{25 - 7}$  $=\frac{2\sqrt{3}+\sqrt{6}}{2}$ EXAMPLE 2  $= \frac{7\sqrt{x} + \frac{7}{\sqrt{x}}}{x - \frac{1}{x}}$  $= \frac{\frac{7x + 7}{\sqrt{x}}}{\frac{x^2 - 1}{x}}$  $=\frac{15+3\sqrt{7}}{18}$ If  $x = \sqrt{3} + 2$ , simplify:  $\frac{x^2 + 2}{x - 2}$  and express the answer with a rational denominator  $\frac{1}{6} = \frac{5 + \sqrt{7}}{6}$ 1.  $\frac{x^2+2}{x-2}$  $=\frac{(\sqrt{3}+2)^2+2}{(\sqrt{3}+2)-2}$  $=\frac{7x+7}{\sqrt{x}}\div\frac{x^2-1}{x}$  $=\frac{3+4\sqrt{3}+4+2}{\sqrt{3}}$  $=\frac{7(x+1)}{\sqrt{x}}\times\frac{x}{(x+1)(x-1)}$  $=\frac{9+4\sqrt{3}}{\sqrt{3}}\times\frac{\sqrt{3}}{\sqrt{3}}$  $=\frac{7x}{\sqrt{x}(x-1)}\times\frac{\sqrt{x}}{\sqrt{x}}$  $=\frac{9\sqrt{3}+4\cdot 3}{2}$  $=\frac{7\chi\sqrt{x}}{\chi(x-1)}$  $= 3\sqrt{3} + 4$  $=\frac{7\sqrt{x}}{(x-1)}$ 12

### **EXPONENTS AND SURDS**

### FACTORISING

Factorising is the **opposite** of distribution, which means that you will subtract the exponents when "taking out" factors. There are 6 different types of factorisation.

| 1. Common Factor:                                                            |                                                                | 2. Difference of two squares:                                                                                                                                                   |                                         | 3. Sum or difference of two cubes:                                                               |                                                      |
|------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Remove the highest common factor from the coefficients and common variables. |                                                                | Applied when there are two perfect squares separated by a $-'$ sign.<br>The square root of both terms will be in both pairs of brackets, one<br>with a + and the other with a – |                                         | Applied when there are two perfect cubes final answer will be a binomial in the one I the other. | separated by a $+/-$ .The bracket and a trinomial in |
| EXAMPLES                                                                     | :                                                              | A perfect square is a term whose number will not leave an irrational                                                                                                            |                                         | A perfect cube is a term whose number will                                                       | not leave an irrational                              |
| Factorise the following:                                                     | :                                                              | solution once square-rooted, and whose exponents are divisible by 2.                                                                                                            |                                         | solution once cube-rooted, and whose expo                                                        | nents are divisible by 3.                            |
|                                                                              | 4 5 0 3 16 2                                                   | EXAMPLES                                                                                                                                                                        |                                         | EXAMPLES                                                                                         |                                                      |
| $1.\ 3x^5y^4 + 9x^3y^5 - 12x^2y^4$                                           | 2. $\frac{4x^3}{9y^3} - \frac{8x^3}{27y^2} + \frac{16x^2}{3y}$ | Factorise the following:                                                                                                                                                        |                                         | Factorise the following:                                                                         |                                                      |
| $= 3x^2y^4(x^3 + 3xy - 4)$                                                   | 5y 21y 5y                                                      |                                                                                                                                                                                 |                                         |                                                                                                  | •                                                    |
| • • •                                                                        | $=\frac{4x^2}{2}\left(\frac{x^3}{2x^2}+\frac{2x}{2}+4\right)$  | $\therefore$ 1. $9x^2 - 4y^6$                                                                                                                                                   | 2. $x^4 - 16$                           | $1. x^3 - 8$                                                                                     |                                                      |
| :                                                                            | $3y (3y^2 9y)$                                                 | $(3r + 2v^3)(3r - 2v^3)$                                                                                                                                                        | $-(r^2+4)(r^2-4)$                       | $x = (x - 2)(x^2 + 2x + 4)$                                                                      |                                                      |
| 4. Evenential Easteriains:                                                   | •••••••••••••••••••••••••••••••••••••••                        | (3x + 2y)(3x - 2y)                                                                                                                                                              | = (x + 4)(x - 4)                        | :                                                                                                |                                                      |
| 4. Exponential factorising:                                                  | ve the highest common                                          | $\frac{1}{2} \frac{x^2 - 7}{2}$                                                                                                                                                 | $= (x^2 + 4)(x + 2)(x - 2)$             | $\therefore 2.27x^6 + 64y^9$                                                                     | :                                                    |
| factor, in this case, a base with its expon                                  | ent(s). Exponents are sub-                                     | $\frac{3}{x+\sqrt{7}}$                                                                                                                                                          |                                         | $= (3x^2 + 4y^3)(9x^4 - 12x^2y^3 + 16y^6)$                                                       |                                                      |
| tracted from the same bases.                                                 |                                                                | $(x + \sqrt{7})(x - \sqrt{7})$                                                                                                                                                  | <b>4.</b> $a^2 + 2ab + b^2 - x^2$       | 6. Trinomials:                                                                                   |                                                      |
| EXAMPLES                                                                     |                                                                | $=$ $\frac{x+\sqrt{7}}{x+\sqrt{7}}$                                                                                                                                             | $= (a+b)^2 - x^2$                       | Note: Ratio of exponents of term 1 to term of factors of term 1 and term 3 must give             | n 2 is 2:1. A combination<br>you term 2.             |
| Factorise the following:                                                     |                                                                | $\therefore = x - \sqrt{7}$                                                                                                                                                     | = (a+b+x)(a+b-x)                        |                                                                                                  |                                                      |
|                                                                              | $0^{x+2} - 3^{2x}$                                             | ••••••••••••••••••••••••••••••••••••••                                                                                                                                          | • • • • • • • • • • • • • • • • • • • • | EXAMPLES                                                                                         |                                                      |
| 1. $2^{x+3} - 2^{x+1}$                                                       | $2. \frac{y^2 - y^3}{3^x \cdot 2^3 \times 3^x \cdot 5}$        | Remove the common binomial factor                                                                                                                                               | from the expression                     | : Factorise the following: (Q2 - Q6 are con                                                      | ceptually the same)                                  |
| $=2^{x}(2^{3}-2)$                                                            | $(2^2)^{x+2}$ $2^{2x}$                                         |                                                                                                                                                                                 |                                         |                                                                                                  | :                                                    |
| $-2^{x}$ 6                                                                   | $=\frac{(3^{2})^{2}-5}{3^{2x}\cdot8\cdot5}$                    |                                                                                                                                                                                 |                                         | $1.3x^2 - 5x - 2$                                                                                | 2. $x^2 + 3x - 10$                                   |
| -2.0                                                                         | $3^{2x+4} - 3^{2x}$                                            | Factorise the following:                                                                                                                                                        |                                         | = (3x+1)(x-2)                                                                                    | = (x+5)(x-2)                                         |
|                                                                              | $=\frac{1}{3^{2x}\cdot 40}$                                    | 1 r(y - 4) + 3(y - 4)                                                                                                                                                           | $a^2 + 2ab + b^2 - 3a - 3b$             |                                                                                                  |                                                      |
| $3. \frac{5^{x} - 5^{x-2}}{2 - 5^{x} - 5^{x}}$                               | $3^{2x}(3^4-1)$                                                |                                                                                                                                                                                 | 2. 4   240   0 54 50                    | $\frac{1}{3}$ , $x^4 + 3x^2 - 10$                                                                | 4. $x^{\frac{2}{3}} + 3x^{\frac{1}{3}} - 10$         |
| $2 \cdot 5^{*} - 5^{*}$                                                      | $=\frac{7}{3^{2x}\cdot 40}$                                    | y = (y - 4)(x + 3)                                                                                                                                                              | $= (a+b)^2 - 3(a+b)$                    |                                                                                                  | 1 1                                                  |
| $\frac{5^{x}(1-5^{-2})}{5^{x}(2-1)}$                                         | 80                                                             |                                                                                                                                                                                 | = (a+b)(a+b-3)                          | $= (x^2 + 5)(x^2 - 2)$                                                                           | $= (x^{\overline{3}} + 5)(x^{\overline{3}} - 2)$     |
| $\mathcal{J}^{*}(2-1)$                                                       | $=\frac{1}{40}$                                                | 3.5x - 15y + 9ay - 3ax                                                                                                                                                          | •                                       | :                                                                                                | •                                                    |
| $=\frac{1-\frac{1}{25}}{1-\frac{1}{25}}$                                     | = 2                                                            | = 5(x - 3y) + 3a(3y - x)                                                                                                                                                        | •                                       | 5. $5^{2x} + 3 \cdot 5^{x} - 10$                                                                 | 6. $3^{2x} + 3^{x+1} - 10$                           |
|                                                                              | •                                                              | = 5(x - 3y) - 3a(x - 3y)                                                                                                                                                        |                                         | $= (5^x + 5)(5^x - 2)$                                                                           | $= 3^{2x} + 3 \cdot 3^x - 10$                        |
| $=\frac{24}{25}$                                                             |                                                                | (x - 3y)(5 - 3a)                                                                                                                                                                | •                                       |                                                                                                  | $=(3^{x}+5)(3^{x}-2)$                                |
| •••••••••••••••••••••••••••••••••••                                          |                                                                | <b> ::::</b>                                                                                                                                                                    |                                         | • • • • • • • • • • • • • • • • • • •                                                            | • • • • • • • • • • • • • • • • • • • •              |

13

# **EXPONENTS AND SURDS**

### EQUATIONS

| 1. Linear Equations:                                                                                                             | 3. Simultaneous Equations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5. Exponential Equations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Move all the variables to the one side, and the constants to the other to solve. Linear equations have only <b>one</b> solution. | Solve for two unknowns in two different equations using the substitu-<br>tion method. Remember to solve for both unknowns by substituting<br>them back into the original equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Make sure that you get a term on the one side of the equation that has a base that is equal to the base with the unknown exponent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| ; EXAMPLES                                                                                                                       | • FYAMDI FS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Solve:                                                                                                                           | Solve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hints:<br>• NEV/EP drop the base if the terms are congreted by a + or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 1. $3(x-2) + 10 = 5 - (x+9)$<br>2. $(x-2)^2 - 1 = (x+3)(x-3)$                                                                    | 1. Equation 1: $2r + 3y = 18$<br>2. Equation 1: $y + 3r = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>Remove common factors until the equation is in its simplest</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| $3x - 6 + 10 = 5 - x - 9 \qquad \qquad x^{2} - 4x + 4 - 1 = x^{2} - 9$                                                           | Equation 2: $-3x + 5y = 11$<br>Equation 2: $y^2 - 9x^2 - 16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | form and then solve<br>• Always convert decimals to fractions and then to bases with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| $3x + 4 = -x - 4 \qquad -4x + 3 = -9$                                                                                            | From 1: $2x + 3y = 18$<br>From 1: $y + 3x = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | negative exponents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| $4x = -8 \qquad \qquad -4x = -12$                                                                                                | 2x = -3y + 18 $y = -3x + 2$ 1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| $x = -2 \qquad \qquad x = 3$                                                                                                     | $x = \frac{-3y + 18}{12}$ Sub 1a into 2: $y^2 - 9x^2 = 16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EXAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| <u></u>                                                                                                                          | $\frac{1}{2} = \frac{1}{2} = \frac{1}$ | $\therefore$ 1. $4^x = 8$ 2. $0.0625^x = 64$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 2. Quadratic Equations:                                                                                                          | Sub 1a into 2: $-3x + 5y = 11$<br>( $-2x + 4y = 16$ )<br>( $-2x + 4y = 16$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $2^{2x} = 2^3$ (1) <sup>x</sup> of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Move everything to one side and equate to zero. By factorising the trinomial, you should find <b>two</b> solutions.              | $\begin{vmatrix} -3\left(\frac{-3y+18}{2}\right) + 5y = 11 \\ -12x = 12 \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} \vdots \\ 2x = 3 \end{array} \qquad \qquad \left( \overline{16} \right)^{-1} = 2^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                  | 9y - 54 $5y - 11$ $x = -13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\left(\frac{1}{1}\right)^x = 2^6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| EXAMPLES                                                                                                                         | Sub 3 into 1: $y + 3(-1) = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} & & & \\ \vdots & & & \\ \vdots & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$ |  |
| Solve: $(Q_3 - Q_6)$ are the most likely exam-type questions)                                                                    | 9y - 54 + 10y = 22<br>y = 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $2^{-4_A} = 2^0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| $1. x^{2} + 5 = 6x$ $2. (3x - 4)(5x + 2) = 0$                                                                                    | 19y = 76 (-1, 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 3.2 \cdot 3^{x+1} + 5 \cdot 3^x = 33 \\ -4x = 6 \\ 3 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| $x^2 - 6x + 5 = 0$ $3x = 4$ or $5x = -2$                                                                                         | y = 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $x = \frac{-3}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| $(x-5)(x-1) = 0$ $x = \frac{1}{3}$ or $x = \frac{2}{5}$                                                                          | Sub 3 into 1: $2x + 3(4) = 18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $3^{x}(11) = 33$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| x = 5  or  x = 1                                                                                                                 | 2x = 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $3^x = 3^1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 2                                                                                                                                | x = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\therefore x = 1 \qquad 5.0,5^x \cdot \sqrt{1 + \frac{x}{16}} = 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 3. $x^4 + 3x^2 - 10 = 0$<br>4. $x^{\frac{1}{3}} + 3x^{\frac{1}{3}} - 10 = 0$                                                     | (3;4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(1)^x / \frac{25}{25} = 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| $(x^{2}+5)(x^{2}-2) = 0 \qquad (x^{\frac{1}{3}}+5)(x^{\frac{1}{3}}-2) = 0$                                                       | 4. Surd Equations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 4.27^{5x+1} = 81^{2x+5} \\ \hline 2.2x+1 \\ \hline 2.2x+1 \\ \hline 4.2x+5 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| $x^2 = -5 \text{ or } x^2 = 2$ $x^{\frac{1}{3}} = -5 \text{ or } x^{\frac{1}{3}} = 2$                                            | Isolate the surd on the one side of the equation. Power both sides of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} (3^{2})^{3x+1} = (3^{4})^{2x+3} \\ \vdots \\ z^{9x+3} = z^{9x+20} \\ \end{array} \qquad \qquad 2^{-x} \cdot \frac{5}{4} = 10 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| No sol. or $x = \pm \sqrt{2}$ $x = -125$ or $x = 8$                                                                              | substituting your answers back into the original equation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $3^{5x+5} = 3^{5x+20}$ 4<br>$2^{-x} = 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                                                                                                  | EXAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9x + 3 = 8x + 20<br>$2^{-x} = 2^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| <b>5</b> . $x + 3\sqrt{x} - 10 = 0$ <b>6</b> . $2^{2x} - 6 \cdot 2^x - 16 = 0$                                                   | Solve:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} x = 17 \\ -x = 3 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| $x + 3x^{\frac{1}{2}} - 10 = 0$ $(2^{x} + 2)(2^{x} - 8) = 0$                                                                     | $1.\sqrt{x-2} = 3$ $2.\sqrt{x+5} - x = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | x = -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| $(\frac{1}{2}+2)(\frac{1}{2}-0) = 0$                                                                                             | $x - 2 = 9$ $\sqrt{x + 5} = x + 3$ Check:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| $(x^{2} + 5)(x^{2} - 2) = 0 	 2^{x} = -2 \text{ or } 2^{x} = 8$                                                                  | $\begin{array}{c} x = 9 + 2 \\ x + 5 = x^2 + 6x + 9 \end{array} \begin{array}{c} LHS = \sqrt{(-1) + 5 - (-1)} \\ LHS = 3 \\ RHS = 3 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| $x^{\frac{1}{2}} = -5 \text{ or } x^{\frac{1}{2}} = 2$ No sol. or $2^x = 2^3$                                                    | $\therefore x = 11$ $0 = x^2 + 5x + 4$ $\therefore x = -1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| $\sqrt{x} = -5 \text{ or } \sqrt{x} = 2 \qquad \qquad x = 3$                                                                     | 0 = (x + 1)(x + 4) $LHS = 5  RHS = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| No sol. or $x = 4$                                                                                                               | $x = -1 \text{ or } x \neq -4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |

14

# **NUMBER PATTERNS**

| Patterns/ Sequences: ordered set of numbers                                                                        | Patterns/ Sequences: ordered set of numbers                                                                  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|--|--|
| REMINDERS: Linear:                                                                                                 | Quadratic:                                                                                                   |  |  |  |
| Constant <b>first</b> difference between consecutive terms.                                                        | Constant <b>second</b> difference between consecutive terms.                                                 |  |  |  |
| 1. <u>Consecutive</u> : directly follow one another $T_n =$ general term                                           | $T_n = general term$                                                                                         |  |  |  |
| 2 Common/constant difference: difference $I_n = dn + c$ $d = constant difference n = n umber of the term$          | $I_n = an^2 + bn + c$<br>n = number of the term                                                              |  |  |  |
| between two consecutive terms in a                                                                                 |                                                                                                              |  |  |  |
| pattern Notice how this is similar to a linear function $y = mx + c$                                               | Notice how this is similar to the quadratic equation and formula for the parabola                            |  |  |  |
| $a = I_2 - I_1$<br>Steps to determine the nth term:                                                                | Steps to determine the nth term:                                                                             |  |  |  |
| 3. <u>General term T<sub>n</sub>:</u> also referred to as the 1. Find the constant difference                      | 1. Find the constant difference                                                                              |  |  |  |
| nth term. 2. Substitute the constant difference (d) and the term value, along with the                             | 2. Use the value of the second difference to find "a"                                                        |  |  |  |
| General term for linear patterns:                                                                                  | 3. Use the "a" value and first difference to find "b"                                                        |  |  |  |
| $T_n = dn + c$ 3. Substitute the c- and d-values to define the nth term.                                           | 4. Use "a" and "b" to find "c"                                                                               |  |  |  |
| • General term for quadratic patterns:<br>$T_n = an^2 + bn + c$ <b>EXAMPLE</b>                                     | EXAMPLE                                                                                                      |  |  |  |
| 1. Determine the nth term of the following sequence:                                                               | · Determine the nth term of the following sequence:                                                          |  |  |  |
| 4. $T_1; T_2; \dots T_{100}$ : Terms indicated by T<br>T <sub>1</sub> T <sub>2</sub> T <sub>3</sub> T <sub>4</sub> | T <sub>1</sub> T <sub>2</sub> T <sub>3</sub> T <sub>4</sub>                                                  |  |  |  |
| script. 2; 7; 12; 17                                                                                               | $\begin{array}{c} \text{Term 1} \\ (a+b+c) \longrightarrow 6;  17;  34;  57 \end{array}$                     |  |  |  |
| 7-2 $12-7$ $17-12$                                                                                                 | 17-6 34-17 57-34                                                                                             |  |  |  |
| 5. <u>Objective</u> : 5 5 5                                                                                        | First difference $\longrightarrow$ 11 17 23                                                                  |  |  |  |
| a. Find the values of the variables                                                                                |                                                                                                              |  |  |  |
| b. Use the values to find the general Using term 3 where $T_3 = 12$                                                | $\begin{array}{c} \text{Second difference} \\ \hline (2a) \\ \end{array} \xrightarrow{6} 6 6 \\ \end{array}$ |  |  |  |
| term $I_n = 5n + c$                                                                                                |                                                                                                              |  |  |  |
| specific term values $12 = 5(3) + c$                                                                               | Second difference $= 2a$                                                                                     |  |  |  |
| d. Use specific term values to find the $12 = 15 + c$                                                              | 6 = 2a                                                                                                       |  |  |  |
| term number $12 - 15 = c$                                                                                          | 3 = a                                                                                                        |  |  |  |
| $\therefore -3 = c$                                                                                                | First difference = $3a + b$                                                                                  |  |  |  |
|                                                                                                                    | 11 = 3a + b                                                                                                  |  |  |  |
| $\therefore T_n = 5n + 3$                                                                                          | 11 = 3(3) + b                                                                                                |  |  |  |
|                                                                                                                    | 2 = b                                                                                                        |  |  |  |
| 2. Determine the 100th term                                                                                        |                                                                                                              |  |  |  |
| $T_{100} = 5(100) - 3$                                                                                             | $\therefore \text{ Term } 1 = a + b + c$                                                                     |  |  |  |
| = 500 - 3                                                                                                          | 6 = (3) + (2) + c                                                                                            |  |  |  |
| = 497                                                                                                              | 0 - 3 - 2 = c                                                                                                |  |  |  |
| $\therefore T_{100} = 497$                                                                                         |                                                                                                              |  |  |  |
|                                                                                                                    | $T = 3n^2 + 2n + 1$                                                                                          |  |  |  |
| • • • • • • • • • • • • • • • • • • • •                                                                            | $\dots$ $n = 3n + 2n + 1$                                                                                    |  |  |  |

# Number Patterns

SCIENCE CLINIC 2019 ©

### **Solving Quadratic Number Patterns**



# **NUMBER PATTERNS**

 $T_4$ 

21

### Solving Quadratic Number Patterns



Researchers investigate the change in a new cell. Each hour they record the growth of the cell. In the table below, you can review the recorded changes. The researchers realised that the size of the cell followed a quadratic pattern. 2. Determine the size of the cell at 20:00 that evening. Size (pm)

![](_page_17_Figure_6.jpeg)

### **FINANCE - SIMPLE AND COMPOUND INTEREST**

|                                   | SIMPLE INTEREST                          | A = accumulated amoun                        | t COMPOUND INTEREST                          | EXAMPLE                                                          |
|-----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------------------|------------------------------------------------------------------|
| REMINDERS:                        | A = P(1 + in)                            | P = original amount $A = P(1+i)^n$           |                                              | Calculate the future value of your investment after              |
| 1 Inflation:                      | OP                                       | n = number of periods                        | OB                                           | three years at an interest rate of 15% per annum                 |
| The rate at which prices increase | UR (                                     | r = interest rate as a %                     |                                              | compounded:                                                      |
| over time                         | $A = P\left(1 + \frac{7}{100}n\right)$   | i = interest rate $\frac{7}{100}$            | $A = P\left(1 + \frac{7}{100}\right)$        | a) Annually $A = -P(1+i)^n$                                      |
| 2. Consumer Price Index (CPI):    |                                          |                                              |                                              | $= 15000(1+(015))^3$                                             |
| the average prices of a basket of | EXAMPLE                                  |                                              | :                                            | = R22 813,13                                                     |
| goods                             | : Determine the difference in the accumu | ulated amounts when inv                      | vesting your savings of R 15 000 for 4 years | b) Semi-annually                                                 |
| 3. Exchange Rates:                |                                          | nowever one otters sim                       | pie interest and the other compound.         | $A = P(1+i)^n$                                                   |
| purpose of conversion to another  | SIMPLE INTEREST                          | t                                            |                                              | $= 15\ 000\left(1+\left(\frac{0.15}{2}\right)\right)^6$          |
| 4 Population Growth:              | A = P(1+in)                              |                                              | 1                                            | = R23 149,52                                                     |
| Change of population size over    | $A = 15\ 000(1+(0,00))$                  | 55)(4))                                      |                                              | c) Quarterly                                                     |
| time                              | A = R18 900                              | ONE                                          | linterest                                    | $A = P(1+i)^n$                                                   |
| 5. <u>Hire Purchase</u> :         | COMPOUND INTERE                          | ST Ž                                         | ampound                                      | $= 15\ 000\left(1+\left(\frac{0.15}{4}\right)\right)^{12}$       |
| Short term loan, deposit payable. | $\overline{A} = P(1+i)^n$                | _                                            | Simple interest                              | = R23 331,81                                                     |
| Calculated using simple interest. | $A = 15\ 000(1+(0,00))$                  | (5)) <sup>4</sup>                            | TIME                                         | d) Monthly                                                       |
| 6. <u>Reducing balance loan</u> : | $A = R19 \ 296,99$                       |                                              |                                              | $A = P(1+i)^n$                                                   |
| balance, the lower the balance,   | ••••••                                   | · · · · · · · · · · · · · · · · · · ·        | •••••••••••••••••••••••••••••••••••••••      | $= 15\ 000\left(1+\left(\frac{0.15}{12}\right)\right)^{36}$      |
| the less you have to pay.         | HIRE PURCHASE                            |                                              |                                              | = R23495,16                                                      |
| 7. Nominal interest rate:         | signing a 2 year hire purchase agreem    | ent you                                      | P = P = (1 + i)R                             | Notice: As compounding periods increase during the               |
| Quoted period and compounded      | pay an R800 deposit. Calculate the       | $P_{future} = P_{present}(1+i)^{r}$          |                                              | : year, so the                                                   |
| period is different eg 15% per    | : a) total amount you will repay if the  | interest :                                   |                                              | accumulated amount increases.                                    |
| 2 Effective interest rate:        | rate is 12%                              | P <sub>future</sub> = future population size |                                              | ·····                                                            |
| Ouoted period and compound        |                                          | · i = avera                                  | age population (%)                           | EXAMPLE                                                          |
| period is equal eg 0,75% per      |                                          | : n= numt                                    | per of years                                 | If R13 865 is received after 6 years of being invested           |
| month compounded monthly.         | a) Deposit : R800                        | :   :                                        |                                              | annually, what was the original amount invested?                 |
|                                   | $P = 4\ 000 - 800 = 3\ 200$              | The popu                                     | ulation of lions is 2 567 in 2015.           | $A = P(1+i)^n$                                                   |
| COMPOUND PERIODS                  | A = P(1+in)                              | : If the gro                                 | owth rate is 1,34%, calculate the number of  | $13\ 865 = P(1+0,16)^6$                                          |
| Annually: 1 per year              | $= 3\ 200(1+(0,12)(2))$                  |                                              |                                              | $13\ 803 = 2,44P$<br>$13\ 865 = P$                               |
| Semi-annually: 2 per year         | = R3 968                                 |                                              |                                              | $\frac{1}{2,44} = r$                                             |
| Quarterly: 4 per year             | (b) $A = R_3 968$                        | : : 2020 - 20                                | $015 = 5$ $P_{c} = P \qquad (1+i)^{n}$       | r = 3.090,78<br>. R 5 690.78 was the principal amount invested.  |
| Monthly: 12 per year              | 2  years = 24  actual payments           | :   :                                        | $= 2567(1 + 0.0134)^5$                       | OB use the following formulacy                                   |
| Daily: 365 per year*              | 2 years = 24 equal payments<br>3 968     | :   :                                        | = 2743                                       | <b>UN</b> use the following formulae:<br>A = P(1 + i)R To find A |
| *(excl leap years)                | $\frac{5500}{24} = R165,33$              | (note                                        | that the number of lions will be an integer) | $A = F(1+i)^{n}  \text{IO IIIIU A}$                              |
|                                   |                                          |                                              |                                              | $P = A(1+i)^{-n} \text{ To find P}$                              |
|                                   | •••••••••••••••••••••••••••••••••••      | 1                                            | .8                                           |                                                                  |

### NOMINAL VS EFFECTIVE INTEREST RATES (COMPOUND INTEREST)

Annual effective rate is equivalent to the nominal rate per annum compounded monthly, because it produces the same accumulated amount.

$$1 + i_{\rm eff} = \left(1 + \frac{i_{\rm Nom}}{n}\right)^n$$

 $i_{eff}$  = effective rate (annual)  $i_{Nom} = nominal rate$ n = number of compoundings per year

EXAMPLE

Convert a nominal rate of 18% per annum compounded monthly to an annual effective rate.

$$1 + i_{\text{eff}} = \left(1 + \frac{0.18}{12}\right)^{12}$$
$$i_{\text{eff}} = \left(1 + \frac{0.18}{12}\right)^{12} - 1$$
$$i_{\text{eff}} = 0,196$$
$$\therefore i_{\text{eff}} = 19,6\%$$

### EXAMPLE

You invest R25 000 at 14% per annum compounded monthly for a period of 12 months. Use the annual effective rate to show that the same accumulated amount will be obtained as when using the nominal rate.

$$1 + i_{eff} = \left(1 + \frac{0.14}{12}\right)^{12}$$
The exponent  

$$i_{eff} = \left(1 + \frac{0.14}{12}\right)^{12} - 1$$
The exponent  
(12) is calculated  
by noting there  
will be 12  
compounding  
periods: once a  
month for 12  
months.  

$$A = P(1 + i)^{n}$$

$$= 25\ 000\left(1 + \left(\frac{0.14}{12}\right)\right)^{12}$$

$$= R28\ 733,55$$

$$A = P(1 + i)^{n}$$

$$= 25\ 000(1 + 0.1493)^{1}$$

$$= R28\ 733,55$$

### FINANCE **CHANGING INTEREST RATES**

### **DEPRECIATION (DECAY)**

| If the interest rate changes after a set period of time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Depreciation is the loss or decrease of value at a specified rate over time.                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                    |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1. Determine the accumulated amount after the first period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Depreciation: Loss of value over time                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                    |  |  |
| 2. Set the accumulated amount as the initial amount for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Book value: Value of equipment at a give                                                                                                                                                                                                                                                                                                                                                                                                                                  | en time after                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A = BOOK OF SCRAP VALUE                                                                                                                                                                                                                                                                                            |  |  |
| second period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | depreciation                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | i - Depreciation rate                                                                                                                                                                                                                                                                                              |  |  |
| 3. Determine the accumulated amount after the second period.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Scrap value: Book value of equipment at                                                                                                                                                                                                                                                                                                                                                                                                                                   | the end of its                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n – time period                                                                                                                                                                                                                                                                                                    |  |  |
| : EXAMPLE :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | useful life                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | II – tille period                                                                                                                                                                                                                                                                                                  |  |  |
| second period<br>3. Determine the accumulated amount after the second period.<br><b>EXAMPLE</b><br>R100 000 is invested for 6 years at an interest rate of<br>16% per annum compounded quarterly. Thereafter the<br>accumulated amount is reinvested for 5 years at an<br>interest rate of 14% compounded semi-annually. Calculate<br>the value of the investment at the end of this period.<br>$A = P(1+i)^n$<br>A = R256 330,42<br>$A = R(1+i)^n$<br>A = R504 239,91<br><b>EXAMPLE</b><br>R30 000 was left to you in a savings account. The interest<br>rate for the first 4 years is 12% per annum compounded<br>semi-annually. Thereafter the rates change to 18% per<br>annum compounded monthly and you leave the money for<br>another 3 years. What is the future value of the<br>investment after the savings period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | depreciation<br>Scrap value: Book value of equipment at<br>useful life<br>LINEAR DEPRECIATION<br>Also known as simple decay or<br>straight line depreciation<br>A = P(1 - in)<br>Straight Line Depreciation<br>(a)<br>volume<br>Number of periods<br>EXAMPLE<br>My new car , to the value of R 200 000<br>What would the value of my car be after<br>to a reducing balance depreciation.<br>LINEAR DEPRECIATION<br>A = P(1 - in)<br>= 200 000(1 - (0,09)(6))<br>= R92 000 | the end of its<br>COMPOUN<br>All<br>depreciation<br>A<br>Reducing<br>(a)<br>test<br>b<br>output<br>test<br>output<br>Numb<br>depreciates at a<br>er 6 years? Compa<br>A<br>A<br>Reducing<br>Numb<br>Numb<br>A<br>Compound<br>A<br>Reducing<br>A<br>Compound<br>A<br>Reducing<br>A<br>Compound<br>A<br>Reducing<br>Numb<br>Compound<br>Numb<br>Compound<br>Numb<br>Compound<br>Numb<br>Compound<br>Numb<br>Compound<br>Numb<br>Compound<br>Numb<br>Compound<br>Numb<br>Compound<br>Numb<br>Compound<br>Numb<br>Compound<br>Numb<br>Compound<br>Numb<br>Compound<br>Numb<br>Compound<br>Numb<br>Compound<br>Numb<br>Compound<br>Numb<br>Compound<br>Numb<br>Compound<br>Numb<br>Compound<br>Numb<br>Compound<br>Numb<br>Compound<br>Numb<br>Compound<br>Numb<br>Compound<br>Compound<br>Numb<br>Compound<br>Compound<br>Compound<br>Numb<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound<br>Compound | P = Present value<br>i = Depreciation rate<br>n = time period<br><b>ID DEPRECIATION</b><br>so known as<br>on a reducing balance<br>= $P(1 - i)^n$<br>Balance Depreciation<br>er of periods<br>rate of 9% per annum.<br>are a linear depreciation<br><b>LANCE DEPRECIATION</b><br>$n^n$<br>$0(1 - 0.09)^6$<br>73.85 |  |  |
| $A = P(1+i)^{n}$ $A = 30\ 000\left(1 + \frac{0.12}{2}\right)^{8}$ $P(1+i)^{n}$ $A = R47\ 815,44$ $B \text{ periods :}$ $P(1+i)^{n}$ $P(1+i$ | <b>EXAMPLE</b><br>The value of a piece of equipment dep<br>years. What is the rate of depreciation ca                                                                                                                                                                                                                                                                                                                                                                     | reciates from R15<br>alculated on the:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5 000 to R5 000 in four                                                                                                                                                                                                                                                                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a) Straight line method                                                                                                                                                                                                                                                                                                                                                                                                                                                   | b) Reducing I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | balance depreciation                                                                                                                                                                                                                                                                                               |  |  |
| $A = P(1+i)^n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A = P(1 - in)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $= P(1-i)^n$                                                                                                                                                                                                                                                                                                       |  |  |
| $A = 47 815,44 \left(1 + \frac{0.18}{12}\right)^{36}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $5 \ 000 = 15 \ 000((1 - (x)4))$                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $=$ 15 000 $(1-i)^4$ :                                                                                                                                                                                                                                                                                             |  |  |
| $A = R_{81} 723 25$ p.a. over 3 years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $5\ 000 = 15\ 000 - 60\ 000x$                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $=$ $(1-i)^4$                                                                                                                                                                                                                                                                                                      |  |  |
| · A - K01 /23,23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $-10\ 000 = -60\ 000x$                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                    |  |  |
| Alternatively: $A = P(1+i)^n \times (1+i)^n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | x = 0,1007                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sqrt[4]{\frac{1}{3}} - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = - <i>x</i>                                                                                                                                                                                                                                                                                                       |  |  |
| $20.000(1.0,12)^8$ (1.0,18) <sup>36</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Depreciation rate = $16.67\%$                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0,2401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = - <i>i</i>                                                                                                                                                                                                                                                                                                       |  |  |
| $= 30\ 000(1+\frac{1}{2}) \times (1+\frac{1}{12})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = 0,2401×100                                                                                                                                                                                                                                                                                                       |  |  |
| = R81 723,26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = 24 %                                                                                                                                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                    |  |  |

For more information about Science or Maths seminars, classes and resources, visit www.scienceclinic.co.za

19

### Finance

#### **ADDITIONAL PAYMENTS OR WITHDRAWALS**

Timelines assist in visualising and keeping track of different rates and payments. Set up each

section with information about the number of terms, compound periods and interest rates.

![](_page_20_Figure_6.jpeg)

### **PROBABILITY**

SCIENCE CLINIC 2019 ©

![](_page_21_Figure_3.jpeg)

### **PROBABILITY**

#### TREE DIAGRAMS

### **CONTINGENCY TABLE (OR TWO-WAY TABLE)**

![](_page_22_Figure_5.jpeg)

### **Probability - Venn Diagram**

SCIENCE CLINIC 2019 ©

![](_page_23_Figure_3.jpeg)

![](_page_24_Figure_0.jpeg)

![](_page_25_Figure_0.jpeg)

# **TRIG EQUATIONS**

SCIENCE CLINIC 2019 ©

| BASICS                                                                              | SQUARES                                                                                                                   | CO-FUNCTIONS                                                                                                           | FACTORISING                                                                                               |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Steps:                                                                              | Hints:                                                                                                                    | Hints:                                                                                                                 | Steps:                                                                                                    |
| Isolate trig ratios                                                                 | • Do all four quadrants (± means the ratio                                                                                | • sin and cos with different angles                                                                                    | Solve as you would a quadratic equation                                                                   |
| Reference angle (don't put negative                                                 | <b>must</b> be both + <b>and</b> -)                                                                                       | • Introduce the co-function with 90° - z                                                                               | • EXAMPLES                                                                                                |
| into calculator)                                                                    | EXAMPLE                                                                                                                   | The angle you change is the reference angle                                                                            | Solve for x:                                                                                              |
| Choose quadrants                                                                    | Solve for β:                                                                                                              | EXAMPLES                                                                                                               |                                                                                                           |
| ➡ sin or cos: 2 Quadrants                                                           | $4\sin^2\beta - 3 = 0$                                                                                                    | · Solve for x:                                                                                                         | $1 \tan^2 x - 2\tan x + 1 = 0$                                                                            |
| ➡ tan: 1 Quadrant                                                                   | $ain^2 e^{3}$                                                                                                             | $\frac{1}{1}\cos x = \sin(x - 10^{\circ})$                                                                             | $1. \tan x - 2 \tan x + 1 = 0$ $(\tan x - 1)(\tan x - 1) = 0$                                             |
| General solutions                                                                   | $\sin p = \frac{1}{4}$                                                                                                    | $\cos x = \cos(90^{\circ} - (x - 10^{\circ}))$                                                                         | $\tan x = 1$                                                                                              |
| ⇒ $\sin \theta$ or $\cos \theta + k 360^\circ$ ; $k \in \mathbb{Z}$                 | /3                                                                                                                        | $\cos x = \cos(100^o - x)$                                                                                             |                                                                                                           |
| $\Rightarrow \tan \theta + k180^\circ; \ k \in \mathbb{Z}$                          | $\sin\beta = \pm\sqrt{\frac{2}{4}}$                                                                                       | Reference $\angle : 100^\circ - x$                                                                                     | Reference∠ : 45°                                                                                          |
| <b>REMEMBER:</b> Only round off at the end                                          | Reference∠ : 60°                                                                                                          | OI: $x = 100^{\circ} - x + k360^{\circ}$ : $k \in \mathbb{Z}$                                                          | • QI: $x = 45^\circ + k180^\circ$ ; $k \in \mathbb{Z}$                                                    |
| Common formulae:                                                                    |                                                                                                                           | $2x = 100^{\circ} + k 360^{\circ}$                                                                                     |                                                                                                           |
| $\theta = \sin^{-1} a \pm k 360^\circ$ or                                           | QI: $\beta = 60^{\circ} + k  360^{\circ}; \ k \in \mathbb{Z}$<br>OII: $\beta = 180^{\circ} - 60^{\circ} + k  360^{\circ}$ | $x = 50^{\circ} + k180^{\circ}$                                                                                        |                                                                                                           |
| $\theta = (180^\circ - \sin^{-1}a) + k360^\circ \ (k \in \mathbb{Z})$               | $= 120^{\circ} + k  360^{\circ}$                                                                                          | $\begin{array}{c} \text{QII. } x = 500 - (100 - x) + k500 \\ \text{:}  x - x = 260^{\circ} + k360^{\circ} \end{array}$ | $2.\cos^2 x + \sin x \cdot \cos x = 0$                                                                    |
| $\theta = \pm \cos^{-1}a + k360^{\circ} \ (k \in \mathbb{Z})$                       | $: \text{QIII: } \beta = 180^\circ + 60^\circ + k360^\circ$                                                               | $0 = 260^{\circ} + k  360^{\circ}$                                                                                     | $\cos x (\cos x + \sin x) = 0$                                                                            |
| $\theta = \tan^{-1}a + k180^\circ \ (k \in \mathbb{Z})$                             | = 240 + k300<br>QIV: $\beta = 360^{\circ} - 60^{\circ} + k360^{\circ}$                                                    | No real solution                                                                                                       | $\cos x = 0$ OR $\cos x = -\sin x$                                                                        |
| EXAMPLES                                                                            | $= 300^\circ + k360^\circ$                                                                                                | : 2. $\sin(x + 30^\circ) = \cos 2x$                                                                                    | Use trig graph: $\frac{\cos x}{\cos x} = \frac{-\sin x}{\cos x}$                                          |
| Solve for θ:                                                                        |                                                                                                                           | $\sin(x+30^{\circ}) = \sin(90^{\circ}-2x)$                                                                             | $\cos x \cos x$                                                                                           |
| $1, 3\sin\theta - 1 = 0$                                                            | SING AND COSO                                                                                                             | • Reference $\angle : 90^\circ - 2x$                                                                                   | $\tan x = -1$                                                                                             |
| $\sin \theta = \frac{1}{2}$                                                         | Steps:                                                                                                                    | $OI: x + 30^\circ = 90^\circ - 2x + k360^\circ: k \in \mathbb{Z}$                                                      | Reference∠ : 45°                                                                                          |
| 3                                                                                   | sin and cos with the same angle                                                                                           | $3x = 60^{\circ} + k 360^{\circ}$                                                                                      | $x = 90^{\circ} + k180^{\circ}; k \in \mathbb{Z}$ OII: $x = 135^{\circ} + k180^{\circ}$                   |
| sin + in <b>QI and QII</b>                                                          | Divide by cos to get tan                                                                                                  | $x = 20^{\circ} + k120^{\circ}$                                                                                        |                                                                                                           |
| Reference $\angle$ : 19.47°                                                         | : EXAMPLE :                                                                                                               | QII: $x + 30 = 180 - (90 - 2x) + k360$<br>$x + 30^{\circ} = 90^{\circ} + 2x + k360^{\circ}$                            |                                                                                                           |
|                                                                                     | Solve for a:                                                                                                              | $-x = 60^{\circ} + k360^{\circ}$                                                                                       | $3.2\cos^2 x + 3\sin x = 0$                                                                               |
| <b>QI:</b> $\theta = 19,47^{\circ} + k360^{\circ}; k \in \mathbb{Z}$                | $2\sin 2\alpha - \cos 2\alpha = 0$                                                                                        | $x = -60^\circ - k360^\circ$                                                                                           | $2(1 - \sin^2 x) + 3\sin x = 0$                                                                           |
| $= 160,53^\circ + k360^\circ$                                                       | $2\sin 2\alpha = \cos 2\alpha$                                                                                            | NOTE: Specific Solutions                                                                                               | $2\sin^2 x - 3\sin x - 2 = 0$                                                                             |
|                                                                                     | $2\sin 2\alpha \ \cos 2\alpha$                                                                                            | If they ask for $x \in [-360^\circ; 360^\circ]$ , choose integer                                                       | $(2\sin x + 1)(\sin x - 2) = 0$                                                                           |
| $\frac{1}{2} \tan(3\theta + 30^{\circ}) + 1 = 0$                                    | $\frac{1}{\cos 2\alpha} = \frac{1}{\cos 2\alpha}$                                                                         | ( -3 + 2 + 1 + 0 + 1 + 2 + 3 )                                                                                         | $\sin x = -1$ OP $\sin x = 2$                                                                             |
| $\tan(3\theta + 30^\circ) = -1$                                                     | $2 \tan 2\alpha = 1$                                                                                                      | so that <i>x</i> falls in the given intervals.                                                                         | $\frac{\sin x - \frac{1}{2}}{2}  \text{OR}  \sin x - 2$                                                   |
|                                                                                     | $\tan 2\alpha = \frac{1}{2}$                                                                                              |                                                                                                                        | • Reference∠ : 30° No real solution                                                                       |
| tan – in QII                                                                        | 2                                                                                                                         | $x = 30^{\circ} + k120^{\circ}$<br>$x = -330^{\circ} - 210^{\circ} - 90^{\circ} 30^{\circ} 150^{\circ} 270^{\circ}$    |                                                                                                           |
| Reference∠ : 45°                                                                    | tan + in QI                                                                                                               | : $k = -3; k = -2; k = -1; k = 0; k = 1; k = 2$ :                                                                      | • QIII: $x = 180^{\circ} + 30^{\circ} + k 360^{\circ}; k \in \mathbb{Z}$                                  |
| • OII · $3A \pm 30^\circ = 180^\circ = 45^\circ \pm 120^\circ$ . $b \in \mathbb{Z}$ | Reference∠ : 26,57°                                                                                                       | $OR = 60^{\circ} + k_2 60^{\circ}$                                                                                     | $x = 210^{\circ} + k  360^{\circ}$                                                                        |
| $3\theta = 105^\circ + k180^\circ$                                                  | QI: $2\alpha = 26,57^\circ + k180^\circ$ ; $k \in \mathbb{Z}$                                                             | $x = -60^{\circ}; 300^{\circ}$                                                                                         | QIV: $x = 360^{\circ} - 30^{\circ} + k360^{\circ}; k \in \mathbb{Z}$<br>$x = -330^{\circ} + k360^{\circ}$ |
| $\theta = 35^\circ + k60^\circ$                                                     | $\alpha = 13,28^\circ + k90^\circ$                                                                                        | k = 0; k = 1                                                                                                           |                                                                                                           |
| •••••••••••••••••••••••••••••••••••••••                                             | •••••••••••••••••••••••••••••••••••••••                                                                                   | ·<br>26                                                                                                                | I ·····                                                                                                   |

# Trig Graphs

![](_page_27_Figure_3.jpeg)

#### HORIZONTAL SHIFT

•  $y = \sin(x - p)$  or  $y = \cos(x - p)$  or  $y = \tan(x - p)$ 

If p > 0: shift right (e.g:  $y = sin(x - 30^{\circ})$ ) p < 0: shift left (e.g: y = cos(x + 45))

#### How to plot a horizontal shift:

- Plot the original curve
- Move the critical points left/right
- Label the x-cuts and turning points
- Calculate and label the endpoints and y-cut

![](_page_28_Figure_9.jpeg)

![](_page_28_Figure_10.jpeg)

![](_page_28_Figure_11.jpeg)

# <u>Trig Graphs</u>

EXAMPLE

Questions:

Given  $f(x) = \cos(x + 60^\circ)$  and  $g(x) = \sin 2x$ 

f(x) and g(x) for  $x \in [-90^\circ; 180^\circ]$ 

3. State the amplitude of f(x)

4. Give the period of g(x)

 $v = \sin(2x - 60^\circ)$ 

2. Sketch f(x) and g(x) for  $x \in [-90^{\circ}; 180^{\circ}]$ 

a. g(x) is increasing and positive

b. f(x) is increasing and positive

c.  $f(x) \ge g(x)$  - i.e. f(x) is above g(x)

d.  $f(x) \cdot g(x) \ge 0$  - i.e. product is + or 0

6. Explain the transformation that takes y = sin x to

1. Determine algebraically the points of intersection of

5. Use the graphs to determine the values of *x* for which:

### Solutions: 1. $\cos(x + 60^\circ) = \sin 2x$ $\cos(x + 60^\circ) = \cos(90^\circ - 2x)$ Reference $\angle$ : 90° – 2x QI: $x + 60^{\circ} = 90^{\circ} - 2x + k360^{\circ}; k \in \mathbb{Z}$ $3x = 30^{\circ} + k360^{\circ}$ $x = 10^{\circ} + k120^{\circ}$ QIV: $x + 60^{\circ} = 360^{\circ} - (90^{\circ} - 2x) + k360^{\circ}; k \in \mathbb{Z}$ $x + 60^{\circ} = 270^{\circ} + 2x + k360^{\circ}$ $-x = 210^{\circ} + k360^{\circ}$ $x = -210^{\circ} + k360^{\circ}$ but $x \in [-90^\circ; 180^\circ]$ $\therefore x = 10^{\circ}: 130^{\circ}: 150^{\circ}$ 2. $g(x) = \sin 2x$ $f(x) = \cos(x + 60^\circ)$ $(45^{\circ}; 1)$ (-60° · 1) $(-90^{\circ}; \sqrt{3})$ 1809 $(180^\circ; -\frac{1}{2})$ (120°; -1) (135°; -1) (-45°; -1) For f(x): **Endpoints:** $\cos(-90^\circ + 60^\circ) = \frac{\sqrt{3}}{2}$ and $\cos(180^\circ + 60^\circ) =$ **y-cut:** $\cos(0^{\circ} + 60^{\circ}) = \frac{1}{2}$ 3.1 4.180° 5. a. $x \in (0^{\circ}; 45^{\circ})$ b. $x \in [-90^\circ; -60^\circ)$ C. $x \in [-90^\circ; 10^\circ] \cup (130^\circ; 150^\circ)$ d. $x \in [0^{\circ}; 30^{\circ}] \cup [90^{\circ}; 180^{\circ}]$ also at $x = -90^{\circ}$ 6. Rewrite $y = \sin(2x - 60^\circ)$ in the form $y = \sin b(x - p) = \sin(2(x - 30^\circ))$ Transformation: b = 2 : period is halved

p = 30 ... shifted 30 to the right<sup>o</sup>

28

# TRIG GRAPHS

### USING TRIG GRAPHS TO FIND RESTRICTIONS ON IDENTITIES

i.e. answering the question "for which values of x will this identity be undefined?"

Identities are undefined if:

- the function is undefined tan x has asymptotes at  $x = 90^{\circ} + k180^{\circ}$ ;  $k \in \mathbb{Z}$
- any denominator is zero

![](_page_29_Figure_8.jpeg)

29 For more information about Science or Maths seminars, classes and resources, visit www.scienceclinic.co.za

# **EUCLIDEAN GEOMETRY**

EXAMPLE

# **FLASHBACK:** Theory from previous grades Theorem 1: (line from centre $\perp$ chord) A line drawn from the centre of a circle perpendicular to a chord bisects the chord. $\hat{B} = \hat{C}_1 \ (\angle$ 's opp. = sides) $\hat{A} + \hat{B} + \hat{C}_1 = 180^\circ \text{ (sum } \angle \text{'s of } \Delta \text{)}$ $\hat{C}_2 = \hat{A} + \hat{B}$ (ext. $\angle$ 's of $\Delta$ ) **GIVEN:** Circle centre *O* with chord $NP \perp MO$ . **RTP:** NM = MPPROOF: Join ON and OP In $\triangle MON$ and $\triangle MOP$ $N\hat{M}O = P\hat{M}O$ (OM\_PN, given) ON = OP (radii) OM = OM (common) $\therefore \Delta MON = \Delta MOP$ (RHS) NM = MP

# midpoint of a chord is perpendicular to the chord. If JK = KL, then $OK \perp JL$

**CIRCLE GEOMETRY** 

**Converse of Theorem 1:** 

(line from centre mid-pt. chord)

The line segment joining the centre of a circle to the

![](_page_30_Picture_5.jpeg)

Determine the length of of chord *AC*.

Join MF DE = EF = 6 cm (line from centre  $\perp$  chord) MF = 10 cm (radius)

 $x^2 = 10^2 - 6^2$  (Pythaq, Th.)  $x^2 = 64$ x = 8 cm $\therefore MB = 8 - 3 = 5 \text{ cm (given)}$ 

Join MA  $MA \perp AC$  (line from centre mid-pt. chord0) MA = 10 cm (radius)  $AB^2 = 10^2 - 5^2$  (Pythag. Th.)  $AB^2 = 75$ AB = 8,66 cmAC = 17,32 cm

### Converse two of Theorem 1: (perp bisector of chord)

The perpendicular bisector of a chord passes through the centre of the circle.

![](_page_30_Picture_12.jpeg)

**GIVEN:** RT = RP and  $MR \perp TP$ 

**RTP:** *MR* goes through the centre of the circle.

### PROOF:

Choose any point, say *M*, on *A D*. Join MT and MPIn  $\Delta MRP$  and  $\Delta MRT$ PR = RT (given) MR = MR (common)  $M\hat{R}P = M\hat{R}T = 90^{\circ} (\angle$ 's on a str. line)  $\Delta MRT \equiv \Delta MRP$  (SAS)  $\therefore MT = MP$  $\therefore$  All points on *AD* are equidistant from *P* and *T* and the centre is equidistant from P and T.  $\therefore$ The centre lies on *AD*.

![](_page_30_Figure_17.jpeg)

 $\hat{K}_2 = \hat{M}_1$  (corres.  $\angle$ 's DE//GF)  $\hat{K}_2 = \hat{M}_3$  (alt.  $\angle$ 's DE//GF)  $\hat{K}_2 + \hat{M}_2 = 180^\circ$  (co-int.  $\angle$ 's DE//GF)  $\hat{M}_1 = \hat{M}_3$  (vert. opp.  $\angle$ 's)  $\hat{K}_2 + \hat{K}_1 = 180^\circ$  ( $\angle$ 's on a str. line)

![](_page_30_Figure_19.jpeg)

 $PT^2 = PR^2 + RT^2$  (Pythag. Th.)

For more information about Science or Maths seminars, classes and resources, visit www.scienceclinic.co.za

30

### **<u>Theorem 2:</u>** ( $\angle$ at centre = 2 x $\angle$ at circum.)

The angle subtended by an arc at the centre of the circle is twice the angle the arc subtends at any point on the circumference of the circle.

![](_page_31_Picture_5.jpeg)

**GIVEN:** Circle centre *M* with arc *A B* subtending  $A \hat{M} B$  at the centre and  $A \hat{C} B$  at the circumference.

```
RTP: A\hat{M}B = 2 \times A\hat{C}B
```

### PROOF:

AM = BM = CM (radii) $\hat{A} = \hat{C}_2 (\angle \text{'s opp.} = \text{sides})$  $\hat{B} = \hat{C}_1 (\angle \text{'s opp.} = \text{sides})$ 

$$\hat{M}_1 = \hat{A} + \hat{C}_2 \text{ (ext. } \angle \text{ of } \Delta$$
$$\therefore \hat{M}_1 = 2\hat{C}_2$$

 $\hat{M}_2 = \hat{B} + \hat{C}_1 \text{ (ext. } \measuredangle \text{ of } \Delta\text{)}$  $\therefore \hat{M}_2 = 2\hat{C}_1$ 

$$\therefore \hat{M}_1 + \hat{M}_2 = 2(\hat{C}_1 + \hat{C}_2) \therefore A \hat{M}B = 2 \times A \hat{C}B$$

![](_page_31_Figure_13.jpeg)

# **EUCLIDEAN GEOMETRY**

### <u>Theorem 4:</u> (∠ in same seg.)

Angles subtended by a chord (or arc) at the circumference of a circle on the same side of the chord are equal.

![](_page_32_Picture_6.jpeg)

**GIVEN:** Circle centre *N* with arc *RT* subtending  $R\hat{P}T$  and  $R\hat{M}T$  in the same segment.

**RTP:**  $R\hat{P}T = R\hat{M}T$ 

### PROOF:

Join *NR* and *NT* to form  $\hat{N}_1$ .

$$\hat{M} = \frac{1}{2} \times \hat{N}_1$$
 ( $\angle$  at centre = 2 x  $\angle$  at circum.)

$$\hat{P} = \frac{1}{2} \times \hat{N}_1$$
 ( $\angle$  at centre = 2 x  $\angle$  at circum.)

 $\therefore R\hat{M}T = R\hat{P}T$ 

### COROLLARIES:

a) Equal chords (or arcs) subtend equal angles at the circumference.

![](_page_32_Figure_16.jpeg)

b) Equal chords subtend equal angles at centre of the circle.

![](_page_32_Picture_18.jpeg)

If AB = CD then  $\hat{O}_1 = \hat{O}_2$  (= chords, =  $\angle$ 's)

c) Equal chords in equal circles subtend equal angles at their circumference.

![](_page_32_Figure_21.jpeg)

![](_page_32_Figure_22.jpeg)

**Converse Theorem 4:** 

![](_page_32_Picture_23.jpeg)

If  $\hat{W} = \hat{U}$ , then WUZY is a cyclic quadrilateral.

![](_page_32_Figure_25.jpeg)

| EUCLIDEAN | GEOMETRY |
|-----------|----------|
|           |          |

![](_page_33_Figure_3.jpeg)

# **EUCLIDEAN GEOMETRY**

![](_page_34_Figure_3.jpeg)

![](_page_35_Picture_1.jpeg)

### **CIRCLE GEOMETRY**

#### : EXAMPLE 2

In the figure, *A D* and *A E* are tangents to the circle *DEF*. The straight line drawn through *A*, parallel to *FD* meets *ED* produced at *C* and *EF* produced at *B*. The tangent *A D* cuts *EB* at *G*.

![](_page_35_Figure_6.jpeg)

b) If it is further given that *EF* = *DF*, prove that *ABC* is a tangent to the circle passing through the points B, F and D.

```
a) \hat{E}_2 = \hat{D}_2 = x (tan-chord th.)

\hat{D}_2 = \hat{A}_2 = x (alt ∠'s AB||FD)

\therefore ABDE a cyc quad (line seg subt. = ∠'s)
```

```
b) \hat{E}_2 = \hat{D}_3 = x (\angle's opp. = sides)

\hat{F}_1 = \hat{E}_2 + \hat{D}_3 = 2x (ext. \angle of \Delta)

AE = AD (tan from same pt.)

\hat{E}_1 + \hat{E}_2 = \hat{D}_2 + \hat{D}_3 = 2x (\angle's opp. = sides)

\therefore \hat{B}_3 = 2x (ext. \angle cyc quad)

\hat{B}_3 = \hat{F}_1

\therefore ABC tan to circle (\angle betw. line and chord)
```

### ALTERNATIVE

 $\hat{F}_1 = \hat{B}_1 \text{ (alt } \angle \text{'s AB||FD)}$   $\hat{B}_1 = \hat{D}_2 + \hat{D}_3 \text{ (} \angle \text{'s same seg)}$   $\hat{D}_1 = \hat{E}_1 \text{ (} \angle \text{'s same seg)}$   $\hat{E}_1 = \hat{D}_3 \text{ (tan-chord th.)}$   $\therefore \hat{B}_1 = \hat{D}_2 + \hat{D}_1$   $\therefore ABC \text{ tan to circle (} \angle \text{ betw. line and chord)}$ 

### Hints when answering Geometry Questions

- Read the given information and mark on to the diagram if not already done.
- Never assume anything. If not given or marked on diagram is not true unless proved.
- As you prove angles equal or calculate angles mark them on to the diagram and write down statement and reason there and then.
- Make sure that by the end of the question you have used all the given information.
- If asked to prove something, it is true.

For EXAMPLE if ask to prove ABCD a cyclic quad, then it is, but if you can't then you can use it as one in the next part of the question.

### What is Analytical Geometry?

Analytical Geometry (Co-ordinate Geometry): Application of straight line functions in conjunction with Euclidean Geometry by using points on a Cartesian Plane.

### FLASHBACK

- Straight line parallel to the x-axis: m = 0
- Straight line parallel to the y-axis: m = undefined

### Straight line equation:

y = mx + c

### Gradient formula:

 $m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$ 

### **Parallel gradients:**

$$m_1 = m_2$$

### **Perpendicular gradients:**

 $m_1 \times m_2 = -1$ 

### Distance:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

### Co-linear:

 $m_{AB} = m_{BC}$  OR  $d_{AB} + d_{BC} = d_{AC}$ Collinear points A, B and C lie on the same line

### Midpoint formula:

$$M(x; y) = \left(\frac{x_2 + x_1}{2}; \frac{y_2 + y_1}{2}\right)$$

Midpoint Theorem: If two midpoints on adjacent sides of a triangle are joined by a straight line, the line will be parallel to and half the distance of the third side of the triangle.

# **ANALYTICAL GEOMETRY**

### **EXAMPLE**

- Given: A(-2; 3) and C(p; -5) are points on a Cartesian Plane.
- 1. If AC = 10 units determine the value(s) of p.
- 2. If C(4; -5), determine the equation of the line AC.
- 3. Determine the co-ordinates of *M*, the midpoint of *AC*.
- 4. If  $B\left(-1;\frac{5}{2}\right)$  determine if A, B and C are collinear.
- 5. Determine the equation of the line perpendicular to *AC* passing through B.

### SOLUTION

1. Draw a sketch diagram. *C* has two potential x-coordinates for *p*.

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$10 = \sqrt{(p - (-2))^2 + (-5 - 3)^2}$$

$$A(-2;3) \bullet$$

$$A$$

2. Line equation requires solving *m* and *c*.

 $m = \frac{\Delta y}{\Delta x}$ 

 $m_{AC} = \frac{y_2 - y_1}{x_2 - x_1}$ 

 $=-\frac{1}{3}$ 

 $=\frac{3-(-5)}{-2-4}$ 

Midpoint formula  

$$M(x; y) = \left(\frac{x_2 + x_1}{2}; \frac{y_2 + y_1}{2}\right)$$

$$= \left(\frac{-2 + 4}{2}; \frac{3 + (-5)}{2}\right)$$

$$M(1; -1)$$

### 4. Prove collinearity by proving that the points

![](_page_36_Figure_36.jpeg)

$$m = \frac{\Delta y}{\Delta x} \qquad m = \frac{\Delta y}{\Delta x}$$
$$m_{AB} = \frac{3 - \frac{5}{3}}{-2 - (-1)} \qquad m_{BC} = \frac{\frac{5}{3} - (-5)}{-1 - 4}$$
$$m_{AB} = -\frac{4}{3} \qquad m_{BC} = -\frac{4}{3}$$

 $\therefore A, B$  and C are collinear

### 5. Line equation requires solving $m_2$ and c w.r.t. B.

$$m_2 = \frac{3}{4}$$

$$y = mx + c$$

$$\left(\frac{5}{3}\right) = \frac{3}{4}(-1) + c$$

$$c = \frac{29}{12}$$

 $m_{AC} \times m_2 = -1$ 

 $-\frac{4}{2} \times m_2 = -1$ 

$$\therefore y = \frac{4}{3}x + \frac{29}{12}$$

$$y = \frac{1}{3}x + \frac{1}{$$

36

For more information about Science or Maths seminars, classes and resources, visit www.scienceclinic.co.za

 $\therefore y = -\frac{4}{2}x + \frac{1}{2}$ 

y = mx + c $(3) = -\frac{4}{3}(-2) + c$ 

![](_page_37_Figure_0.jpeg)

# **ANALYTICAL GEOMETRY**

**Given:** In the diagram: Straight line with the equation 2y - x = 5, which passes through A and B. Straight line

with the equation y + 2x = 10, which passes through B and C. M is the midpoint of BC. A, B and C are vertices

![](_page_38_Figure_2.jpeg)

# Converting an angle into a gradient

Sub. the ref.  $\angle$  into  $m = \tan \theta$ .

Remember to add the – sign to answers for negative gradients.

Given: *E* and F(4; 2) are points on a straight line with an angle of inclination of 36,9°. Determine the value of *m* correct to two decimal places.

![](_page_38_Figure_7.jpeg)

# Finding an angle that is not in relation to a horizontal plane

EXAMPLE

 $\therefore b = 90^{\circ}$ 

of  $\triangle ABC$ ,  $M\hat{A}C = \theta$ , A and M lie on the x-axis.

Construct a horizontal plane, parallel to the *x*-axis. This will allow you to use the 'sum of adjacent angles on a straight line' in order to calculate the value of the angle.

![](_page_38_Figure_10.jpeg)

![](_page_38_Figure_11.jpeg)

 $\theta = 18.4^{\circ}$ 

For more information about Science or Maths seminars, classes and resources, visit www.scienceclinic.co.za

38

### REMINDER

**Discrete data:** Data that can be counted, e.g. the number of people.

**Continuous data:** quantitative data that can be measured, e.g. temperature range.

**Measures of central tendency:** a descriptive summary of a dataset through a single value that reflects the data distribution.

**Measures of dispersion:** The dispersion of a data set is the amount of variability seen in that data set.

**Cumulative frequency:** The total of a frequency and all frequencies so far in a frequency distribution

**Variance:** measures the variability from an average or mean. a Small change in the numbers of a data set equals a very small variance

**Standard Deviation:** the amount the data value or class interval differs from the mean of the data set.

**Outliers:** Any data value that is more than 1,5 IQR to the left of  $Q_1$  or the right of  $Q_3$ , i.e.

Outlier <  $Q_1 - (1,5 \times IQR)$  or

Outlier >  $Q_3$  + (1,5×IQR)

**Causation:** the action of causing something

**Univariate:** Data concerning a single variable

Bivariate: Data concerning two variables

**Interpolation:** an estimation of a value within two known values in a sequence of values.

**Extrapolation:** an estimation of a value based on extending a known sequence of values or facts beyond the area that is certainly known

![](_page_39_Figure_17.jpeg)

FREOUENCY POLYGON

[6-9]

**FREQUENCY TABLE** 

8

6

4

2

[0-3[

by outliers

[3–6[

Range

range = max value - min value

Note: range is greatly influenced

![](_page_39_Figure_18.jpeg)

OGIVES

Semi-Interquartile range semi - IQR =  $\frac{1}{2}(Q_3 - Q_1)$ 

Note: good measure of dispersion

for skewed distribution

BAR GRAPH

**REPRESENTING DATA** 

Ungrouped data = discrete

Grouped data = continuous

**NB:** Always arrange data in ascending order.

![](_page_39_Figure_19.jpeg)

### **STATISTICS**

STEM AND LEAF PLOTS

100

80

60

40

20

Λ

Cumulative frequency

### **INDICATORS OF POSITION**

Quartiles

- The three quartiles divide the data into four quarters.
- $\mathbf{Q_1} =$ Lower quartile or first quartile
- $\mathbf{Q}_2$  = Second quartile or median
- $Q_3 = Upper quartile or third quartile$

### Percentiles

- Indicates which percentage of data is below the specific percentile.
- $Q_1 = 25$ th percentile
- **Q<sub>2</sub>**= 50th percentile
- $\mathbf{Q}_{3}$ = 75th percentile

All other percentiles can be calculated using the formula:

$$i = \frac{p}{100}(n)$$

where;

- i = the position of the p<sup>th</sup> percentile
- p = the value of the i<sup>th</sup> position

39

For more information about Science or Maths seminars, classes and resources, visit www.scienceclinic.co.za

[12-15]

MEASURES OF DISPERSEMENT

Interguartile range

Note: spans 50% of the data set

 $IQR = Q_3 - Q_1$ 

[9–12[

### MEASURES OF CENTRAL TENDENCY FOR UNGROUPED DATA

# $\bar{x} = \frac{\text{Mean}}{\text{total values}}$ $\bar{x} = \frac{\Sigma x}{n}$

 $\bar{x} = \text{mean}$ 

 $\Sigma x = \text{sum of all values}$ 

*n* = number of values **Mode** 

The mode is the value that appears most frequently in a set of data points.

Bimodal: a data set with 2 modes

Trimodal: a data set with 3 modes

### Median

The median is the middle number in a set of data points.

position of median 
$$=\frac{1}{2}(n+1)$$

### Where;

n = number of values

If n = odd number, the median is part of the data set.

If n = even number, the median will be the average

between the two middle numbers.

### FIVE NUMBER SUMMARY

1. Minimum value

2. Lower quartile  $Q_1$ 

3. Median

4. Upper quartile Q3

5. Maximum value

### **BOX AND WHISKER PLOT**

A box and whisker plot is a visual representation of the five number summary.

![](_page_40_Figure_26.jpeg)

## **STATISTICS**

### MEASURES OF DISPERSION AROUND THE MEAN

#### Variance

Variance measures the variability from an average or mean.

The variance for a population is calculated by:

- 1. Calculate the mean(the average).
- 2. Subtracting the mean from each number in the data set and then squaring the result. The results are squared to make the negatives positive. Otherwise negative numbers would cancel out the positives in the next step. It's the distance from the mean that's important, not positive or negative numbers.
- 3. Averaging the squared differences.

### EXAMPLE:

Continuous data is grouped into class intervals which consist of an upper class boundary (maximum value) and lower class values (minimum value).

| ••••• | Class interval    | frequency<br>(f) | $x = \frac{\text{Midpoint}}{2}$ | $(f \times x)$      | $(x-\bar{x})^2$                         | $f(x-\bar{x})^2$                      |
|-------|-------------------|------------------|---------------------------------|---------------------|-----------------------------------------|---------------------------------------|
|       | $0 \le x \le 10$  | 3                | $\frac{10+0}{2} = 5$            | $3 \times 5 = 15$   | $(5 \times \overline{15,71})^2 = 114,7$ | 3(114,7) = 344,11                     |
| :     | $10 \le x \le 20$ | 7                | $\frac{20+10}{15} = 15$         | $7 \times 15 = 105$ | $(15 \times \overline{15,71})^2 = 0,5$  | 7(0,5) = 3,53                         |
| :     | $20 \le x \le 30$ | 4                | $\frac{30+20}{2} = 25$          | $4 \times 25 = 100$ | $(25 \times \overline{15,71})^2 = 88,3$ | 4(88,3) = 354,22                      |
| :     | total :           | 14               | 14                              | 220                 |                                         | $\Sigma f(x-\overline{x})^2 = 692,86$ |

![](_page_40_Figure_38.jpeg)

40 For more information about Science or Maths seminars, classes and resources, visit www.scienceclinic.co.za

x = midpoint of interval  $\bar{x} =$  estimated mean

where:

![](_page_40_Figure_40.jpeg)

from the mean of the data set.

n = number of data values

Standard deviation

Standard deviation is the amount the data value or class interval differs

### MEASURES OF CENTRAL TENDENCY FOR GROUPED DATA

#### Estimated mean

sum of all frequency  $\times$  mean value  $mean(\overline{x}) =$ total frequency

#### where;

- $\bar{x} = \text{estimated mean}$
- n = number of values

### Modal class interval

The modal class interval is the class interval that contains the greatest number of data points.

### Median class interval

The median class interval is the interval that contains the middle number in a set of data points.

position of median 
$$=\frac{1}{2}(n+1)$$

Where;

n = number of values

If n = odd number, the median is part of the data

set.

If n = even number, the median will be the average between the two middle numbers.

#### EXAMPLE:

Step 1: Determine cumulative frequencies form a frequency table.

. We conduct a survey on the ages of people who visit the corner shop, 80 people partake in the survey.

| <b>Class interval</b> | Frequency | Cumulative frequency                                                                                                                                                       | Interpretation                            | Graph points |
|-----------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------|
| $0 \le x < 15$        | 0         | 0         0 participants are younger than 15.           0 + 14 = 14         14 people were younger than 30.           14 + 22 = 36         36 people were younger than 45. |                                           | (15;0)       |
| $15 \le x < 30$       | 14        |                                                                                                                                                                            |                                           | (30;14)      |
| $30 \le x < 45$       | 22        |                                                                                                                                                                            |                                           | (45;36)      |
| $45 \le x < 60$       | 30        | 36 + 30 = <b>66</b>                                                                                                                                                        | + 30 = 66 66 people were younger than 60. |              |
| $60 \le x < 75$       | 14        | 66+ 14 = <b>80</b>                                                                                                                                                         | All participants were younger than 75.    | (75;80)      |

### Step 2: Represent information on a cummulative frequency/ogive curve

![](_page_41_Figure_23.jpeg)

### Coordinates (x;y)

The x-coordinate represents the upper boundary of the class interval. y-coordinate represents the cumulative frequency.

### Interpretations from the graph:

#### Median

There is an even nr of data items in our set (80) so the median liesmidway between the two middle values. The median is halfway between the 40<sup>th</sup> and 41<sup>st</sup> term. Find the value on the y-axis and draw a line from that point to determine the value on the x-axis.

### **Ouartiles**

Similar to the method used to find the median you can determine the upper or lower quartiles from the graph.

### Percentiles

The median and quartiles divide the data into 50% and 25% respectively, should you need to calculate a different percentile this can be done by calculation or read from the graph. Calculation of the 90th percentile:  $0.9 \times 80 = 72$ So 90% of the data is below the 72<sup>nd</sup> value which will be int the last class interval.

### SYMMETRIC AND SKEWED DATA

![](_page_41_Figure_35.jpeg)

![](_page_41_Figure_36.jpeg)

Skewed right: Positively skewed if the tail extends to the right