
COMPILER DESIGN

LECTURE NOTES (Semester – II)

for

Master of Science in Computer Science

Department of Computer Science and Applications

School of Arts & Science

Vinayaka Mission’s Research Foundation

A V Campus, Chennai – 603104.

Lecture Note Prepared by:

A. VIJAYA KUMAR, Asst. Professor

2

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

SYLLABUS

DSC V: COMPILER DESIGN

Objectives: At the end of the course, the student should be able to do:

 Parsing techniques and different levels of translation.

 Apply the various optimization techniques.

 Use the different compiler construction tools.

UNIT I

Introduction on the phase of the complier – Lexical Analysis, Regular Expression, Non

deterministic Automata, Deterministic Automata equivalent to NFA’s – Minimizing the states of

DFA, Implementation of Lexical Analyzer.

UNIT II

Syntax Analysis – Top down Parsing Concepts, Recursive Descent Parsing, Predictive

Parsers, Non recursive Pedictive Parsing – Bottom Up Parsing, Handle pruning, Shift reduce

parsing – Operator Predence Parsing – Error recovery in Parsing, LR Parsers, Parser Generators –

YACC.

UNIT III

Intermediate Code Generation: Syntax directed Definitions, Construction of Syntax trees

– Top down Translation, Bottom up Evaluation of inherited Attributed, Recursive Evaluators,

Assigning Space at Complier Construction time – Type checking – Overloading of functions and

operators Polymorphic function.

UNIT IV

Storage Organization : Storage Organization, Storage Allocation Strategies, Parameter

Passing, Symbol tables, Dynamic Storage Allocation, Intermediate Languages – Representation

of Declarations, Assignment Statement, Boolean Expression, Back patching, Procedure calls.

UNIT V

Code Generation and Optimization: Design of the code generators, Runtime storage

Management, Basic blocks and flow graphs, Register Allocation and Assignment, DAG

representation of Basic blocks, Peephole optimization, Code optimization – The principle sources

of optimization, Optimization of basic blocks, Global data flow Analysis, Loop optimizations.

TEXT BOOKS:

 Alfred Aho, Ravi Sethi, JeffyD.Ullman, “Compilers – Principles, Techniques and Tools”,

1986, Addison Wesley.

 Dick Grune, Henri E. Bal, CerielJ.H.Jacobs, Koen G. Langondeon, “Modern Compiler

Design”, Wiley, Singapore, 2003

REFERENCES:

 Dhamdhere D.M., “Compiler Construction Principles and Practice”, 1981, Macmillan India.

 ReinhardWilhlm, Director Mauser, “Compiler Design”, 1995, Addison Wesley.

3

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

1.1 INTRODUCTION OF LANGUAGE PROCESSING SYSTEM

 Fig 1.1: Language Processing System

Preprocessor

A preprocessor produce input to compilers. They may perform the following functions.

1. Macro processing: A preprocessor may allow a user to define macros that are short hands

for longer constructs.
2. File inclusion: A preprocessor may include header files into the program text.
3. Rational preprocessor: these preprocessors augment older languages with more modern flow-

of-control and data structuring facilities.

4. Language Extensions: These preprocessor attempts to add capabilities to the language by

certain amounts to build-in macro

COMPILER

Compiler is a translator program that translates a program written in (HLL) the source program and

translate it into an equivalent program in (MLL) the target program. As an important part of a compiler

is error showing to the programmer.

Fig 1.2: Structure of Compiler

4

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

Executing a program written n HLL programming language is basically of two parts. the source

program must first be compiled translated into a object program. Then the results object program

is loaded into a memory executed.

Fig 1.3: Execution process of source program in Compiler

ASSEMBLER
Programmers found it difficult to write or read programs in machine language. They begin to use a

mnemonic (symbols) for each machine instruction, which they would subsequently translate into

machine language. Such a mnemonic machine language is now called an assembly language. Programs

known as assembler were written to automate the translation of assembly language in to machine

language. The input to an assembler program is called source program, the output is a machine

language translation (object program).

INTERPRETER
An interpreter is a program that appears to execute a source program as if it were machine language.

Fig1.4: Execution in Interpreter

Languages such as BASIC, SNOBOL, LISP can be translated using interpreters. JAVA also uses

interpreter. The process of interpretation can be carried out in following phases.

1. Lexical analysis

2. Synatx analysis

3. Semantic analysis

4. Direct Execution

Advantages:
Modification of user program can be easily made and implemented as execution proceeds.
Type of object that denotes a various may change dynamically.
Debugging a program and finding errors is simplified task for a program used for interpretation.
The interpreter for the language makes it machine independent.

Disadvantages:

The execution of the program is slower.
Memory consumption is more.

LOADER AND LINK-EDITOR:

Once the assembler procedures an object program, that program must be placed into memory and

executed. The assembler could place the object program directly in memory and transfer control to it,

5

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

thereby causing the machine language program to be execute. This would waste core by leaving the

assembler in memory while the user’s program was being executed. Also the programmer would have

to retranslate his program with each execution, thus wasting translation time. To over come this

problems of wasted translation time and memory. System programmers developed another component

called loader

“A loader is a program that places programs into memory and prepares them for execution.” It would

be more efficient if subroutines could be translated into object form the loader could”relocate” directly

behind the user’s program. The task of adjusting programs o they may be placed in arbitrary core

locations is called relocation. Relocation loaders perform four functions.

1.2 TRANSLATOR
A translator is a program that takes as input a program written in one language and produces as output

a program in another language. Beside program translation, the translator performs another very

important role, the error-detection. Any violation of d HLL specification would be detected and

reported to the programmers. Important role of translator are:

1 Translating the HLL program input into an equivalent ml program.

2 Providing diagnostic messages wherever the programmer violates specification of the HLL.

1.3 LIST OF COMPILERS
1. Ada compilers

2 .ALGOL compilers

3 .BASIC compilers

4 .C# compilers

5 .C compilers

6 .C++ compilers

7 .COBOL compilers

8 .Common Lisp compilers

9. ECMAScript interpreters

10. Fortran compilers

11 .Java compilers

12. Pascal compilers

13. PL/I compilers

14. Python compilers

15. Smalltalk compilers

1.4 STRUCTURE OF THE COMPILER DESIGN

Phases of a compiler: A compiler operates in phases. A phase is a logically interrelated operation
that takes source program in one representation and produces output in another representation. The

phases of a compiler are shown in below

There are two phases of compilation.

a. Analysis (Machine Independent/Language Dependent)
b. Synthesis(Machine Dependent/Language independent)

Compilation process is partitioned into no-of-sub processes called ‘phases’.
Lexical Analysis:-
LA or Scanners reads the source program one character at a time, carving the source program into

a sequence of automic units called tokens.

6

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

Fig 1.5: Phases of Compiler

Syntax Analysis:-
The second stage of translation is called Syntax analysis or parsing. In this phase expressions,

statements, declarations etc… are identified by using the results of lexical analysis. Syntax analysis is

aided by using techniques based on formal grammar of the programming language.

Intermediate Code Generations:-
An intermediate representation of the final machine language code is produced. This phase bridges the

analysis and synthesis phases of translation.

Code Optimization :-
This is optional phase described to improve the intermediate code so that the output runs faster and

takes less space.

Code Generation:-

The last phase of translation is code generation. A number of optimizations to reduce the length of

machine language program are carried out during this phase. The output of the code generator is the

machine language program of the specified computer.

7

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

Table Management (or) Book-keeping:-

program and records essential information

information called a ‘Symbol Table’.

This is the portion to keep the names used by the about

each. The data structure used to record this

Error Handlers:-
It is invoked when a flaw error in the source program is detected. The output of LA is a stream of

tokens, which is passed to the next phase, the syntax analyzer or parser. The SA groups the tokens

together into syntactic structure called as expression. Expression may further be combined to form

statements. The syntactic structure can be regarded as a tree whose leaves are the token called as parse

trees.

The parser has two functions. It checks if the tokens from lexical analyzer, occur in pattern that are

permitted by the specification for the source language. It also imposes on tokens a tree-like structure

that is used by the sub-sequent phases of the compiler.

Example, if a program contains the expression A+/B after lexical analysis this expression might appear

to the syntax analyzer as the token sequence id+/id. On seeing the /, the syntax analyzer should detect

an error situation, because the presence of these two adjacent binary operators violates the formulations

rule of an expression. Syntax analysis is to make explicit the hierarchical structure of the incoming

token stream by identifying which parts of the token stream should be grouped.

Example, (A/B*C has two possible interpretations.)
1, divide A by B and then multiply by C or

2, multiply B by C and then use the result to divide A.
each of these two interpretations can be represented in terms of a parse tree.

Intermediate Code Generation:-
The intermediate code generation uses the structure produced by the syntax analyzer to create a stream

of simple instructions. Many styles of intermediate code are possible. One common style uses

instruction with one operator and a small number of operands. The output of the syntax analyzer is

some representation of a parse tree. the intermediate code generation phase transforms this parse tree

into an intermediate language representation of the source program.

Code Optimization
This is optional phase described to improve the intermediate code so that the output runs faster and
takes less space. Its output is another intermediate code program that does the some job as the original,
but in a way that saves time and / or spaces.

a. Local Optimization:-
There are local transformations that can be applied to a program to make an improvement.

For example,

If A > B goto L2

8

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

Goto L3
L2 :

This can be replaced by a single statement

If A < B goto L3

Another important local optimization is the elimination of common sub-expressions

A:=B+C+D

E:=B+C+F
Might be evaluated as

T1:=B+C

A:=T1+D

E:=T1+F
Take this advantage of the common sub-expressions B + C.

b. Loop Optimization:-

Another important source of optimization concerns about increasing the speed of loops. A

typical loop improvement is to move a computation that produces the same result each time

around the loop to a point, in the program just before the loop is entered.

Code generator :-
Code Generator produces the object code by deciding on the memory locations for data, selecting code

to access each datum and selecting the registers in which each computation is to be done. Many

computers have only a few high speed registers in which computations can be performed quickly. A

good code generator would attempt to utilize registers as efficiently as possible.

Table Management OR Book-keeping :-
A compiler needs to collect information about all the data objects that appear in the source program.

The information about data objects is collected by the early phases of the compiler- lexical and

syntactic analyzers. The data structure used to record this information is called as Symbol Table.

Error Handing :-
One of the most important functions of a compiler is the detection and reporting of errors in the source

program. The error message should allow the programmer to determine exactly where the errors have

occurred. Errors may occur in all or the phases of a compiler.

Whenever a phase of the compiler discovers an error, it must report the error to the error handler, which

issues an appropriate diagnostic msg. Both of the table-management and error-Handling routines

interact with all phases of the compiler.

9

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

Example:

Fig 1.6: Compilation Process of a source code through phases

10

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

1.5 OVER VIEW OF LEXICAL ANALYSIS
• To identify the tokens we need some method of describing the possible tokens that can

appear in the input stream. For this purpose we introduce regular expression, a notation

that can be used to describe essentially all the tokens of programming language.
• Secondly , having decided what the tokens are, we need some mechanism to recognize

these in the input stream. This is done by the token recognizers, which are designed using

transition diagrams and finite automata.

1.6 ROLE OF LEXICAL ANALYZER
The LA is the first phase of a compiler. It main task is to read the input character and produce

as output a sequence of tokens that the parser uses for syntax analysis.

Fig. 1.7: Role of Lexical analyzer

Upon receiving a ‘get next token’ command form the parser, the lexical analyzer reads the

input character until it can identify the next token. The LA return to the parser representation for

the token it has found. The representation will be an integer code, if the token is a simple construct

such as parenthesis, comma or colon.
LA may also perform certain secondary tasks as the user interface. One such task is striping

out from the source program the commands and white spaces in the form of blank, tab and new

line characters. Another is correlating error message from the compiler with the source program.

1.7 TOKEN, LEXEME, PATTERN:

Token: Token is a sequence of characters that can be treated as a single logical

entity. Typical tokens are,
1) Identifiers 2) keywords 3) operators 4) special symbols 5)constants

Pattern: A set of strings in the input for which the same token is produced as output. This

set of strings is described by a rule called a pattern associated with the token.

Lexeme: A lexeme is a sequence of characters in the source program that is matched by

the pattern for a token.

11

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

 Fig. 1.8: Example of Token, Lexeme and Pattern

1.8 LEXICAL ERRORS:

Lexical errors are the errors thrown by your lexer when unable to continue. Which means that

there's no way to recognise a lexeme as a valid token for you lexer. Syntax errors, on the other side,

will be thrown by your scanner when a given set of already recognised valid tokens don't match

any of the right sides of your grammar rules. simple panic-mode error handling system requires

that we return to a high-level parsing function when a parsing or lexical error is detected.

Error-recovery actions are:

i. Delete one character from the remaining input.
ii. Insert a missing character in to the remaining input.
iii. Replace a character by another character.
iv. Transpose two adjacent characters.

1.9 REGULAR EXPRESSIONS
Regular expression is a formula that describes a possible set of string. Component of regular

expression..
X

.

[x y z]

R?

R*

R+

R1R2

R1|R1

the character x

any character, usually accept a new line
any of the characters x, y, z, …..

a R or nothing (=optionally as R)

zero or more occurrences…..

one or more occurrences ……

an R1 followed by an R2

either an R1 or an R2.
A token is either a single string or one of a collection of strings of a certain type. If we view the
set of strings in each token class as an language, we can use the regular-expression notation to
describe tokens.
Consider an identifier, which is defined to be a letter followed by zero or more letters or digits.

In regular expression notation we would write.

Identifier = letter (letter | digit)*

12

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

Here are the rules that define the regular expression over alphabet .
• is a regular expression denoting { € }, that is, the language containing only the empty

string.
• For each ‘a’ in Σ, is a regular expression denoting { a }, the language with only one string

consisting of the single symbol ‘a’ .
• If R and S are regular expressions, then

(R) | (S) means L(r) U L(s)

R.S means L(r).L(s)
R* denotes L(r*)

1.10. REGULAR DEFINITIONS

For notational convenience, we may wish to give names to regular expressions and to define

regular expressions using these names as if they were symbols.

Identifiers are the set or string of letters and digits beginning with a letter. The following regular

definition provides a precise specification for this class of string.

Example-1,
Ab*|cd? Is equivalent to (a(b*)) | (c(d?))

Pascal identifier

Letter - A | B | ……| Z | a | b |……| z|

Digits - 0 | 1 | 2 | …. | 9
Id - letter (letter / digit)*

Recognition of tokens:
We learn how to express pattern using regular expressions. Now, we must study how to take the

patterns for all the needed tokens and build a piece of code that examins the input string and finds

a prefix that is a lexeme matching one of the patterns.

Stmt →if expr then stmt

| If expr then else stmt

| є

Expr →term relop term

| term

Term →id

|number

For relop ,we use the comparison operations of languages like Pascal or SQL where = is “equals”

and < > is “not equals” because it presents an interesting structure of lexemes.

The terminal of grammar, which are if, then , else, relop ,id and numbers are the names of tokens

as far as the lexical analyzer is concerned, the patterns for the tokens are described using regular

definitions.

digit → [0,9]

digits →digit+

number →digit(.digit)?(e.[+-]?digits)?

letter → [A-Z,a-z]

id →letter(letter/digit)*

if → if

then →then

13

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

else →else

relop →< | > |<= | >= | = = | < >

In addition, we assign the lexical analyzer the job stripping out white space, by recognizing the

“token” we defined by:

WS → (blank/tab/newline)+
Here, blank, tab and newline are abstract symbols that we use to express the ASCII characters of

the same names. Token ws is different from the other tokens in that ,when we recognize it, we do

not return it to parser ,but rather restart the lexical analysis from the character that follows the

white space . It is the following token that gets returned to the parser.

 Lexeme Token Name Attribute Value

 Any WS - -

 if if -

 then then -

 else else -

 Any id Id Pointer to table entry

A mber number Pointer to table ent

 < relop LT

 <= relop LE

 == relop EQ

 <> relop NE

1.11. TRANSITION DIAGRAM:
Transition Diagram has a collection of nodes or circles, called states. Each state represents a

condition that could occur during the process of scanning the input looking for a lexeme that

matches one of several patterns .

Edges are directed from one state of the transition diagram to another. each edge is labeled by a

symbol or set of symbols.

If we are in one state s, and the next input symbol is a, we look for an edge out of state s labeled

by a. if we find such an edge ,we advance the forward pointer and enter the state of the transition

diagram to which that edge leads.
Some important conventions about transition diagrams are

1. Certain states are said to be accepting or final .These states indicates that a lexeme has been

found, although the actual lexeme may not consist of all positions b/w the lexeme Begin

and forward pointers we always indicate an accepting state by a double circle.
2. In addition, if it is necessary to return the forward pointer one position, then we shall

additionally place a * near that accepting state.
3. One state is designed the state ,or initial state ., it is indicated by an edge labeled “start”

entering from nowhere .the transition diagram always begins in the state before any input

symbols have been used.

14

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

Fig. 1.9: Transition diagram of Relational operators

As an intermediate step in the construction of a LA, we first produce a stylized flowchart,

called a transition diagram. Position in a transition diagram, are drawn as circles and are called

as states.

Fig. 1.10: Transition diagram of Identifier

The above TD for an identifier, defined to be a letter followed by any no of letters or digits.A

sequence of transition diagram can be converted into program to look for the tokens specified

by the diagrams. Each state gets a segment of code.

1.12. FINITE AUTOMATON
• A recognizer for a language is a program that takes a string x, and answers “yes” if x is a

sentence of that language, and “no” otherwise.
• We call the recognizer of the tokens as a finite automaton.
• A finite automaton can be: deterministic (DFA) or non-deterministic (NFA)
• This means that we may use a deterministic or non-deterministic automaton as a lexical

analyzer.
• Both deterministic and non-deterministic finite automaton recognize regular sets.
• Which one?

– deterministic – faster recognizer, but it may take more space

– non-deterministic – slower, but it may take less space
– Deterministic automatons are widely used lexical analyzers.

• First, we define regular expressions for tokens; Then we convert them into a DFA to get a

lexical analyzer for our tokens.

15

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

1.13. Non-Deterministic Finite Automaton (NFA)
• A non-deterministic finite automaton (NFA) is a mathematical model that consists

of: o S - a set of states
o Σ - a set of input symbols (alphabet)
o move - a transition function move to map state-symbol pairs to sets of states.
o s0 - a start (initial) state
o F- a set of accepting states (final states)

• ε- transitions are allowed in NFAs. In other words, we can move from one state to

another one without consuming any symbol.

• A NFA accepts a string x, if and only if there is a path from the starting state to one of

accepting states such that edge labels along this path spell out x.
Example:

1.14. Deterministic Finite Automaton (DFA)

• A Deterministic Finite Automaton (DFA) is a special form of a NFA.
• No state has ε- transition
• For each symbol a and state s, there is at most one labeled edge a leaving s. i.e.

transition function is from pair of state-symbol to state (not set of states)

Example:

16

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

1.15. Converting RE to NFA
• This is one way to convert a regular expression into a NFA.
• There can be other ways (much efficient) for the conversion.
• Thomson’s Construction is simple and systematic method.
• It guarantees that the resulting NFA will have exactly one final state, and one start state.
• Construction starts from simplest parts (alphabet symbols).
• To create a NFA for a complex regular expression, NFAs of its sub-expressions

are combined to create its NFA.
• To recognize an empty string ε:

• To recognize a symbol a in the alphabet Σ:

• For regular expression r1 | r2:

N(r1) and N(r2) are NFAs for regular expressions r1 and r2.

17

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

• For regular expression r1 r2

Here, final state of N(r1) becomes the final state of N(r1r2).
• For regular expression r*

Example:

For a RE (a|b) * a, the NFA construction is shown below.

1.16. Converting NFA to DFA (Subset Construction)
We merge together NFA states by looking at them from the point of view of the input characters:

• From the point of view of the input, any two states that are connected by an –transition

may as well be the same, since we can move from one to the other without consuming any

character. Thus states which are connected by an -transition will be represented by the same

states in the DFA.
• If it is possible to have multiple transitions based on the same symbol, then we can regard

a transition on a symbol as moving from a state to a set of states (ie. the union of all those

states reachable by a transition on the current symbol). Thus these states will be combined

into a single DFA state.
To perform this operation, let us define two functions:

• The -closure function takes a state and returns the set of states reachable from it based on

(one or more) -transitions. Note that this will always include the state itself. We should be

able to get from a state to any state in its -closure without consuming any input.
• The function move takes a state and a character, and returns the set of states reachable

by one transition on this character.

18

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

We can generalise both these functions to apply to sets of states by taking the union of

the application to individual states.

For Example, if A, B and C are states, move({A,B,C},`a') = move(A,`a') move(B,`a')

move(C,`a').

The Subset Construction Algorithm is a follows:

put ε-closure({s0}) as an unmarked state into the set of DFA (DS)

while (there is one unmarked S1 in DS) do

begin

mark S1

for each input symbol a do

begin

S2 ← ε-closure(move(S1,a))

if (S2 is not in DS) then

add S2 into DS as an unmarked state

transfunc[S1,a] ← S2

end

end

• a state S in DS is an accepting state of DFA if a state in S is an accepting state of NFA
• the start state of DFA is ε-closure({s0})

1.17. Lexical Analyzer Generator

overhead is limited.

19

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

2. SYNTAX ANALYSIS

2.1 ROLE OF THE PARSER :

Parser for any grammar is program that takes as input string w (obtain set of strings tokens from

the lexical analyzer) and produces as output either a parse tree for w , if w is a valid sentences

of grammar or error message indicating that w is not a valid sentences of given grammar. The

goal of the parser is to determine the syntactic validity of a source string is valid, a tree is built

for use by the subsequent phases of the computer. The tree reflects the sequence of derivations

or reduction used during the parser. Hence, it is called parse tree. If string is invalid, the parse

has to issue diagnostic message identifying the nature and cause of the errors in string. Every

elementary subtree in the parse tree corresponds to a production of the grammar.

There are two ways of identifying an elementry sutree:

1. By deriving a string from a non-terminal or

2. By reducing a string of symbol to a non-terminal.

The two types of parsers employed are:

a. Top down parser: which build parse trees from top(root) to

bottom(leaves)

b. Bottom up parser: which build parse trees from leaves and work up

the root.

Fig . 2.1: position of parser in compiler model.

2.2 CONTEXT FREE GRAMMARS

Inherently recursive structures of a programming language are defined by a context-free

Grammar. In a context-free grammar, we have four triples G(V,T,P,S).

Here , V is finite set of terminals (in our case, this will be the set of tokens)

T is a finite set of non-terminals (syntactic-variables)

20

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

P is a finite set of productions rules in the following form

A → α where A is a non-terminal and α is a string of terminals and non-terminals

(including the empty string)

S is a start symbol (one of the non-terminal symbol)

L(G) is the language of G (the language generated by G) which is a set of sentences.

A sentence of L(G) is a string of terminal symbols of G. If S is the start symbol of G then

ω is a sentence of L(G) iff S ⇒ ω where ω is a string of terminals of G. If G is a context-

free grammar, L(G) is a context-free language. Two grammar G1 and G2 are equivalent, if

they produce same grammar.

Consider the production of the form S ⇒ α, If α contains non-terminals, it is called as a sentential

form of G. If α does not contain non-terminals, it is called as a sentence of G.

In general a derivation step is

αAβ ⇒ αγβ is sentential form and if there is a production rule A→γ in our grammar. where α

and β are arbitrary strings of terminal and non-terminal symbols α1 ⇒ α2 ⇒ ... ⇒ αn (αn derives

from α1 or α1 derives αn). There are two types of derivaion

1 At each derivation step, we can choose any of the non-terminal in the sentential form of G

for the replacement.

2 If we always choose the left-most non-terminal in each derivation step, this derivation is

called as left-most derivation.

Example:

E→E+E|E–E|E*E|E/E|-E E→(E)

E → id

Leftmost derivation :

E→E+E

→ E * E+E →id* E+E→id*id+E→id*id+id

The string is derive from the grammar w= id*id+id, which is consists of all terminal

symbols

Rightmost derivation

E→E+E

→ E+E * E→E+ E*id→E+id*id→id+id*id

Given grammar G : E → E+E | E*E | (E) | - E |

id Sentence to be derived : – (id+id)

21

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

LEFTMOST DERIVATION RIGHTMOST DERIVATION

E→-E E→-E

E→-(E) E→-(E)

E→-(E+E) E→-(E+E)

E → - (id+E) E → - (E+id)

E → - (id+id) E → - (id+id)

• String that appear in leftmost derivation are called left sentinel forms.

• String that appear in rightmost derivation are called right sentinel forms.

Sentinels:
• Given a grammar G with start symbol S, if S → α , where α may contain non-

terminals or terminals, then α is called the sentinel form of G.

Yield or frontier of tree:

• Each interior node of a parse tree is a non-terminal. The children of node can be a

terminal or non-terminal of the sentinel forms that are read from left to right. The

sentinel form in the parse tree is called yield or frontier of the tree.

2.3. PARSE TREE

• Inner nodes of a parse tree are non-terminal symbols.

• The leaves of a parse tree are terminal symbols.

• A parse tree can be seen as a graphical representation of a derivation.

Ambiguity:

A grammar that produces more than one parse for some sentence is said to be ambiguous

grammar.

22

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

Example : Given grammar G : E → E+E | E*E | (E) | - E | id

The sentence id+id*id has the following two distinct leftmost derivations:

E→E+E E→E*E

E → id + E E → E + E * E

E → id + E * E E → id + E * E

E → id + id * E E → id + id * E

E → id + id * id E → id + id * id

The two corresponding parse trees are :

Example:

To disambiguate the grammar E → E+E | E*E | E^E | id | (E), we can use precedence of

operators as follows:

^ (right to left)

/,* (left to right) -

,+ (left to right)

We get the following unambiguous grammar:

E→E+T|T

T→T*F|F

F→G^F|G

G → id | (E)

Consider this example, G: stmt → if expr then stmt | if expr then stmt else stmt | other

This grammar is ambiguous since the string if E1 then if E2 then S1 else S2 has the

following

23

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

Two parse trees for leftmost derivation :

To eliminate ambiguity, the following grammar may be used:

stmt → matched_stmt | unmatched_stmt

matched_stmt → if expr then matched_stmt else matched_stmt | other

unmatched_stmt → if expr then stmt | if expr then matched_stmt else unmatched_stmt

Eliminating Left Recursion:

A grammar is said to be left recursive if it has a non-terminal A such that there is a derivation

A=>Aα for some string α. Top-down parsing methods cannot handle left-recursive grammars.

Hence, left recursion can be eliminated as follows:

24

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

If there is a production A → Aα | β it can be replaced with a sequence of two productions

A→βA’
A’→αA’|ε

Without changing the set of strings derivable from A.

Example : Consider the following grammar for arithmetic expressions:

E→E+T|T

T→T*F|F

F → (E) | id

First eliminate the left recursion for E as

E→TE’

E’→+TE’|ε

Then eliminate for T as

T→FT’

T’→ *FT’ | ε

Thus the obtained grammar after eliminating left recursion

is E→TE’

E’→+TE’|ε

T→FT’

T’→*FT’|ε

F → (E) | id

Algorithm to eliminate left recursion:

1. Arrange the non-terminals in some order A1, A2 . . . An.

2. for i := 1 to n do begin

for j := 1 to i-1 do begin

replace each production of the form Ai → Aj γ

by the productions Ai → δ1 γ | δ2γ | . . . | δk γ

where Aj → δ1 | δ2 | . . . | δk are all the current Aj-productions;

end

eliminate the immediate left recursion among the Ai-productions

end

25

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

Left factoring:

Left factoring is a grammar transformation that is useful for producing a grammar suitable for

predictive parsing. When it is not clear which of two alternative productions to use to expand

a non-terminal A, we can rewrite the A-productions to defer the decision until we have seen

enough of the input to make the right choice.

If there is any production A → αβ1 | αβ2 , it can be rewritten as

A→αA’

A’→β1|β2

Consider the grammar , G : S → iEtS | iEtSeS | a

E → b

Left factored, this grammar becomes

S → iEtSS’ | a

S’ → eS | ε

E → b

2.4 TOP-DOWN PARSING

It can be viewed as an attempt to find a left-most derivation for an input string or an

attempt to construct a parse tree for the input starting from the root to the leaves.

Types of top-down parsing :

1. Recursive descent parsing

2. Predictive parsing

2.4.1. RECURSIVE DESCENT PARSING

� Recursive descent parsing is one of the top-down parsing techniques that uses a set of

recursive procedures to scan its input.

� This parsing method may involve backtracking, that is, making repeated scans of the

input.

Example for backtracking :

Consider the grammar G : S → cAd

A → ab | a

and the input string w=cad.

The parse tree can be constructed using the following top-down approach :

Step1:

Initially create a tree with single node labeled S. An input pointer points to ‘c’, the first

symbol of w. Expand the tree with the production of S.

26

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

Step2:

The leftmost leaf ‘c’ matches the first symbol of w, so advance the input pointer to the second symbol

of w ‘a’ and consider the next leaf ‘A’. Expand A using the first alternative.

Step3:

The second symbol ‘a’ of w also matches with second leaf of tree. So advance the input pointer

to third symbol of w ‘d’. But the third leaf of tree is b which does not match with the input

symbol d.

Hence discard the chosen production and reset the pointer to second position. This is called

backtracking.

Step4:

Now try the second alternative for A.

Now we can halt and announce the successful completion of parsing.

27

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

Example for recursive decent parsing:

A left-recursive grammar can cause a recursive-descent parser to go into an infinite loop.

Hence, elimination of left-recursion must be done before parsing.

Consider the grammar for arithmetic expressions

E→E+T|T

T→T*F|F

F → (E) | id

After eliminating the left-recursion the grammar

becomes, E→TE’

E’→+TE’|ε

T→FT’

T’→*FT’|ε

F → (E) | id

Now we can write the procedure for grammar as follows:

Recursive procedure:

Procedure E()

begin

T();

EPRIME();

End

Procedure EPRIME()

begin

If input_symbol=’+’ then

ADVANCE();

T();

EPRIME();

end

Procedure T()

begin

F();

TPRIME();

End

28

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

Procedure TPRIME()

Begin

If input_symbol=’*’ then

ADVANCE();

F();

TPRIME();

End

Procedure F()

Begin

If input-symbol=’id’ then

ADVANCE();

else if input-symbol=’(‘ then

ADVANCE();

E();

else if input-symbol=’)’ then

ADVANCE();

End

else ERROR();

Stack implementation:

 PROCEDURE INPUT STRING

 E() id+id*id

 T() id+id*id

 F() id+id*id

 ADVANCE() id+id*id

 TPRIME() id+id*id

 EPRIME() id+id*id

 ADVANCE() id+id*id

 T() id+id*id

 F() id+id*id

 ADVANCE() id+id*id

 TPRIME() id+id*id

 ADVANCE() id+id*id

 F() id+id*id

 ADVANCE() id+id*id

 TPRIME() id+id*id

29

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

2.4.2. PREDICTIVE PARSING

� Predictive parsing is a special case of recursive descent parsing where no

backtracking is required.

� The key problem of predictive parsing is to determine the production to be applied

for a non-terminal in case of alternatives.

Non-recursive predictive parser

The table-driven predictive parser has an input buffer, stack, a parsing table and an output

stream.

Input buffer:

It consists of strings to be parsed, followed by $ to indicate the end of the input string.

Stack:

It contains a sequence of grammar symbols preceded by $ to indicate the bottom of the stack.

Initially, the stack contains the start symbol on top of $.

Parsing table:

It is a two-dimensional array M[A, a], where ‘A’ is a non-terminal and ‘a’ is a terminal.

Predictive parsing program:

The parser is controlled by a program that considers X, the symbol on top of stack, and a, the

current input symbol. These two symbols determine the parser action. There are three

possibilities:

1. If X = a = $, the parser halts and announces successful completion of parsing.

2. If X = a ≠ $, the parser pops X off the stack and advances the input pointer to

the next input symbol.

3. If X is a non-terminal , the program consults entry M[X, a] of the parsing table M.

This entry will either be an X-production of the grammar or an error entry.

30

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

If M[X, a] = {X → UVW},the parser replaces X on top of the stack by

UVW If M[X, a] = error, the parser calls an error recovery routine.

Algorithm for nonrecursive predictive parsing:

Input : A string w and a parsing table M for grammar G.

Output : If w is in L(G), a leftmost derivation of w; otherwise, an error indication.

Method : Initially, the parser has $S on the stack with S, the start symbol of G on top, and w$

in the input buffer. The program that utilizes the predictive parsing table M to produce a parse

for the input is as follows:

set ip to point to the first symbol of w$;

repeat

let X be the top stack symbol and a the symbol pointed to by

ip; if X is a terminal or $ then

if X = a then

pop X from the stack and advance ip

else error()

else

/* X is a non-terminal */

if M[X, a] = X →Y1Y2 … Yk then begin

pop X from the stack;

push Yk, Yk-1, … ,Y1 onto the stack, with Y1 on top;

output the production X → Y1 Y2 . . . Yk

end

else error()

until X = $

Predictive parsing table construction:

The construction of a predictive parser is aided by two functions associated with a grammar

G :

1. FIRST

2. FOLLOW

Rules for first():

1. If X is terminal, then FIRST(X) is {X}.

2. If X → ε is a production, then add ε to FIRST(X).

3. If X is non-terminal and X → aα is a production then add a to FIRST(X).

31

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

4. If X is non-terminal and X → Y 1 Y2…Yk is a production, then place a in FIRST(X) if for some i,

a is in FIRST(Yi), and ε is in all of FIRST(Y1),…,FIRST(Yi-1); that is, Y1,….Yi-1

=> ε. If ε is in FIRST(Yj) for all j=1,2,..,k, then add ε to FIRST(X).
Rules for follow():
1. If S is a start symbol, then FOLLOW(S) contains $.

2. If there is a production A → αBβ, then everything in FIRST(β) except ε is placed

in follow(B).
3. If there is a production A → αB, or a production A → αBβ where FIRST(β) contains ε, then

everything in FOLLOW(A) is in FOLLOW(B).

Algorithm for construction of predictive parsing table:

Input : Grammar G

1. For each production A → α of the grammar, do steps 2 and 3.
2. For each terminal a in FIRST(α), add A → α to M[A, a].
3. If ε is in FIRST(α), add A → α to M[A, b] for each terminal b in FOLLOW(A). If ε is

in FIRST(α) and $ is in FOLLOW(A) , add A → α to M[A, $].
4. Make each undefined entry of M be error.

Example:

Consider the following grammar :

E→E+T|T

T→T*F|F

F → (E) | id

After eliminating left-recursion the grammar is

E→TE’

E’→+TE’|ε

T→FT’

T’→*FT’|ε

F → (E) | id

First() :

FIRST(E) = { (, id}

FIRST(E’) ={+ , ε }

FIRST(T) = { (, id}

FIRST(T’) = {*, ε }

FIRST(F) = { (, id }

Follow():

FOLLOW(E) = { $,) }

FOLLOW(E’) = { $,) }

32

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

FOLLOW(T) = { +, $,) }

FOLLOW(T’) = { +, $,) }

FOLLOW(F) = {+, * , $,) }

LL(1) grammar:

The parsing table entries are single entries. So each location has not more than one entry.

This type of grammar is called LL(1) grammar.
Consider this following grammar:
S → iEtS | iEtSeS | a
E → b

33

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

After eliminating left factoring, we have
S → iEtSS’ | a
S’→ eS | ε
E → b

To construct a parsing table, we need FIRST() and FOLLOW() for all the non-

terminals. FIRST(S) = { i, a }
FIRST(S’) = {e, ε }

FIRST(E) = { b}
FOLLOW(S) = { $,e }
FOLLOW(S’) = { $,e }
FOLLOW(E) = {t}

Since there are more than one production, the grammar is not LL(1) grammar.
Actions performed in predictive parsing:
1. Shift
2. Reduce
3. Accept
4. Error

1. Elimination of left recursion, left factoring and ambiguous grammar.
2. Construct FIRST() and FOLLOW() for all non-terminals.
3. Construct predictive parsing table.
4. Parse the given input string using stack and parsing table.

2.5. BOTTOM-UP PARSING
Constructing a parse tree for an input string beginning at the leaves and going towards the root
is called bottom-up parsing.
A general type of bottom-up parser is a shift-reduce parser.

2.5.1. SHIFT-REDUCE PARSING
Shift-reduce parsing is a type of bottom -up parsing that attempts to construct a parse tree for

an input string beginning at the leaves (the bottom) and working up towards the root (the top).
Example:
Consider the grammar:
S → aABe
A → Abc | b

B → d
The sentence to be recognized is abbcde.

34

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

3.1 Intermediate Code Generation

35

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

36

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

37

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

38

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

39

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

40

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

41

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

42

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

43

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

44

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

45

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

46

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

47

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

48

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

3.2 TYPE CHECKING

49

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

50

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

51

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

52

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

53

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

4.1 STORAGE ORGANIZATION

54

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

55

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

56

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

57

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

58

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

59

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

60

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

61

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

5.1 CODE GENERATION

The final phase in compiler model is the code generator. It takes as input an intermediate

representation of the source program and produces as output an equivalent target program. The

code generation techniques presented below can be used whether or not an optimizing phase occurs

before code generation.

 Position of code generator

source

intermediate

intermediate

target

front end code code

program code code program

 optimizer generator

symbol

table

ISSUES IN THE DESIGN OF A CODE GENERATOR The

following issues arise during the code generation phase :

1. Input to code generator
2. Target program

3. Memory management

4. Instruction selection

5. Register allocation

6. Evaluation order

1. Input to code generator:

The input to the code generation consists of the intermediate representation of the source
program produced by front end , together with information in the symbol table to
determine run-time addresses of the data objects denoted by the names in the

intermediate representation.

Intermediate representation can be :
a. Linear representation such as postfix notation

b. Three address representation such as quadruples

c. Virtual machine representation such as stack machine code

d. Graphical representations such as syntax trees and dags.

Prior to code generation, the front end must be scanned, parsed and translated into
intermediate representation along with necessary type checking. Therefore, input to code
generation is assumed to be error-free.

2. Target program:
The output of the code generator is the target program. The output may be :

a. Absolute machine language
- It can be placed in a fixed memory location and can be executed immediately.

62

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

b. Relocatable machine language
- It allows subprograms to be compiled separately.

c. Assembly language

- Code generation is made easier.

3. Memory management:
Names in the source program are mapped to addresses of data objects in run-time
memory by the front end and code generator.

It makes use of symbol table, that is, a name in a three-address statement refers to a
symbol-table entry for the name.

Labels in three-address statements have to be converted to addresses of
instructions. For example,

j : goto i generates jump instruction as follows :
if i < j, a backward jump instruction with target address equal to location of
code for quadruple i is generated.
if i > j, the jump is forward. We must store on a list for quadruple i the

location of the first machine instruction generated for quadruple j. When i is
processed, the machine locations for all instructions that forward jumps to i

are filled.

4. Instruction selection:
The instructions of target machine should be complete and uniform.

Instruction speeds and machine idioms are important factors when efficiency of target
program is considered.

The quality of the generated code is determined by its speed and size.

The former statement can be translated into the latter statement as shown below:

5. Register allocation
Instructions involving register operands are shorter and faster than those involving
operands in memory.

The use of registers is subdivided into two subproblems :
Register allocation – the set of variables that will reside in registers at a point in
the program is selected.

63

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

Register assignment – the specific register that a variable will reside in is picked.

Certain machine requires even-odd register pairs for some operands and results.
For example , consider the division instruction of the form :

D x, y

where, x – dividend even register in even/odd register pair

y – divisor

even register holds the remainder

odd register holds the quotient

6. Evaluation order
The order in which the computations are performed can affect the efficiency of the
target code. Some computation orders require fewer registers to hold intermediate
results than others.

TARGET MACHINE

Familiarity with the target machine and its instruction set is a prerequisite for designing a
good code generator.
The target computer is a byte-addressable machine with 4 bytes to a

word. It has n general-purpose registers, R0, R1, . . . , Rn-1.
It has two-address instructions of the form:

op source, destination
where, op is an op-code, and source and destination are data fields.

It has the following op-codes :
MOV (move source to destination)

ADD (add source to destination)
SUB (subtract source from destination)

The source and destination of an instruction are specified by combining registers and
memory locations with address modes.

Address modes with their assembly-language forms

MODE FORM ADDRESS ADDED COST

absolute M M 1

register R R 0

indexed c(R) c+contents(R) 1

indirect register *R contents (R) 0

indirect indexed *c(R) contents(c+ 1

 contents(R))

literal #c c 1

64

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

For example : MOV R0, M stores contents of Register R0 into memory location M ; MOV

4(R0), M stores the value contents(4+contents(R0)) into M.

Instruction costs :

Instruction cost = 1+cost for source and destination address modes. This cost corresponds
to the length of the instruction.

Address modes involving registers have cost zero.
Address modes involving memory location or literal have cost one.

Instruction length should be minimized if space is important. Doing so also minimizes
the time taken to fetch and perform the instruction.
For example : MOV R0, R1 copies the contents of register R0 into R1. It has cost one,
since it occupies only one word of memory.
The three-address statement a : = b + c can be implemented by many different instruction
sequences :

i) MOV b, R0

ADD c, R0 cost = 6

MOV R0, a

ii) MOV b, a

ADD c, a cost = 6

iii) Assuming R0, R1 and R2 contain the addresses of a, b, and c :

MOV *R1, *R0

ADD *R2, *R0 cost = 2

In order to generate good code for target machine, we must utilize its

addressing capabilities efficiently.

RUN-TIME STORAGE MANAGEMENT

Information needed during an execution of a procedure is kept in a block of storage called an

activation record, which includes storage for names local to the procedure.
The two standard storage allocation strategies are:

1. Static allocation

2. Stack allocation
In static allocation, the position of an activation record in memory is fixed at compile
time.
In stack allocation, a new activation record is pushed onto the stack for each execution of
a procedure. The record is popped when the activation ends.
The following three-address statements are associated with the run-time allocation and
deallocation of activation records:

1. Call,

2. Return,

3. Halt, and

4. Action, a placeholder for other statements.
We assume that the run-time memory is divided into areas for:

1. Code

2. Static data

3. Stack

65

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

Static allocation

Implementation of call statement:

The codes needed to implement static allocation are as follows:

MOV #here + 20, callee.static_area /*It saves return address*/

GOTO callee.code_area /*It transfers control to the target code for the called procedure */

where,

callee.static_area – Address of the activation record

callee.code_area – Address of the first instruction for called procedure

#here + 20 – Literal return address which is the address of the instruction following GOTO.

Implementation of return statement:

A return from procedure callee is implemented by :

GOTO *callee.static_area

This transfers control to the address saved at the beginning of the activation record.

Implementation of action statement:

The instruction ACTION is used to implement action statement.

Implementation of halt statement:

The statement HALT is the final instruction that returns control to the operating

system. Stack allocation

Static allocation can become stack allocation by using relative addresses for storage in

activation records. In stack allocation, the position of activation record is stored in register so words

in activation records can be accessed as offsets from the value in this register.

The codes needed to implement stack allocation are as follows:

Initialization of stack:

MOV #stackstart , SP

/* initializes stack */

Code for the first procedure

HALT

/* terminate execution */

Implementation of Call statement:

ADD #caller.recordsize, SP

/* increment stack pointer */

MOV #here + 16, *SP

/*Save return address */

GOTO callee.code_area

66

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

where,

caller.recordsize – size of the activation record

#here + 16 – address of the instruction following the GOTO

Implementation of Return statement:

GOTO *0 (SP) /*return to the caller */

SUB #caller.recordsize, SP /* decrement SP and restore to previous value */

BASIC BLOCKS AND FLOW GRAPHS

Basic Blocks

A basic block is a sequence of consecutive statements in which flow of control enters at
the beginning and leaves at the end without any halt or possibility of branching except at
the end.
The following sequence of three-address statements forms a basic

block: t1 : = a * a
t2 : = a * b

t3 : = 2 * t2

t4 : = t1 + t3

t5 : = b * b

t6 : = t4 + t5

Basic Block Construction:

Algorithm: Partition into basic blocks

Input: A sequence of three-address statements

Output: A list of basic blocks with each three-address statement in exactly one block

Method:

1. We first determine the set of leaders, the first statements of basic blocks. The rules we
use are of the following:

a. The first statement is a leader.
b. Any statement that is the target of a conditional or unconditional goto is a

leader.
c. Any statement that immediately follows a goto or conditional goto statement is

a leader.
2. For each leader, its basic block consists of the leader and all statements up to but not

including the next leader or the end of the program.

67

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

Consider the following source code for dot product of two vectors a and b of length 20

begin

prod :=0;

i:=1;

do begin

prod :=prod+ a[i] * b[i];

i :=i+1;

end

while i <= 20

end

The three-address code for the above source program is given as :

(1) prod := 0

(2) i := 1

(3) t1 := 4* i

(4) t2 := a[t1] /*compute a[i] */

(5) t3 := 4* i

(6) t4 := b[t3] /*compute b[i] */

(7) t5 := t2*t4

(8) t6 := prod+t5

(9) prod := t6

(10) t7 := i+1

(11) i := t7

(12) if i<=20 goto (3)

Basic block 1: Statement (1) to (2)

Basic block 2: Statement (3) to (12)

68

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

Transformations on Basic Blocks:

A number of transformations can be applied to a basic block without changing the set of

expressions computed by the block. Two important classes of transformation are :

Structure-preserving transformations

Algebraic transformations

1. Structure preserving transformations:

a) Common subexpression elimination:

a : = b + c

b : = a – d

c : = b + c

d : = a – d

a : = b + c

b : = a - d

c : = b + c

d : = b

Since the second and fourth expressions compute the same expression, the basic block can

be transformed as above.

b) Dead-code elimination:

Suppose x is dead, that is, never subsequently used, at the point where the statement x :

= y + z appears in a basic block. Then this statement may be safely removed without

changing the value of the basic block.

c) Renaming temporary variables:

A statement t : = b + c (t is a temporary) can be changed to u : = b + c (u is a new temporary)

and all uses of this instance of t can be changed to u without changing the value of the basic

block.

Such a block is called a normal-form block.

d) Interchange of statements:

Suppose a block has the following two adjacent statements:

t1 : = b + c

t2 : = x + y

We can interchange the two statements without affecting the value of the block if

and only if neither x nor y is t1 and neither b nor c is t2.

2. Algebraic transformations:

Algebraic transformations can be used to change the set of expressions computed by a

basic block into an algebraically equivalent set.
Examples:

i) x : = x + 0 or x : = x * 1 can be eliminated from a basic block without changing the set of

expressions it computes.

ii) The exponential statement x : = y * * 2 can be replaced by x : = y * y.

69

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

Flow Graphs

Flow graph is a directed graph containing the flow-of-control information for the set of
basic blocks making up a program.
The nodes of the flow graph are basic blocks. It has a distinguished initial node.

E.g.: Flow graph for the vector dot product is given as follows:

prod : = 0 B1

i : = 1

t1 : = 4 * i

t2 : = a [t1]

t3 : = 4 * i B2

t4 : = b [t3]

t5 : = t2 * t4

t6 : = prod + t5

prod : = t6

t7 : = i + 1

i : = t7

if i <= 20 goto B2

B1 is the initial node. B2 immediately follows B1, so there is an edge from B1 to B2. The

target of jump from last statement of B1 is the first statement B2, so there is an edge from

B1 (last statement) to B2 (first statement).

B1 is the predecessor of B2, and B2 is a successor of B1.

Loops

A loop is a collection of nodes in a flow graph such that
1. All nodes in the collection are strongly connected.

2. The collection of nodes has a unique entry.
A loop that contains no other loops is called an inner loop.

NEXT-USE INFORMATION

If the name in a register is no longer needed, then we remove the name from the register
and the register can be used to store some other names.

70

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

Input: Basic block B of three-address statements

Output: At each statement i: x= y op z, we attach to i the liveliness and next-uses of x,

y and z.

Method: We start at the last statement of B and scan backwards.

1. Attach to statement i the information currently found in the symbol table
regarding the next-use and liveliness of x, y and z.

2. In the symbol table, set x to “not live” and “no next use”.
3. In the symbol table, set y and z to “live”, and next-uses of y and z to i.

Symbol Table:

 Names Liveliness Next-use

 x not live no next-use

 y Live i

 z Live i

A SIMPLE CODE GENERATOR

A code generator generates target code for a sequence of three- address statements and
effectively uses registers to store operands of the statements.

For example: consider the three-address statement a := b+c
It can have the following sequence of codes:

ADD Rj, Ri

Cost = 1

// if Ri contains b and Rj contains c

(or)

ADD c, Ri

Cost = 2

// if c is in a memory location

(or)

MOV c, Rj

Cost = 3

// move c from memory to Rj and add

ADD Rj, Ri

Register and Address Descriptors:

A register descriptor is used to keep track of what is currently in each registers. The
register descriptors show that initially all the registers are empty.
An address descriptor stores the location where the current value of the name can be
found at run time.

71

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

A code-generation algorithm:

The algorithm takes as input a sequence of three-address statements constituting a basic block.
For each three-address statement of the form x : = y op z, perform the following actions:

1. Invoke a function getreg to determine the location L where the result of the computation y op
z should be stored.

2. Consult the address descriptor for y to determine y’, the current location of y. Prefer the register for

y’ if the value of y is currently both in memory and a register. If the value of y is not already in L,

generate the instruction MOV y’ , L to place a copy of y in L.

3. Generate the instruction OP z’ , L where z’ is a current location of z. Prefer a register to a

memory location if z is in both. Update the address descriptor of x to indicate that x is in location

L. If x is in L, update its descriptor and remove x from all other descriptors.

4. If the current values of y or z have no next uses, are not live on exit from the block, and are
in registers, alter the register descriptor to indicate that, after execution of x : = y op z , those
registers will no longer contain y or z.

Generating Code for Assignment Statements:

The assignment d : = (a-b) + (a-c) + (a-c) might be translated into the following three-
address code sequence:

t : = a – b

u : = a – c

v : = t + u

d : = v + u

with d live at the end.

Code sequence for the example is:

Statements Code Generated Register descriptor Address descriptor

 Register empty

t : = a - b MOV a, R0 R0 contains t t in R0

 SUB b, R0

u : = a - c MOV a , R1 R0 contains t t in R0

 SUB c , R1 R1 contains u u in R1

v : = t + u ADD R1, R0 R0 contains v u in R1

 R1 contains u v in R0

d : = v + u ADD R1, R0 R0 contains d d in R0

 MOV R0, d d in R0 and memory

72

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

Generating Code for Indexed Assignments

The table shows the code sequences generated for the indexed assignment statements

a : = b [i] and a [i] : = b

Statements Code Generated Cost

a : = b[i] MOV b(Ri), R 2

a[i] : = b MOV b, a(Ri) 3

Generating Code for Pointer Assignments

The table shows the code sequences generated for the pointer assignments

a : = *p and *p : = a

Statements Code Generated Cost

a : = *p MOV *Rp, a 2

*p : = a MOV a, *Rp 2

Generating Code for Conditional Statements

Statement

if x < y goto z

Code

CMP x, y

 CJ< z /* jump to z if condition code

is negative */

x : = y +z
if x < 0 goto z

MOV y, R0

ADD z, R0

MOV R0,x
CJ< z

THE DAG REPRESENTATION FOR BASIC BLOCKS

A DAG for a basic block is a directed acyclic graph with the following labels on nodes:
1. Leaves are labeled by unique identifiers, either variable names or constants.

2. Interior nodes are labeled by an operator symbol.
3. Nodes are also optionally given a sequence of identifiers for labels to store the

computed values.
DAGs are useful data structures for implementing transformations on basic blocks.

It gives a picture of how the value computed by a statement is used in subsequent
statements.

It provides a good way of determining common sub - expressions.

73

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

Algorithm for construction of DAG

Input: A basic block

Output: A DAG for the basic block containing the following information:

1. A label for each node. For leaves, the label is an identifier. For interior nodes, an
operator symbol.

2. For each node a list of attached identifiers to hold the computed values.
Case (i) x : = y OP z

Case (ii) x : = OP y

Case (iii) x : = y

Method:

Step 1: If y is undefined then create node(y).

If z is undefined, create node(z) for case(i).

Step 2: For the case(i), create a node(OP) whose left child is node(y) and right child is

node(z). (Checking for common sub expression). Let n be this node.

For case(ii), determine whether there is node(OP) with one child node(y). If not create such a

node.

For case(iii), node n will be node(y).

Step 3: Delete x from the list of identifiers for node(x). Append x to the list of attached

identifiers for the node n found in step 2 and set node(x) to n.

Example: Consider the block of three- address statements:

1. t1 := 4* i

2. t2 := a[t1]
3. t3 := 4* i
4. t4 := b[t3]
5. t5 := t2*t4
6. t6 := prod+t5
7. prod := t6
8. t7 := i+1
9. i := t7
10. if i<=20 goto (1)

74

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

Stages in DAG Construction

75

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

76

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

Application of DAGs:

1. We can automatically detect common sub expressions.

2. We can determine which identifiers have their values used in the block.
3. We can determine which statements compute values that could be used outside the block.

77

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

GENERATING CODE FROM DAGs

The advantage of generating code for a basic block from its dag representation is that, from a dag

we can easily see how to rearrange the order of the final computation sequence than we can starting from

a linear sequence of three-address statements or quadruples.

Rearranging the order
The order in which computations are done can affect the cost of resulting object code.

For example, consider the following basic block:

t1 : = a + b

t2 : = c + d

t3 : = e – t2

t4 : = t1 – t3

Generated code sequence for basic block:

MOV a , R0

ADD b , R0

MOV c , R1

ADD d , R1

MOV R0 , t1

MOV e , R0

SUB R1 , R0

MOV t1 , R1

SUB R0 , R1

MOV R1 , t4

Rearranged basic block:
Now t1 occurs immediately before t4.

t2 : = c + d

t3 : = e – t2

t1 : = a + b

t4 : = t1 – t3

Revised code sequence:

MOV c , R0

ADD d , R0

MOV a , R0

SUB R0 , R1

MOV a , R0

ADD b , R0

SUB R1 , R0

MOV R0 , t4

In this order, two instructions MOV R0 , t1 and MOV t1 , R1 have been saved.

78

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

A Heuristic ordering for Dags

The heuristic ordering algorithm attempts to make the evaluation of a node immediately

follow the evaluation of its leftmost argument.

The algorithm shown below produces the ordering in reverse.

Algorithm:

1) while unlisted interior nodes remain do begin
2) select an unlisted node n, all of whose parents have been listed;
3) list n;
4) while the leftmost child m of n has no unlisted parents and is not a leaf do

 begin

5) list m;

6) n : = m

 end

 end

Example: Consider the DAG shown below:

1
*

2 + - 3

4

*

 5
-

+

8

 6 + 7 c d 11 e 12

a
9

b
10

Initially, the only node with no unlisted parents is 1 so set n=1 at line (2) and list 1 at line (3).

Now, the left argument of 1, which is 2, has its parents listed, so we list 2 and set n=2 at line (6).

Now, at line (4) we find the leftmost child of 2, which is 6, has an unlisted parent 5. Thus we select a

new n at line (2), and node 3 is the only candidate. We list 3 and proceed down its left chain, listing 4,

5 and 6. This leaves only 8 among the interior nodes so we list that.

The resulting list is 1234568 and the order of evaluation is 8654321.

79

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

Code sequence:

t8 : = d + e

t6 : = a + b

t5 : = t6 – c

t4 : = t5 * t8

t3 : = t4 – e

t2 : = t6 + t4

t1 : = t2 * t3

This will yield an optimal code for the DAG on machine whatever be the number of registers.

80

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

5.2 CODE OPTIMIZATION

INTRODUCTION

The code produced by the straight forward compiling algorithms can often be made to run

faster or take less space, or both. This improvement is achieved by program transformations

that are traditionally called optimizations. Compilers that apply code-improving

transformations are called optimizing compilers.

Optimizations are classified into two categories. They are

Machine independent optimizations:
Machine dependant optimizations:

Machine independent optimizations:

Machine independent optimizations are program transformations that improve the target

code without taking into consideration any properties of the target machine.

Machine dependant optimizations:

Machine dependant optimizations are based on register allocation and utilization of special

machine-instruction sequences.

The criteria for code improvement transformations:

Simply stated, the best program transformations are those that yield the most benefit for the
least effort.

The transformation must preserve the meaning of programs. That is, the optimization must

not change the output produced by a program for a given input, or cause an error such as

division by zero, that was not present in the original source program. At all times we take the
“safe” approach of missing an opportunity to apply a transformation rather than risk

changing what the program does.

A transformation must, on the average, speed up programs by a measurable amount. We are also

interested in reducing the size of the compiled code although the size of the code has less importance

than it once had. Not every transformation succeeds in improving every program, occasionally an

“optimization” may slow down a program slightly.

The transformation must be worth the effort. It does not make sense for a compiler writer to

expend the intellectual effort to implement a code improving transformation and to have the

compiler expend the additional time compiling source programs if this effort is not repaid when

the target programs are executed. “Peephole” transformations of this kind are simple enough and

beneficial enough to be included in any compiler.

81

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

Organization for an Optimizing Compiler:

Flow analysis is a fundamental prerequisite for many important types of code
improvement.

Generally control flow analysis precedes data flow analysis.
Control flow analysis (CFA) represents flow of control usually in form of graphs, CFA
constructs such as

control flow

graph Call graph
Data flow analysis (DFA) is the process of ascerting and collecting information prior to

program execution about the possible modification, preservation, and use of certain entities

(such as values or attributes of variables) in a computer program.

PRINCIPAL SOURCES OF OPTIMISATION

A transformation of a program is called local if it can be performed by looking only at
the statements in a basic block; otherwise, it is called global.
Many transformations can be performed at both the local and global levels. Local
transformations are usually performed first.

Function-Preserving Transformations

There are a number of ways in which a compiler can improve a program without
changing the function it computes.

The transformations

Common sub expression
elimination, Copy propagation,
Dead-code elimination, and

Constant folding

are common examples of such function-preserving transformations. The other
transformations come up primarily when global optimizations are performed.

82

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

Frequently, a program will include several calculations of the same value, such as an
offset in an array. Some of the duplicate calculations cannot be avoided by the

programmer because they lie below the level of detail accessible within the source
language.

Common Sub expressions elimination:

An occurrence of an expression E is called a common sub-expression if E was

previously computed, and the values of variables in E have not changed since the
previous computation. We can avoid recomputing the expression if we can use the

previously computed value.
For example

t1: = 4*i

t2: = a [t1]

t3: = 4*j

t4: = 4*i

t5: = n

t6: = b [t4] +t5

The above code can be optimized using the common sub-expression elimination as

t1: = 4*i

t2: = a [t1]

t3: = 4*j

t5: = n

t6: = b [t1] +t5

The common sub expression t4: =4*i is eliminated as its computation is alre ady in t1.
And value of i is not been changed from definition to use.

Copy Propagation:

Assignments of the form f : = g called copy statements, or copies for short. The idea
behind the copy-propagation transformation is to use g for f, whenever possible after the

copy statement f: = g. Copy propagation means use of one variable instead of another.

This may not appear to be an improvement, but as we shall see it gives us an opportunity
to eliminate x.

For example:

x=Pi;

……

A=x*r*r;

The optimization using copy propagation can be done as follows:

A=Pi*r*r;

Here the variable x is eliminated

Dead-Code Eliminations:

A variable is live at a point in a program if its value can be used subsequently; otherwise, it is dead at

that point. A related idea is dead or useless code, statements that compute

83

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

values that never get used. While the programmer is unlikely to introduce any dead code
intentionally, it may appear as the result of previous transformations. An optimization can
be done by eliminating dead code.

Example:

i=0;

if(i=1)

{

a=b+5;

}

Here, ‘if’ statement is dead code because this condition will never get satisfied.

Constant folding:

We can eliminate both the test and printing from the object code. More generally,
deducing at compile time that the value of an expression is a constant and using the
constant instead is known as constant folding.

One advantage of copy propagation is that it often turns the copy statement into dead
code.

For example,
a=3.14157/2 can be replaced by

a=1.570 there by eliminating a division operation.

Loop Optimizations:

We now give a brief introduction to a very important place for optimizations, namely loops,

especially the inner loops where programs tend to spend the bulk of their time. The running time

of a program may be improved if we decrease the number of instructions in an inner loop, even if

we increase the amount of code outside that loop.
Three techniques are important for loop optimization:

code motion, which moves code outside a loop;
Induction-variable elimination, which we apply to replace variables from inner loop.

Reduction in strength, which replaces and expensive operation by a cheaper one, such as
a multiplication by an addition.

Code Motion:

An important modification that decreases the amount of code in a loop is code motion. This

transformation takes an expression that yields the same result independent of the number of

times a loop is executed (a loop-invariant computation) and places the expression before the

loop. Note that the notion “before the loop” assumes the existence of an entry for the loop.

For example, evaluation of limit-2 is a loop-invariant computation in the following while-

statement:

while (i <= limit-2) /* statement does not change limit*/

Code motion will result in the equivalent of

84

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

t= limit-2;

while (i<=t) /* statement does not change limit or t */

Induction Variables :

Loops are usually processed inside out. For example consider the loop around B3.

Note that the values of j and t4 remain in lock-step; every time the value of j decreases by

1, that of t4 decreases by 4 because 4*j is assigned to t4. Such identifiers are called
induction variables.
When there are two or more induction variables in a loop, it may be possible to get rid of
all but one, by the process of induction-variable elimination. For the inner loop around

B3 in Fig. we cannot get rid of either j or t4 completely; t4 is used in B3 and j in B4.

However, we can illustrate reduction in strength and illustrate a part of the process of
induction-variable elimination. Eventually j will be eliminated when the outer loop of
B2 - B5 is considered.

Example:

As the relationship t4:=4*j surely holds after such an assignment to t4 in Fig. and t4 is not
changed elsewhere in the inner loop around B3, it follows that just after the statement j:=j-1 the

relationship t4:= 4*j-4 must hold. We may therefore replace the assignment t 4:= 4*j by t4:= t4-4.

The only problem is that t 4 does not have a value when we enter block B3 for the first time.

Since we must maintain the relationship t4=4*j on entry to the block B3, we place an

initializations of t4 at the end of the block where j itself is

before after

initialized, shown by the dashed addition to block B1 in second Fig.

85

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

The replacement of a multiplication by a subtraction will speed up the object code

if multiplication takes more time than addition or subtraction, as is the case on

many machines.

Reduction In Strength:

Reduction in strength replaces expensive operations by equivalent cheaper ones on the target

machine. Certain machine instructions are considerably cheaper than others and can often be

used as special cases of more expensive operators.
For example, x² is invariably cheaper to implement as x*x than as a call to an
exponentiation routine. Fixed-point multiplication or division by a power of two is
cheaper to implement as a shift. Floating-point division by a constant can be
implemented as multiplication by a constant, which may be cheaper.

OPTIMIZATION OF BASIC BLOCKS

There are two types of basic block optimizations. They are :

Structure-Preserving Transformations

Algebraic Transformations

Structure-Preserving Transformations:

The primary Structure-Preserving Transformation on basic blocks are:

Common sub-expression elimination

Dead code elimination

Renaming of temporary variables
Interchange of two independent adjacent statements.

Common sub-expression elimination:

Common sub expressions need not be computed over and over again. Instead they can be computed
once and kept in store from where it’s referenced when encountered again – of course providing
the variable values in the expression still remain constant.

Example:

a: =b+c

b: =a-d

c: =b+c

d: =a-d

The 2
nd

 and 4
th

 statements compute the same expression: b+c and a-d

Basic block can be transformed to

a: = b+c

b: = a-d

c: = a

d: = b

86

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

Dead code elimination:

It’s possible that a large amount of dead (useless) code may exist in the program. This might be

especially caused when introducing variables and procedures as part of construction or error-correction of

a program – once declared and defined, one forgets to remove them in case they serve no purpose.

Eliminating these will definitely optimize the code.

Renaming of temporary variables:

A statement t:=b+c where t is a temporary name can be changed to u:=b+c where u is
another temporary name, and change all uses of t to u.

In this we can transform a basic block to its equivalent block called normal-form block.

Interchange of two independent adjacent statements:

Two statements

t1:=b+c

t2:=x+y

can be interchanged or reordered in its computation in the basic block when value of t 1

does not affect the value of t2.

Algebraic Transformations:

Algebraic identities represent another important class of optimizations on basic blocks.
This includes simplifying expressions or replacing expensive operation by cheaper ones
i.e. reduction in strength.
Another class of related optimizations is constant folding. Here we evaluate constant
expressions at compile time and replace the constant expressions by their values. Thus
the expression 2*3.14 would be replaced by 6.28.
The relational operators <=, >=, <, >, + and = sometimes generate unexpected common
sub expressions.
Associative laws may also be applied to expose common sub expressions. For example,
if the source code has the assignments

a :=b+c

e :=c+d+b

the following intermediate code may be generated:

a :=b+c

t :=c+d

e :=t+b

Example:

x:=x+0 can be removed

x:=y**2 can be replaced by a cheaper statement x:=y*y

87

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

The compiler writer should examine the language carefully to determine what
rearrangements of computations are permitted, since computer arithmetic does not always

obey the algebraic identities of mathematics. Thus, a compiler may evaluate x*y-x*z as
x*(y-z) but it may not evaluate a+(b-c) as (a+b)-c.

LOOPS IN FLOW GRAPH

A graph representation of three-address statements, called a flow graph, is useful for

understanding code-generation algorithms, even if the graph is not explicitly constructed by a
code-generation algorithm. Nodes in the flow graph represent computations, and the edges

represent the flow of control.

Dominators:
In a flow graph, a node d dominates node n, if every path from initial node of the flow

graph to n goes through d. This will be denoted by d dom n. Every initial node dominates all the

remaining nodes in the flow graph and the entry of a loop dominates all nodes in the loop. Similarly
every node dominates itself.

Example:

*In the flow graph below,

*Initial node,node1 dominates every node.

*node 2 dominates itself

*node 3 dominates all but 1 and 2.

*node 4 dominates all but 1,2 and 3.
*node 5 and 6 dominates only themselves,since flow of control can skip around either by
goin through the other.

*node 7 dominates 7,8 ,9 and 10.

*node 8 dominates 8,9 and 10.

*node 9 and 10 dominates only themselves.

88

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

The way of presenting dominator information is in a tree, called the dominator tree in
which the initial node is the root.
The parent of each other node is its immediate dominator. Each

node d dominates only its descendents in the tree.

The existence of dominator tree follows from a property of dominators; each node has a
unique immediate dominator in that is the last dominator of n on any path from the initial
node to n.
In terms of the dom relation, the immediate dominator m has the property is d=!n and d
dom n, then d dom m.

D(1)={1}

D(2)={1,2}

D(3)={1,3}

D(4)={1,3,4}

D(5)={1,3,4,5}

D(6)={1,3,4,6}

D(7)={1,3,4,7}

D(8)={1,3,4,7,8}

D(9)={1,3,4,7,8,9}

D(10)={1,3,4,7,8,10}

89

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

Natural Loop:

One application of dominator information is in determining the loops of a flow graph
suitable for improvement.

The properties of loops are

A loop must have a single entry point, called the header. This entry point-dominates all
nodes in the loop, or it would not be the sole entry to the loop.

There must be at least one way to iterate the loop(i.e.)at least one path back to the header.

One way to find all the loops in a flow graph is to search for edges in the flow graph whose
heads dominate their tails. If a→b is an edge, b is the head and a is the tail. These types of
edges are called as back edges.

Example:

In the above graph,

7 → 4 4DOM7

10 →7 7 DOM 10

4 → 3

8 → 3

9 →1

The above edges will form loop in flow graph.

Given a back edge n → d, we define the natural loop of the edge to be d plus th e set of nodes

that can reach n without going through d. Node d is the header of the loop.

Algorithm: Constructing the natural loop of a back edge.

Input: A flow graph G and a back edge n→d.

Output: The set loop consisting of all nodes in the natural loop n→d.

Method: Beginning with node n, we consider each node m*d that we know is in loop, to make sure

that m’s predecessors are also placed in loop. Each node in loop, except for d, is placed once on
stack, so its predecessors will be examined. Note that because d is put in the loop initially, we

never examine its predecessors, and thus find only those nodes that reach n without going through
d.

Procedure insert(m);

if m is not in loop then begin

loop := loop U {m};

push m onto stack
end;

stack : = empty;

90

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

loop : = {d};

insert(n);

while stack is not empty do begin

pop m, the first element of stack, off stack;

for each predecessor p of m do insert(p)
end

Inner loop:

If we use the natural loops as “the loops”, then we have the useful property that unless two

loops have the same header, they are either disjointed or one is entirely contained in the

other. Thus, neglecting loops with the same header for the moment, we have a natural notion

of inner loop: one that contains no other loop.
When two natural loops have the same header, but neither is nested within the other, they
are combined and treated as a single loop.

Pre-Headers:

Several transformations require us to move statements “before the header”. Therefore begin

treatment of a loop L by creating a new block, called the preheater.

The pre-header has only the header as successor, and all edges which formerly entered

the header of L from outside L instead enter the pre-header.

Edges from inside loop L to the header are not changed.

Initially the pre-header is empty, but transformations on L may place statements in it.

header pre-header

loop L

(a) Before

hea der

loop L

(b) After

Reducible flow graphs:

Reducible flow graphs are special flow graphs, for which several code optimization

transformations are especially easy to perform, loops are unambiguously defined,

dominators can be easily calculated, data flow analysis problems can also be solved

efficiently.

Exclusive use of structured flow-of-control statements such as if-then-else, while-do,

continue, and break statements produces programs whose flow graphs are always

reducible.

91

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

The most important properties of reducible flow graphs are that there are no jumps into

the middle of loops from outside; the only entry to a loop is through its header.

Definition:

A flow graph G is reducible if and only if we can partition the edges into two disjoint

groups, forward edges and back edges, with the following properties.

The forward edges from an acyclic graph in which every node can be reached from

initial node of G.

The back edges consist only of edges where heads dominate theirs

tails. Example: The above flow graph is reducible.

If we know the relation DOM for a flow graph, we can find and remove all the back

edges.

The remaining edges are forward edges.

If the forward edges form an acyclic graph, then we can say the flow graph reducible.

In the above example remove the five back edges 4→3, 7→4, 8→3, 9→1 and 10→7

whose heads dominate their tails, the remaining graph is acyclic.

The key property of reducible flow graphs for loop analysis is that in such flow graphs every

set of nodes that we would informally regard as a loop must contain a back edge.

92

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

VINAYAKA MISSIONS RESEARCH FOUNDATION, SALEM.
SCHOOL OF ARTS & SCIENCE – AVIT CAMPUS, CHENNAI.

DEPARTMENT OF COMPUTER SCIENCE

QUESTION BANK

BOARD : COMPUTER SCIENCE
PROGRAM : M.Sc COMPUTER SCIENCE - BATCH (2018-2020)
REGULATION : 2017
YEAR/ SEMESTER : I YEAR / II SEM

COURSE TITLE : COMPILER DESIGN

UNIT – I

PART – A (6 MARKS)
1) What is a compiler? Give a short note on phases of compiler.

2) Explain the variety of Intermediate forms.

3) Give the classification of a compiler

4) Describe the properties of parse trees.

5) Give short note on deterministic and non-deterministic automata.

6) Differentiate between tokens and patterns.

7) Describe about the structure of a compiler.

8) Give short note on lexical analyser

9) Differentiate between compiler and interpreter.

10) Give a short note on regular expression.

PART – B (10 MARKS)
1) Discuss briefly about structure of a compiler.

2) Discuss about the implementation of lexical analyser.

3) Explain about regular expression and its property.

4) Construct and optimize the REGEX of (a/b)* abb

5) Explain about DFA and NFA

6) Prepare the NFA state transition table in the given automata diagrammatic

representation.

UNIT – II
PART – A (6 MARKS)

1) Write about syntax analyser and its significance.

93

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

2) Write down the procedure of bottom up parsing and explain it.

3) Describe the Top down parsing techniques with give an example.

4) What is parsing? Explain its concepts.

5) Define a context free grammar.

6) List the merits and demerits of operator precedence parsing

7) What do you mean by handle pruning?

8) Write the algorithm for FIRST and FOLLOW.

9) Write a short note on YACC and Explain it briefly.

10) Mention the types of LR parser and explain it.

PART – B (10 MARKS)

1) List the properties of LR parser and explain the types of LR parser

2) Explain about syntax analyser and its techniques.

3) Explain runtime environment with suitable example.

4) Optimize the following grammar with bottom up parsing techniques.

5) Describe the various storage allocation strategies in detail.

6) Why LR parsing is good and attractive?

UNIT – III

PART – A (6 MARKS)
1) What is intermediate code generation and explain its benefits.

2) What are the different types of three address statements?

3) Describe about syntax tree.

4) Write about parse tree with give an example.

5) Give the syntax – directed definition for if else statement.

6) Write the code generation algorithm.

7) What is meant by syntax directed information? Explain it.

 E (E)

E

E+E

E E-E

E E*

E

E E/E

E id

94

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

8) What are the three functions used for back patching?

9) Define Quadruple and explain its merits.

10) What is type checking? explain it.

PART – B (10 MARKS)

1) Explain type checking of expressions and statements.

2) How could you generate the intermediate code for the flow of control

statements?

3) Explain syntax tree functions with give an example.

4) Give the semantic rules for declarations in a procedure.

5) Explain in detail about the recursive evaluators.

6) Explain about the parse tree with give an example.

UNIT – IV
PART – A (6 MARKS)

1) Describe the state allocation of space.

2) Explain the variable length data on stack

3) List the various storage allocation and define them.

4) What is dynamic storage allocation.

5) Define back patching with different functions.

6) Define Boolean expression and short circuit code

7) Define data structures used for symbol table.

8) What are the intermediate languages?

PART – B (10 MARKS)
1) What are the different parameter passing methods in a procedure call?

2) Explain in details about the static allocation.

3) Explain the common sub expression eliminations.

4) Describe the procedure calling methods with give an example.

5) Clearly mention the heap allocation methods.

6) Explain about the generating code for assignment statements.

UNIT – V

PART – A (6 MARKS)
1) Compare the code generation and optimization

95

Compiler Design

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR

2) Write about the generating code for indexed assignments.

3) What is basic block?

4) What are the methods available in loop optimization?

5) Write down the characteristics of peephole optimization.

6) Describe the runtime storage management.

7) What is a DAG?

8) List out the optimization techniques.

9) Distinguish between basic blocks and flow graphs.

PART – B (10 MARKS)
1) Describe the peephole optimization techniques with give an example.

2) Explain DAG representation of the basic block with an example.

3) Discuss run time storage management of code generator.

4) Explain the optimization techniques of basic blocks.

5) Write down the details description of Basic blocks and flow graph functions

with an example.

