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Compiler Design

SYLLABUS

DSC V: COMPILER DESIGN
Objectives: At the end of the course, the student should be able to do:

e Parsing techniques and different levels of translation.
e Apply the various optimization techniques.
e Use the different compiler construction tools.

UNIT I

Introduction on the phase of the complier — Lexical Analysis, Regular Expression, Non
deterministic Automata, Deterministic Automata equivalent to NFA’s — Minimizing the states of
DFA, Implementation of Lexical Analyzer.

UNIT 11

Syntax Analysis — Top down Parsing Concepts, Recursive Descent Parsing, Predictive
Parsers, Non recursive Pedictive Parsing — Bottom Up Parsing, Handle pruning, Shift reduce
parsing — Operator Predence Parsing — Error recovery in Parsing, LR Parsers, Parser Generators —
YACC.

UNIT 11

Intermediate Code Generation: Syntax directed Definitions, Construction of Syntax trees
— Top down Translation, Bottom up Evaluation of inherited Attributed, Recursive Evaluators,
Assigning Space at Complier Construction time — Type checking — Overloading of functions and
operators Polymorphic function.

UNIT IV

Storage Organization : Storage Organization, Storage Allocation Strategies, Parameter
Passing, Symbol tables, Dynamic Storage Allocation, Intermediate Languages — Representation
of Declarations, Assignment Statement, Boolean Expression, Back patching, Procedure calls.

UNIT V

Code Generation and Optimization: Design of the code generators, Runtime storage
Management, Basic blocks and flow graphs, Register Allocation and Assignment, DAG
representation of Basic blocks, Peephole optimization, Code optimization — The principle sources
of optimization, Optimization of basic blocks, Global data flow Analysis, Loop optimizations.
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1.1 INTRODUCTION OF LANGUAGE PROCESSING SYSTEM

Skeletal Source Program
Preprocessor
Source program
Compiler

lT.u;cI Assemblyv program

Assembler

Relocatable Machine Code
, v :
: Loader/Linker-editor ‘ “ Library, relocatable obj file

Y
Absolute Machine Code
Fig 1.1: Language Processing System
Preprocessor

A preprocessor produce input to compilers. They may perform the following functions.

1. Macro processing: A preprocessor may allow a user to define macros that are short hands
for longer constructs.

2. File inclusion: A preprocessor may include header files into the program text.

3. Rational preprocessor: these preprocessors augment older languages with more modern flow-
of-control and data structuring facilities.

4. Language Extensions: These preprocessor attempts to add capabilities to the language by

certain amounts to build-in macro
COMPILER

Compiler is a translator program that translates a program written in (HLL) the source program and
translate it into an equivalent program in (MLL) the target program. As an important part of a compiler
is error showing to the programmer.

Source p target pgm

>  Compiler

Error msg

Fig 1.2: Structure of Compiler
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Executing a program written n HLL programming language is basically of two parts. the source
program must first be compiled translated into a object program. Then the results object program
is loaded into a memory executed.

Source pgr s obj pgm
ouree pg Compiler s S
ODbj pgm inpuf Obj pem opj pgm output

1 1 i pe ] Pg

Fig 1.3: Execution process of source program in Compiler

ASSEMBLER

Programmers found it difficult to write or read programs in machine language. They begin to use a
mnemonic (symbols) for each machine instruction, which they would subsequently translate into
machine language. Such a mnemonic machine language is now called an assembly language. Programs
known as assembler were written to automate the translation of assembly language in to machine
language. The input to an assembler program is called source program, the output is a machine
language translation (object program).

INTERPRETER
An interpreter is a program that appears to execute a source program as if it were machine language.
INPUT Ld SS OUTPUT

Source a—pf l—- Program
Program INTERPRETER Output

Figl.4: Execution in Interpreter

Languages such as BASIC, SNOBOL, LISP can be translated using interpreters. JAVA also uses
interpreter. The process of interpretation can be carried out in following phases.

1. Lexical analysis

2. Synatx analysis

3. Semantic analysis

4. Direct Execution

Advantages:

Modification of user program can be easily made and implemented as execution proceeds.
Type of object that denotes a various may change dynamically.

Debugging a program and finding errors is simplified task for a program used for interpretation.
The interpreter for the language makes it machine independent.

Disadvantages:

The execution of the program is slower.

Memory consumption is more.

LOADER AND LINK-EDITOR:

Once the assembler procedures an object program, that program must be placed into memory and
executed. The assembler could place the object program directly in memory and transfer control to it,
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thereby causing the machine language program to be execute. This would waste core by leaving the
assembler in memory while the user’s program was being executed. Also the programmer would have
to retranslate his program with each execution, thus wasting translation time. To over come this
problems of wasted translation time and memory. System programmers developed another component
called loader

“A loader is a program that places programs into memory and prepares them for execution.” It would
be more efficient if subroutines could be translated into object form the loader could”’relocate” directly
behind the user’s program. The task of adjusting programs o they may be placed in arbitrary core
locations is called relocation. Relocation loaders perform four functions.

1.2 TRANSLATOR

A translator is a program that takes as input a program written in one language and produces as output
a program in another language. Beside program translation, the translator performs another very
important role, the error-detection. Any violation of d HLL specification would be detected and
reported to the programmers. Important role of translator are:

1 Translating the HLL program input into an equivalent ml program.

2 Providing diagnostic messages wherever the programmer violates specification of the HLL.

1.3 LIST OF COMPILERS

. Ada compilers

ALGOL compilers
.BASIC compilers

.C# compilers

.C compilers

.C++ compilers

.COBOL compilers
.Common Lisp compilers
. ECMAScript interpreters
10. Fortran compilers

11 Java compilers

12. Pascal compilers

13. PL/I compilers

14. Python compilers

15. Smalltalk compilers

O©CooO~NOoO Ok~ WN K

1.4 STRUCTURE OF THE COMPILER DESIGN

Phases of a compiler: A compiler operates in phases. A phase is a logically interrelated operation
that takes source program in one representation and produces output in another representation. The
phases of a compiler are shown in below
There are two phases of compilation.

a. Analysis (Machine Independent/Language Dependent)

b. Synthesis(Machine Dependent/Language independent)

Compilation process is partitioned into no-of-sub processes called ‘phases’.

Lexical Analysis:-

LA or Scanners reads the source program one character at a time, carving the source program into
a sequence of automic units called tokens.
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Fig 1.5: Phases of Compiler

Syntax Analysis:-

The second stage of translation is called Syntax analysis or parsing. In this phase expressions,
statements, declarations etc... are identified by using the results of lexical analysis. Syntax analysis is
aided by using techniques based on formal grammar of the programming language.

Intermediate Code Generations:-
An intermediate representation of the final machine language code is produced. This phase bridges the

analysis and synthesis phases of translation.

Code Optimization :-
This is optional phase described to improve the intermediate code so that the output runs faster and

takes less space.

Code Generation:-
The last phase of translation is code generation. A number of optimizations to reduce the length of

machine language program are carried out during this phase. The output of the code generator is the
machine language program of the specified computer.
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Table Management (or) Book-keeping:- This is the portion to keep the names used by the about

program and records essential information each. The data structure used to record this
information called a ‘Symbol Table’.

Error Handlers:-

It is invoked when a flaw error in the source program is detected. The output of LA is a stream of
tokens, which is passed to the next phase, the syntax analyzer or parser. The SA groups the tokens
together into syntactic structure called as expression. Expression may further be combined to form
statements. The syntactic structure can be regarded as a tree whose leaves are the token called as parse
trees.

The parser has two functions. It checks if the tokens from lexical analyzer, occur in pattern that are
permitted by the specification for the source language. It also imposes on tokens a tree-like structure
that is used by the sub-sequent phases of the compiler.

Example, if a program contains the expression A+/B after lexical analysis this expression might appear
to the syntax analyzer as the token sequence id+/id. On seeing the /, the syntax analyzer should detect
an error situation, because the presence of these two adjacent binary operators violates the formulations
rule of an expression. Syntax analysis is to make explicit the hierarchical structure of the incoming
token stream by identifying which parts of the token stream should be grouped.

Example, (A/B*C has two possible interpretations.)

1, divide A by B and then multiply by C or

2, multiply B by C and then use the result to divide A.

each of these two interpretations can be represented in terms of a parse tree.

Intermediate Code Generation:-

The intermediate code generation uses the structure produced by the syntax analyzer to create a stream
of simple instructions. Many styles of intermediate code are possible. One common style uses
instruction with one operator and a small number of operands. The output of the syntax analyzer is
some representation of a parse tree. the intermediate code generation phase transforms this parse tree
into an intermediate language representation of the source program.

Code Optimization
This is optional phase described to improve the intermediate code so that the output runs faster and
takes less space. Its output is another intermediate code program that does the some job as the original,
but in a way that saves time and / or spaces.

a. Local Optimization:-

There are local transformations that can be applied to a program to make an improvement.

For example,

If A>B goto L2
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Goto L3
L2 :

This can be replaced by a single statement
If A<BgotoL3

Another important local optimization is the elimination of common sub-expressions
A:=B+C+D
E:=B+C+F

Might be evaluated as

T1:=B+C
A:=T1+D
E:=T1+F
Take this advantage of the common sub-expressions B + C.

b. Loop Optimization:-

Another important source of optimization concerns about increasing the speed of loops. A
typical loop improvement is to move a computation that produces the same result each time
around the loop to a point, in the program just before the loop is entered.

Code generator :-

Code Generator produces the object code by deciding on the memory locations for data, selecting code
to access each datum and selecting the registers in which each computation is to be done. Many
computers have only a few high speed registers in which computations can be performed quickly. A
good code generator would attempt to utilize registers as efficiently as possible.

Table Management OR Book-keeping :-

A compiler needs to collect information about all the data objects that appear in the source program.
The information about data objects is collected by the early phases of the compiler- lexical and
syntactic analyzers. The data structure used to record this information is called as Symbol Table.

Error Handing :-

One of the most important functions of a compiler is the detection and reporting of errors in the source
program. The error message should allow the programmer to determine exactly where the errors have
occurred. Errors may occur in all or the phases of a compiler.

Whenever a phase of the compiler discovers an error, it must report the error to the error handler, which
issues an appropriate diagnostic msg. Both of the table-management and error-Handling routines
interact with all phases of the compiler.
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Example:

Posnia.I=imn'al+m‘60

Tokens idl =3d2 +1d5 * 4

T
idl m/'\\\

int to real

Intermediate Code Generator |

lmpl.imtond(w)

tenpl =1d3 * tenpl

tenyp3 =142 = temp?
3dl= temp3.

| Code Optimizer |

TunplFiCB *60.0
Idl=3d2 <tenpl

Code Generator

}

MOVF id3. 2
MULF *600,r2
MOVF 2.2
ADDF 12,1l
MOVF rl,idl

Fig 1.6: Compilation Process of a source code through phases
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1.5 OVER VIEW OF LEXICAL ANALYSIS
» To identify the tokens we need some method of describing the possible tokens that can
appear in the input stream. For this purpose we introduce regular expression, a notation
that can be used to describe essentially all the tokens of programming language.
« Secondly , having decided what the tokens are, we need some mechanism to recognize
these in the input stream. This is done by the token recognizers, which are designed using
transition diagrams and finite automata.

1.6 ROLE OF LEXICAL ANALYZER
The LA is the first phase of a compiler. It main task is to read the input character and produce

as output a sequence of tokens that the parser uses for syntax analysis.

LEXICAL Tokes

Souree ANATLYZER PARSER

Program i

Getnext Token
'Y [y

SYMBOL

TABLE

Fig. 1.7: Role of Lexical analyzer

Upon receiving a ‘get next token” command form the parser, the lexical analyzer reads the
input character until it can identify the next token. The LA return to the parser representation for
the token it has found. The representation will be an integer code, if the token is a simple construct
such as parenthesis, comma or colon.

LA may also perform certain secondary tasks as the user interface. One such task is striping
out from the source program the commands and white spaces in the form of blank, tab and new

line characters. Another is correlating error message from the compiler with the source program.

1.7 TOKEN, LEXEME, PATTERN:

Token: Token is a sequence of characters that can be treated as a single logical

entity. Typical tokens are,

1) Identifiers 2) keywords 3) operators 4) special symbols 5)constants

Pattern: A set of strings in the input for which the same token is produced as output. This
set of strings is described by a rule called a pattern associated with the token.

Lexeme: A lexeme is a sequence of characters in the source program that is matched by

the pattern for a token.
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Token lexeme patiern

const const const

if if If

relation = = < Of <= 0f = 0f < == 0f == 0f lefter
followed by letters & digit

i p any numeric constant

min 314 any character b/w “and “except”

literal "core” pattern

Fig. 1.8: Example of Token, Lexeme and Pattern
1.8 LEXICAL ERRORS:

Lexical errors are the errors thrown by your lexer when unable to continue. Which means that
there's no way to recognise a lexeme as a valid token for you lexer. Syntax errors, on the other side,
will be thrown by your scanner when a given set of already recognised valid tokens don't match
any of the right sides of your grammar rules. simple panic-mode error handling system requires
that we return to a high-level parsing function when a parsing or lexical error is detected.

Error-recovery actions are:
i. Delete one character from the remaining input.
ii. Insert a missing character in to the remaining input.
iii. Replace a character by another character.
iv. Transpose two adjacent characters.

1.9 REGULAR EXPRESSIONS
Regular expression is a formula that describes a possible set of string. Component of regular

expression..
X the character x
. any character, usually accept a new line
[xyz] any of the characters x, y, z, .....
R? a R or nothing (=optionally as R)
R* Zero or more occurrences.....
R+ one or more occurrences ......
R1R2 an R1 followed by an R2
R1|R1 either an R1 or an R2.

A token is either a single string or one of a collection of strings of a certain type. If we view the
set of strings in each token class as an language, we can use the regular-expression notation to
describe tokens.

Consider an identifier, which is defined to be a letter followed by zero or more letters or digits.
In regular expression notation we would write.
Identifier = letter (letter | digit)*
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Here are the rules that define the regular expression over alphabet .
* is aregular expression denoting { € }, that is, the language containing only the empty
string.
» Foreach ‘a’ in X, is a regular expression denoting { a }, the language with only one string
consisting of the single symbol ‘a’ .
« IfRand S are regular expressions, then

(R) | (S) means L(r) U L(s)
R.S means L(r).L(s)
R* denotes L(r*)

1.10. REGULAR DEFINITIONS
For notational convenience, we may wish to give names to regular expressions and to define
regular expressions using these names as if they were symbols.
Identifiers are the set or string of letters and digits beginning with a letter. The following regular
definition provides a precise specification for this class of string.
Example-1,
Ab*|cd? Is equivalent to (a(b*)) | (c(d?))
Pascal identifier
Letter-A|B]...... |Z]a|b]...... | z|
Digits-0|1]2]....]9
Id - letter (letter / digit)*

Recognition of tokens:
We learn how to express pattern using regular expressions. Now, we must study how to take the
patterns for all the needed tokens and build a piece of code that examins the input string and finds
a prefix that is a lexeme matching one of the patterns.
Stmt —if expr then stmt
| If expr then else stmt
| e
Expr —term relop term
| term
Term —id
[number
For relop ,we use the comparison operations of languages like Pascal or SQL where = is “equals”
and <> is “not equals” because it presents an interesting structure of lexemes.
The terminal of grammar, which are if, then , else, relop ,id and numbers are the names of tokens
as far as the lexical analyzer is concerned, the patterns for the tokens are described using regular
definitions.
digit — [0,9]
digits —digit+
number —digit(.digit)?(e.[+-]?digits)?
letter — [A-Z,a-Z]
id —letter(letter/digit)*
if — if
then —then
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else —else
relop—><|>|<=|>=|==|<>

In addition, we assign the lexical analyzer the job stripping out white space, by recognizing the
“token” we defined by:

WS — (blank/tab/newline)+
Here, blank, tab and newline are abstract symbols that we use to express the ASCII characters of

the same names. Token ws is different from the other tokens in that ,when we recognize it, we do
not return it to parser ,but rather restart the lexical analysis from the character that follows the
white space . It is the following token that gets returned to the parser.

Lexeme Token Name Attribute Value
Any WS - -
if if -
then then -
else else -
Any id Id Pointer to table entry
A mber number Pointer to table ent
< relop LT
<= relop LE
== relop EQ
<> relop NE

1.11. TRANSITION DIAGRAM:
Transition Diagram has a collection of nodes or circles, called states. Each state represents a
condition that could occur during the process of scanning the input looking for a lexeme that
matches one of several patterns .
Edges are directed from one state of the transition diagram to another. each edge is labeled by a
symbol or set of symbols.
If we are in one state s, and the next input symbol is a, we look for an edge out of state s labeled
by a. if we find such an edge ,we advance the forward pointer and enter the state of the transition
diagram to which that edge leads.
Some important conventions about transition diagrams are
1. Certain states are said to be accepting or final .These states indicates that a lexeme has been
found, although the actual lexeme may not consist of all positions b/w the lexeme Begin
and forward pointers we always indicate an accepting state by a double circle.
2. Inaddition, if it is necessary to return the forward pointer one position, then we shall
additionally place a * near that accepting state.
3. One state is designed the state ,or initial state ., it is indicated by an edge labeled “start”

entering from nowhere .the transition diagram always begins in the state before any input
symbols have been used.
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Fig. 1.9: Transition diagram of Relational operators

As an intermediate step in the construction of a LA, we first produce a stylized flowchart,
called a transition diagram. Position in a transition diagram, are drawn as circles and are called
as states.

letter or digit

*
start letter m other ,
_, @ return (gettoken(), installiD())

Fig. 1.10: Transition diagram of Identifier

The above TD for an identifier, defined to be a letter followed by any no of letters or digits.A
sequence of transition diagram can be converted into program to look for the tokens specified
by the diagrams. Each state gets a segment of code.

1.12. FINITE AUTOMATON

« Arecognizer for a language is a program that takes a string X, and answers “yes” if x is a
sentence of that language, and “no” otherwise.

« We call the recognizer of the tokens as a finite automaton.

« A finite automaton can be: deterministic (DFA) or non-deterministic (NFA)

» This means that we may use a deterministic or non-deterministic automaton as a lexical
analyzer.

» Both deterministic and non-deterministic finite automaton recognize regular sets.

*  Which one?
— deterministic — faster recognizer, but it may take more space
— non-deterministic — slower, but it may take less space
— Deterministic automatons are widely used lexical analyzers.

 First, we define regular expressions for tokens; Then we convert them into a DFA to get a
lexical analyzer for our tokens.
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1.13. Non-Deterministic Finite Automaton (NFA)
» A non-deterministic finite automaton (NFA) is a mathematical model that consists
of: 0 S - a set of states
0 X - aset of input symbols (alphabet)
0 move - a transition function move to map state-symbol pairs to sets of states.
0 sO - a start (initial) state

0 F- aset of accepting states (final states)
» g- transitions are allowed in NFAs. In other words, we can move from one state to
another one without consuming any symbol.
» A NFA accepts a string x, if and only if there is a path from the starting state to one of
accepting states such that edge labels along this path spell out x.
Example:

a

{6\ * G )
=7 A SANEEL

start r. *f \—/
|\l\)/"‘

Transition Graph

0 is the start state sO
{2} is the set of final states F

Transition Function:

a b
0 | {013 | {0
1 it {2}
- 0 {

The language recognized by this NFA is (a|b)*ab
1.14. Deterministic Finite Automaton (DFA)

« A Deterministic Finite Automaton (DFA) is a special form of a NFA.

* No state has ¢- transition

« For each symbol a and state s, there is at most one labeled edge a leaving s. i.e.
transition function is from pair of state-symbol to state (not set of states)

Example:
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The DFA to recognize the language (alb)* ab iz as follows.

Transition Graph

0 i= the start state s0
{2} is the set of final states F
£ ={ahb}

={0,1,2}

Transition Function:

1
2

a b
0 1 0
1 2
1 0

Nate that the entries in this funcfion are single value and not set af values {uniike NFA).

1.15. Converting RE to NFA
« This is one way to convert a regular expression into a NFA.
« There can be other ways (much efficient) for the conversion.
* Thomson’s Construction is simple and systematic method.
+ It guarantees that the resulting NFA will have exactly one final state, and one start state.
« Construction starts from simplest parts (alphabet symbols).
» To create a NFA for a complex regular expression, NFAs of its sub-expressions
are combined to create its NFA.
* To recognize an empty string &:

r> )
\_/ /
» Torecognize a symbol a in the alphabet X:
a 7\
(; (2\
E—HE)
» For regular expression rl | r2
//‘—'—.-_- T ’;- -‘\\

N(rl) and N(r2) are NFAs for regular expressions rl and r2.
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For regular expression rl r2

u\I\()

Here, final state of N(rl) becomes the flnaI state of N(r1r2).

For regular expression r*

B
& ve (O
&/ NNk \//
S S o
g oo =S 8 Qe T o=
Example:
For a RE (alb) * a, the NFA construction is shown below.
a »{ »—“u( J) o0 M{T\
A (alb) U\ @
b » \)—b\\J/ %/

—

@b’ ff”""% O
\\ "y .l’-\—-h—> //‘

1.16. Converting NFA to DFA (Subset Construction)
We merge together NFA states by looking at them from the point of view of the input characters:

From the point of view of the input, any two states that are connected by an —transition
may as well be the same, since we can move from one to the other without consuming any
character. Thus states which are connected by an -transition will be represented by the same
states in the DFA.

If it is possible to have multiple transitions based on the same symbol, then we can regard
a transition on a symbol as moving from a state to a set of states (ie. the union of all those
states reachable by a transition on the current symbol). Thus these states will be combined
into a single DFA state.

To perform this operation, let us define two functions:

The -closure function takes a state and returns the set of states reachable from it based on
(one or more) -transitions. Note that this will always include the state itself. We should be
able to get from a state to any state in its -closure without consuming any input.

The function move takes a state and a character, and returns the set of states reachable

by one transition on this character.
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We can generalise both these functions to apply to sets of states by taking the union of
the application to individual states.

For Example, if A, B and C are states, move({A,B,C}, a") = move(A, a) move(B, a)
move(C, a").
The Subset Construction Algorithm is a follows:

put e-closure({s0}) as an unmarked state into the set of DFA (DS)
while (there is one unmarked S1 in DS) do

begin
mark S1
for each input symbol a do
begin
S2 « g-closure(move(S1,a))
if (S2 is not in DS) then
add S2 into DS as an unmarked state
transfunc[S1,a] « S2
end
end

» astate S in DS is an accepting state of DFA if a state in S is an accepting state of NFA
 the start state of DFA is g-closure({s0})

1.17. Lexical Analyzer Generator

Lex
Lex source ) ) Pl v
—P compiler

Program lex.]

C
e %‘ = 4’ Aot
lex.vy.c Compiler

wpant IE— a.ont Sequence of
stream tokens

overhead is limited.
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2. SYNTAX ANALYSIS

2.1 ROLE OF THE PARSER:

Parser for any grammar is program that takes as input string w (obtain set of strings tokens from
the lexical analyzer) and produces as output either a parse tree for w, if w is a valid sentences
of grammar or error message indicating that w is not a valid sentences of given grammar. The
goal of the parser is to determine the syntactic validity of a source string is valid, a tree is built
for use by the subsequent phases of the computer. The tree reflects the sequence of derivations
or reduction used during the parser. Hence, it is called parse tree. If string is invalid, the parse
has to issue diagnostic message identifying the nature and cause of the errors in string. Every
elementary subtree in the parse tree corresponds to a production of the grammar.

There are two ways of identifying an elementry sutree:

1. By deriving a string from a non-terminal or

2. By reducing a string of symbol to a non-terminal.

The two types of parsers employed are:
a. Top down parser: which build parse trees from top(root) to
bottom(leaves)

b. Bottom up parser: which build parse trees from leaves and work up

the root.
source lexical token parser parse | rest of intermediate
e - I —
program analyzer |« tree | frontend |representation
get next token

symbol
table

Fig . 2.1: position of parser in compiler model.
2.2 CONTEXT FREE GRAMMARS
Inherently recursive structures of a programming language are defined by a context-free
Grammar. In a context-free grammar, we have four triples G( V,T,P,S).
Here , V is finite set of terminals (in our case, this will be the set of tokens)

T is a finite set of non-terminals (syntactic-variables)
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P is a finite set of productions rules in the following form
A — o where A is a non-terminal and a is a string of terminals and non-terminals
(including the empty string)
S is a start symbol (one of the non-terminal symbol)
L(G) is the language of G (the language generated by G) which is a set of sentences.
A sentence of L(G) is a string of terminal symbols of G. If S is the start symbol of G then

o is a sentence of L(G) iff S = ® where o is a string of terminals of G. If G is a context-
free grammar, L(G) is a context-free language. Two grammar G1 and G2 are equivalent, if
they produce same grammar.

Consider the production of the form S = a, If a contains non-terminals, it is called as a sentential

form of G. If a does not contain non-terminals, it is called as a sentence of G.

In general a derivation step is

aAP = ayp is sentential form and if there is a production rule A—y in our grammar. where o
and [ are arbitrary strings of terminal and non-terminal symbols ol = 02 = ... = on (an derives

from al or al derives an ). There are two types of derivaion
1 At each derivation step, we can choose any of the non-terminal in the sentential form of G
for the replacement.
2 If we always choose the left-most non-terminal in each derivation step, this derivation is
called as left-most derivation.
Example:
E—E+E|E-E|E*E|E/E|-E E—(E)
E—id
Leftmost derivation :
E—E+E
— E * E+E —id* E+E—id*id+E—id*id+id
The string is derive from the grammar w= id*id+id, which is consists of all terminal
symbols
Rightmost derivation
E—E+E
— E+E * E>E+ E*id—E+id*id—id+id*id
Given grammar G: E - E+E |[E*E|(E) |- E|

id Sentence to be derived : — (id+id)
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LEFTMOST DERIVATION
E—-E

E—-(E)

E—-(E+E)

E — - (id+E)

E — - (id+id)

21

RIGHTMOST DERIVATION
E—-E
E—-(E)
E—-(E+E)
E — - (E+id)
E — - (id+id)

 String that appear in leftmost derivation are called left sentinel forms.

« String that appear in rightmost derivation are called right sentinel forms.

Sentinels:

* Given a grammar G with start symbol S, if S — o, where o may contain non-

terminals or terminals, then a is called the sentinel form of G.

Yield or frontier of tree:

» Each interior node of a parse tree is a non-terminal. The children of node can be a

terminal or non-terminal of the sentinel forms that are read from left to right. The

sentinel form in the parse tree is called yield or frontier of the tree.

2.3. PARSE TREE

» Inner nodes of a parse tree are non-terminal symbols.

» The leaves of a parse tree are terminal symbols.

» A parse tree can be seen as a graphical representation of a derivation.

Example:
o — E
E= -k N
< E
A
< ™~
) E
= -(id+E) {/ é
a
F +
|

id

Ambiguity:

AN
N

E

= -(E) /E\\ =-(EtE) 7 E\
: E - E
I AN
( E ) ( E )
A IRN
_ E + E
AN
- 5
= _(id+id) i/ I
N
E + E
\ |
id id

A grammar that produces more than one parse for some sentence is said to be ambiguous

grammar.
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Example : Given grammar G : E — E+E |E*E|(E ) |-E|id

The sentence id+id*id has the following two distinct leftmost derivations:

E—E+E E—E*E
E—id+E E—-E+E*E
E—id+E*E E—id+E*E
E—id+id *E E—id+id*E
E —id+id *id E —id+id *id

The two corresponding parse trees are :

I SN

. E
| /|\ .//|\ |
id E * E E =+ E id
id id id id

Example:
To disambiguate the grammar E — E+E | E*E | E*E | id | (E), we can use precedence of
operators as follows:

A (right to left)

/,* (left to right) -
,*+ (left to right)
We get the following unambiguous grammar:
E—E+T|T
T—T*F|F
F—G"F|G
G —id|(E)

Consider this example, G: stmt — if expr then stmt | if expr then stmt else stmt | other
This grammar is ambiguous since the string if E1 then if E2 then S1 else S2 has the

following

22
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Two parse trees for leftmost derivation :

stmt

E;

if expr  then stmt else stmt

E> S1 S

o

\ ba
-\ 3
T—

e

=

§ ™~

. / \\ \\\\ T —
if expr then stmt else stmt
/‘v\

/ I\

£ % %

E; / . \\ \ S
R RN
if expr then stmt
2 1

To eliminate ambiguity, the following grammar may be used:

stmt — matched stmt | unmatched stmt

matched stmt — if expr then matched stmt else matched stmt | other

unmatched stmt — if expr then stmt | if expr then matched_stmt else unmatched_stmt
Eliminating Left Recursion:

A grammar is said to be left recursive if it has a non-terminal A such that there is a derivation

A=>Aq for some string a. Top-down parsing methods cannot handle left-recursive grammars.

Hence, left recursion can be eliminated as follows:
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If there is a production A — Aa | B it can be replaced with a sequence of two productions
A—BA°
A’—0aA’le

Without changing the set of strings derivable from A.

Example : Consider the following grammar for arithmetic expressions:
E—E+T|T
T—T*F|F
F— (E)|id
First eliminate the left recursion for E as
E—-TE’
E’—>+TE’|e
Then eliminate for T as
T—-FT’
T'— *FT’ | &
Thus the obtained grammar after eliminating left recursion
is E-TE’
E’—+TE’[e
T—-FT’
T'—*FT’le
F— (E)|id

Algorithm to eliminate left recursion:

1. Arrange the non-terminals in some order Al, A2 ... An.
2. fori:=1tondo begin
forj:=1toi-1 do begin
replace each production of the form Ai — Ajy
by the productions Ai — 81 y|d2y|...|dky
where Aj — 811062 |. .. | ok are all the current Aj-productions;
end
eliminate the immediate left recursion among the Ai-productions

end
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Left factoring:

Left factoring is a grammar transformation that is useful for producing a grammar suitable for
predictive parsing. When it is not clear which of two alternative productions to use to expand
a non-terminal A, we can rewrite the A-productions to defer the decision until we have seen
enough of the input to make the right choice.
If there is any production A — a1 | a2, it can be rewritten as
A—aA’
A’—B1|B2
Consider the grammar , G : S — iEtS | iEtSeS | a
E—b
Left factored, this grammar becomes
S —iEtSS’ |a
S>—eS|e
E—b
2.4 TOP-DOWN PARSING
It can be viewed as an attempt to find a left-most derivation for an input string or an
attempt to construct a parse tree for the input starting from the root to the leaves.
Types of top-down parsing :
1. Recursive descent parsing
2. Predictive parsing
2.4.1. RECURSIVE DESCENT PARSING
€ Recursive descent parsing is one of the top-down parsing techniques that uses a set of
recursive procedures to scan its input.
€© This parsing method may involve backtracking, that is, making repeated scans of the
input.
Example for backtracking :
Consider the grammar G : S — cAd
A —ab|a
and the input string w=cad.
The parse tree can be constructed using the following top-down approach :
Stepl:
Initially create a tree with single node labeled S. An input pointer points to ‘c’, the first

symbol of w. Expand the tree with the production of S.
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S
// ‘ \\
¢ A d

Step2:
The leftmost leaf ‘c’ matches the first symbol of w, so advance the input pointer to the second symbol

of w ‘a’ and consider the next leaf ‘A’. Expand A using the first alternative.
S
/ | \
¢ A d

a b

Step3:

The second symbol ‘a’ of w also matches with second leaf of tree. So advance the input pointer
to third symbol of w ‘d’. But the third leaf of tree is b which does not match with the input
symbol d.

Hence discard the chosen production and reset the pointer to second position. This is called
backtracking.

Step4:

Now try the second alternative for A.

]
J
(<

a

Now we can halt and announce the successful completion of parsing.
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Example for recursive decent parsing:

A left-recursive grammar can cause a recursive-descent parser to go into an infinite loop.

Hence, elimination of left-recursion must be done before parsing.
Consider the grammar for arithmetic expressions
E—E+T|T

T—T*F|F

F— (E)|id

After eliminating the left-recursion the grammar
becomes, E-TE’

E’—>+TE’|e

T—-FT’

T'—*FT’J¢

F— (E)|id

Now we can write the procedure for grammar as follows:
Recursive procedure:

Procedure E()

begin
TO):
EPRIME();
End
Procedure EPRIME()
begin
If input_symbol="+" then
ADVANCE();
TO):
EPRIME();
end
Procedure T()
begin
FO);
TPRIME();
End

27

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR



Compiler Design

Procedure TPRIME()
Begin
If input_symbol="*" then
ADVANCE();
FO);
TPRIME();
End
Procedure F()
Begin
If input-symbol="id’ then
ADVANCE();
else if input-symbol="(* then
ADVANCE();
E();
else if input-symbol=")" then
ADVANCE();
End
else ERROR();

Stack implementation:

28

PROCEDURE INPUT STRING
EQ id+id~id
TO id+id~id
FO id+id~id
ADVANCE() id+id*id
TPRIME() id+id*id
EPRIME() id+ia*id
ADVANCE() id+id*id
TO id+id*id
FO i+id*id
ADVANCE() id+id*id
TPRIME() id+ia*id
ADVANCE() id+id*id
FO) id+id id
ADVANCE() id+ia*id
TPRIME() id+ia*id
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By : A. VIJAYA KUMAR



29
Compiler Design

2.4.2. PREDICTIVE PARSING
€ Predictive parsing is a special case of recursive descent parsing where no
backtracking is required.
€© The key problem of predictive parsing is to determine the production to be applied
for a non-terminal in case of alternatives.
Non-recursive predictive parser

INPUT a| + | b $

STACK Eas .
Predictive parsing program

T— > OUTPUT

N~ &

4
Parsing Table M

o

The table-driven predictive parser has an input buffer, stack, a parsing table and an output
stream.
Input buffer:
It consists of strings to be parsed, followed by $ to indicate the end of the input string.
Stack:
It contains a sequence of grammar symbols preceded by $ to indicate the bottom of the stack.
Initially, the stack contains the start symbol on top of $.
Parsing table:
It is a two-dimensional array M[A, a], where ‘A’ is a non-terminal and ‘a’ is a terminal.
Predictive parsing program:
The parser is controlled by a program that considers X, the symbol on top of stack, and a, the
current input symbol. These two symbols determine the parser action. There are three
possibilities:

1. If X=a=#$, the parser halts and announces successful completion of parsing.

2. If X=a#$, the parser pops X off the stack and advances the input pointer to

the next input symbol.

3. If X'is a non-terminal , the program consults entry M[X, a] of the parsing table M.

This entry will either be an X-production of the grammar or an error entry.
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If M[X, a] = {X — UVW} the parser replaces X on top of the stack by
UVW If M[X, a] = error, the parser calls an error recovery routine.
Algorithm for nonrecursive predictive parsing:
Input : A string w and a parsing table M for grammar G.
Output : If wis in L(G), a leftmost derivation of w; otherwise, an error indication.
Method : Initially, the parser has $S on the stack with S, the start symbol of G on top, and w$
in the input buffer. The program that utilizes the predictive parsing table M to produce a parse
for the input is as follows:
set ip to point to the first symbol of w$;
repeat
let X be the top stack symbol and a the symbol pointed to by
ip; if X is a terminal or $ then
if X =athen
pop X from the stack and advance ip
else error()
else [* X is a non-terminal */
ifM[X, a] =X —Y1Y2 ... Yk then begin
pop X from the stack;
push Yk, Yk-1, ... ,Y1 onto the stack, with Y1 on top;
output the production X — Y1 Y2 ... Yk
end
else error()
until X =$
Predictive parsing table construction:
The construction of a predictive parser is aided by two functions associated with a grammar
G:
1. FIRST
2. FOLLOW
Rules for first():
1. If X'is terminal, then FIRST(X) is {X}.
2. If X — ¢ is a production, then add & to FIRST(X).
3. If X'is non-terminal and X — aa is a production then add a to FIRST(X).
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4. 1f X is non-terminal and X — Y 1 Y2...Yk is a production, then place a in FIRST(X) if for some i,
ais in FIRST(Y1i), and ¢ is in all of FIRST(Y1),...,FIRST(Yi-1); that is, Y1,....Yi-1

=>¢. If € 1s in FIRST(Yj) for all j=1,2,..,k, then add & to FIRST(X).
Rules for follow( ):
1. If S'is a start symbol, then FOLLOW(S) contains $.

2. If there is a production A — aBp, then everything in FIRST(B) except ¢ is placed
in follow(B).

3. If there is a production A — oB, or a production A — oB[j where FIRST(J) contains €, then
everything in FOLLOW(A) is in FOLLOW(B).

Algorithm for construction of predictive parsing table:

Input : Grammar G

1. For each production A — a of the grammar, do steps 2 and 3.

2. For each terminal a in FIRST(a), add A — a to M[A, a].

3. If e is in FIRST(a), add A — a to M[A, b] for each terminal b in FOLLOW(A). If ¢ is
in FIRST(a) and $ is in FOLLOW(A) , add A — a to M[A, $].

4. Make each undefined entry of M be error.

Example:

Consider the following grammar :
E—E+T|T

T—T*F|F

F— (E)|id

After eliminating left-recursion the grammar is
E-TE’

E’—+TE’|e

T—-FT’

T'—*FT’le

F— (E)|id

First() :

FIRST(E) ={ (, id}

FIRST(E’) ={+, ¢ }

FIRST(T) ={ (, id}

FIRST(T’) = {*, ¢ }
FIRST(F)={(,id}

Follow( ):

FOLLOW(E)={%,)}
FOLLOW(E’)={3$,) }
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FOLLOW(T)={+ $,) }
FOLLOW(T’)={+,8,)}
FOLLOW(F) = {+ *,$,)}

Predictive parsing table :

NON- id + ¥ ( ) $
TERMINAL
E E—-TE E—-TE’
E’ E'—+TE’ E'—e E'—e
T T—-FT" T—FT’
T T'—e T'— *FT’ T"—¢ T'—>e
F F—id F — (E)
Stack implementation:
stack Input Output
$E id+id*id §
$E'T 1d+id*id $ E-TE
SE'TF 1id+id*id § T—=FT
$E'T'ud id+id*id $ F—id
SE'T +id*id §
$E’ +1d*id § T —e
$E'T+ +1d*id § E’'—+TE’
$E'T id*id §
SE'T'F id*id $ T—FT
$E'T"id id*id § F—1d
SE'T’ *1d$
$E'T'F* *d$ T' = *FT
SE'T'F d$
$E'T'd d$ F—1d
SE'T $
SE’ $ T —e
$ $ E'—e¢

LL(1) grammar:

The parsing table entries are single entries. So each location has not more than one entry.
This type of grammar is called LL(1) grammar.

Consider this following grammar:

S — iEtS | iEtSeS | a

E—b
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After eliminating left factoring, we have
S —iEtSS’ |a

S’ eS|

E—b

To construct a parsing table, we need FIRST() and FOLLOW() for all the non-
terminals. FIRST(S) ={i,a }
FIRST(S) = {e, ¢ }

FIRST(E) = { b}

FOLLOW(S)={$ e}
FOLLOW(S’)={$ e}

FOLLOW(E) = {t}

Parsing table:

NON- a b e 1 t $
TERMINAL
S S—a S — iEtSS’
S’ S’—=eS S’ —¢
S’ —>¢
E E—b

Since there are more than one production, the grammar is not LL(1) grammar.
Actions performed in predictive parsing:

1. Shift

2. Reduce

3. Accept

4. Error

1. Elimination of left recursion, left factoring and ambiguous grammar.
2. Construct FIRST() and FOLLOW() for all non-terminals.
3. Construct predictive parsing table.

4. Parse the given input string using stack and parsing table.

2.5. BOTTOM-UP PARSING

Constructing a parse tree for an input string beginning at the leaves and going towards the root
is called bottom-up parsing.

A general type of bottom-up parser is a shift-reduce parser.

25.1. SHIFT-REDUCE PARSING

Shift-reduce parsing is a type of bottom -up parsing that attempts to construct a parse tree for
an input string beginning at the leaves (the bottom) and working up towards the root (the top).
Example:

Consider the grammar:

S — aABe

A — Abc | b

B—d

The sentence to be recognized is abbcde.
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3.1Intermediate Code Generation

«  Grammar symbols are associated with attributes to associate information with the
programming language constructs that they represent.
+  Values of these attributes are evaluated by the semantic rules associated with the
production rules.
»  Evaluation of these semantic rules:
— may generate intermediate codes
— may put information into the symbol table
— may perform type checking
— may issue error messages
— may perform some other activities
— In fact, they may perform almost any activities.
»  An attribute may hold almost any thing.
— Astring, a number, a memory location, a complex record.
»  Evaluation of a semantic rule defines the value of an attribute. But a semantic rule may
also have some side effects such as printing a value.

Example:
Production Semantic Rule Program Fragment
L — E return print(E.val) print(valltop-1])
E—-E'+T E.val = E'val + T.val val[ntop] = val[top-2] + val[top]
E—-T E.val = T.val
T-T'*F T.val=T'val * F.val val[ntop] = val[top-2] * val[top]
T>F T.val=F.val
F—-(E) F.val = E.val va([ntop] = val[top=1]
F — digit F.val = digit.lexval val[top] = digit.lexval

+ Symbols E, T, and F are associated with an attribute val,

» The token digit has an attribute /exval (it is assumed that it is evaluated by the |exical
analyzer).

» The Program Fragment above represents the implementation of the semantic rule for a
bottom-up parser.

= At each shift of digit, we also push digit.lexval into val-stack.

» At all other shifts, we do not put anything into val-stack because other terminals do not
have attributes (but we increment the stack pointer for val-stack),

» The above model is suited for a desk calculator where the purpose is to evaluate and to
generate code.

Intermediate Code Generation

» Intermediate codes are machine independent codes, but they are close to machine
instructions.
» The given program in a source language is converted to an  equivalent program in an
intermediate [anguage by the intermediate code generator.
+ Intermediate language can be many different [anguages, and the designer of the compiler
decides this intermediate language.
— syntax trees can be used as an intermediate language.
— postfix notation can be used as an intermediate |language.
— three-address code (Quadraples) can be used as an intermediate language
» we will use quadraples to discuss intermediate code generation
» quadraples are close to machine instructions, but they are not actual
machine instructions.
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Syntax Tree

Syntax Tree is a variant of the Parse tree, where each leaf represents an operand and
each interior node an operator.

Example:

Production Semantic Rule

E—-E1opE2 E.val = NODE (op, E1.val, E2.val)
E— (EN) E.val = E1.val

E—-E1 E.val = UNARY ( -, E1.val)
E—id E.val = LEAF (id )

A sentence a*(b+d) would have the following syntax tree:
*
a \+
b d

Posftfix Notation is another useful form of intermediate code if the l[anguage is mostly
expressions,

Postfix Notation

Example:

Production Semantic Rule Program Fragment
E - E10pE2 E.code = E1.code || E2.code || op print op

E — (E1) E.code = E1.code

E—id E.code = id print id

Three Address Code

«  We use the term “three-address code” because each statement usually contains three
addresses (two for operands, one for the result).
» The most general kind of three-address code is:
X:=yopz
where X, y and z are names, constants or compiler-generated temporaries; op is any
operator,
+  But we may also the following notation for quadraples (much better notation because it
loaks like a machine code instruction)
op Y.ZX
apply operator op to y and z, and store the result in x.
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Representation of three-address codes

36

Three-address code can be represented in various forms viz. Quadruples, Triples and
Indirect Triples. These forms are demonstrated by way of an example below.

Example:

Quadruple:

LN
— e e e

— o~ e —

Triple:

(1)
(2)
(3)
(4)

Indirect Triple:

Dept. of CS&A, SAS, VMRF

A=-B*(C+D)
Three-Address code is as follows:
T1=-B
T2=C+D
T3=T1*T2
A=T3
Operator Operand 1
- B
+ C
* T1
= A
Operator Operand 1
- B
+ C
* (1)
= A
Statement
(0) (56)
(1) (57)
(2) (58)
(3) (59)
Operator Operand 1
- B
+ C
* (586)
= A

Operand 2 Result

T1

D T2

T2 T3
T3

Operand 2

(2)
(3)

Operand 2

(57)
(58)
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Translation of Assignment Statements

A statement A := -B * (C + D) has the following three-address translation:

T1:
T2 :=C+D
T3 =T1* T2
A=T3

-B

Production
S—>id:=E

E—-E1+E2

E—-E1*E2

E—-E1

E—(E1)

E—id

Semantic Action

S.code = E.code || gen( id.place = E.place )

E.place = newtemp();
E.code = E1.code || E2.code || gen( E.place = E1.place + E2.place )

E.place = newtemp();
E.code = E1.code || E2.code || gen( E.place = E1.place * E2.place )

E.place = newtemp();
E.code = E1.code || gen( E.place = - E1.place )

E.place = E1.place;
E.code = E1.code

E.place = id.place;
E.code = null

Translation of Boolean Expressions

Grammar for Boolean Expressions is:

E=>EorE
E=2>EandE
E = notE
E2>(E)
E->id

E->idrelopid

There are two representations viz. Numerical and Control-Flow.

Numerical Representation of Boolean

TRUE is dencted by 1 and FALSE by Q.

= Expressions are evaluated from left to right, in @ manner similar to arithmetic expressions.

Example:

The trans|ation for A or B and C is the three-address sequence:

T1:=BandC
T2 =AorT1

Also, the translation of a relational expression such as A < B is the three-address sequence:
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Therefore, a Boolean expression A < B or C can be translated as:

Production

E-=> E1lorE2

E = E1and E2

E = not E1

E—

E—id

(1) ifA <Bgoto (4)
(2) T=0

(3) goto (5)

4) T=1

(5)

(1) if A< B goto (4)
(2) T1:=0

(3) goto (3)

4) T1:=1

(8) T”2.=T1orC

Semantic Action

T = newtemp ();
E.place =T;
Gen (T = E1.place or E2.place)

T = newtemp ();
E.place = T;
Gen (T = E1.place and E2.place)

T = newtemp ();
E.place = T;
Gen (T = nol E1.place)

(E1) E.place = E1.place;
E.code = E1.code

E.place = id.place;
E.code = null

T = newtemp ();
E.place =T;
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Gen (if id1.place relop id2.place goto NEXTQUAD+3)

Gen (T =0)
Gen (goto NEXTQUAD+2)
Gen(T=1)

Quadruples are being generated and NEXTQUAD indicates the next available entry in the

quadruple array.

Control-Flow Representation of Boolean Expressions

If we evaluate Boolean expressions by program position, we may be able to avoid evaluating

the entire expressions,

In A or B, if we determine A to be true, we need not evaluate B and can declare the entire

expression to be true,

In A and B, if we determine A to be false, we need not evaluate B and can declare the entire

expression to be false.

A better code can thus be generated using the above properties.
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Example:
The statement if (A<B || C<D) x = y + z; can be translated as

if A<B goto (4)
if C<D goto (4)

Here (4) is a true exit and (6) is a false exil of the Boolean expressions.
Generating 3-address code for Numerical Representation of Boolean expressions

=  Consider a production E = E1 or E2 that represents the OR Boolean expression. If E1 is
true, we know that E is true so we make the location TRUE for E1 be the same as TRUE
for E. If E1 is false, then we must evaluate E2, so we make FALSE for E1 be the first
statement in the code for E2. The TRUE and FALSE exits can be made the same as the
TRUE and FALSE exits of E, respectively.

= Consider a production E = E1 and E2 that represents the AND Boolean expression, If
E1 is false. we know that E is false so we make the location FALSE for E1 be the same
as FALSE for E. |f E1 is true, then we must evaluate E2, so we make TRUE for E1 be the
first statement in the code for E2. The TRUE and FALSE exits can be made the same as
the TRUE and FALSE exits of E, respectively.

= Consider the production E = not E that represents the NOT Boolean expression. We
may simply interchange the TRUE and FALSE exits of E1 to get the TRUE and FALSE
exits of E.

= To generate quadruples in the manner suggested above, we use three functions-
Makelist, Merge and Backpatch that shall work on the list of quadruples as suggested by
their name.

= [fwe need to proceed to E2 after evaluating E1, we have an efficient way of doing this by
modifying our grammar as follows:

E=->EorME
E->EandME
E->notE
E>(E)
E-—>id

E - id relop id
M-=>c¢

= The translation scheme for this grammar would as follows:

Production Semantic Action

E>E1lorME2 BACKPATCH (E1.FALSE, M.QUAD);
E.TRUE = MERGE (E1.TRUE, E2, TRUE);
E.FALSE = E2.FALSE;

E->Etand M E2 BACKPATCH (E1.TRUE, M.QUAD);
E.TRUE = E2.TRUE;
E.FALSE = MERGE (E1.FALSE, E2.FALSE);

E 2 not E1 E.TRUE = E1.FALSE;
E.FALSE = E1.TRUE;
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E=>(E1) E.TRUE = E1.TRUE;
E.FALSE = E1,FALSE;

E-=>id E.TRUE = MAKELIST (NEXTQUAD);
E.FALSE = MAKELIST (NEXTQUAD + 1),
GEN (if id.PLACE goto _);
GEN (goto _);

E - id1 relop id2 E.TRUE = MAKELIST (NEXTQUAD);
E.FALSE = MAKEL|ST (NEXTQUAD + 1);
GEN ( if id1.PLACE relop id2.PLACE goto _ );
GEN (goto _);

M=« M.QUAD = NEXTQUAD:;

Example:

For the expression P<Q or R<S and T, the parsing steps and corresponding semantic
actions are shown below, We assume that NEXTQUAD has an initial value cf 100,

Step 1: P<Q gets reduced to E by E = id relop id. The grammatical form is E1 or R<S
and T.

We have the following code generated (Makelist).

100: if P<Q goto _
101: goto _

E1 is true if goto of 100 is reached and false if goto of 101 is reached.

Step 2: R<S gets reduced to E by E = id relop id. The grammatical form is E1 or E2 and
T.

We have the following code generated (Makelist).

102: if R<S goto _
103: goto __

E2 is true if goto of 102 is reached and false if goto of 103 is reached,
Step 3: T gets reduced to E by E - id. The grammatical form is E1 or E2 and E3.
We have the following code generated (Makelist).

104 if T goto _
105: goto _

E3 is true if goto of 104 is reached and false if goto of 105 is reached.
Step 4: E2 and E3 gets reduced to E by E - E and E. The grammatical form is E1 or E4.

We have no new code generated but changes are made in the already generated
code (Backpatch).
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100: if P<Q goto _
101: goto _

102: if R<S goto 104
103: goto _

104: if T goto __

105: goto __

E4 is true only if E3.TRUE (goto of 104) is reached. E4 is false if E2,FALSE (goto
of 103) or E3.FALSE (goto of 105) is reached (Merge).

Step 5: E1 or E4 gets reduced to E by E - E or E. The grammatical form is E.

We have no new code generated but changes are made in the already
generated code (Backpatch).

100: if P<Q goto _
101: goto 102

102: if R<S goto 104
103: goto _

104: if T goto _

108: goto _

E is true only if E1.TRUE (goto of 100) or E2.TRUE (goto of 104) is reached
(Merge). E is false if E4.FALSE (goto of 103 or 105) is reached.

Mixed Mode Expressions

= Boolean expressions may in practice contain arithmetic sub expressions e.g. (A+B)>C,

= We can accommodate such sub-expressions by adding the production E > E op E to our
grammar.

= We will also add a new field MODE for E. If E has been achieved after reduction using
the above (arithmetic) production, we make E.MODE = arith, otherwise make E.MODE =
bool.

= [f E,MODE = arith, we treat it arithmetically and use E,PLACE, I[f E.IMODE = bool, we
treat it as Boolean and use E.FALSE and E.TRUE.

Statements that Alter Flow of Control

* |norder to implement goto statements, we need to define a LABEL for a statement. A
production can be added for this purpose:

S > LABEL:S
LABEL = id

= The semantic action attached with this production is to record the LABEL and its value
(NEXTQUAD) in the symbol table. It will also Backpatch any previous references to this
LABEL with its current value.

= Following grammar can be used to incorporate structured Flow-of-control constructs:

S->ifEthen S
S>ifEthen Selse S
- while Edo S

(1)
(2)
3) S
4) S=> begm L end
(8) S=>
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6)L>L:S
7y L>S

Here, S denotes a statement, L a statement-list, A an assignment statementand E a
Boolean-valued expression.

Trans|ation Scheme for statements that alter flow of contro|

=  We introduce a new fiel[d NEXT far S and L like TRUE and FALSE for E. S.NEXT and
L.NEXT are respectively the pointers to a list of all conditional and unconditional jumps to
the quadruple following statement S and statement-list L in execution order,

= We also introduce the marker non-terminal M as in the case of grammar for Boolean
expressions, This is put before statement in if<then, before both statements in if-then-e|se
and the statement in while-do as we may need to proceed to them after evaluating E. In
case of while-do, we also need to put M before E as we may need to come back to it after
executing S.

= |n case of if-then-else, if we evaluate E to be true, first S will be executed. After this we
should ensure that instead of second S, the code after this if-then-else statement be
executed, We thus place another non-terminal marker N after first S i.e. before else,

=  The grammar now is as follows:

(1) S>ifEthenM S

(2) S>ifEthen M S N else M S
(3) S>whileMEdoMS

(4) S = begin L end

(5) S2>A

() L>L;MS

(7) L=>S

8) M= ¢

(9 N=>s

= The translation scheme for this grammar would as follows:

Production Semantic Action

S =2 ifEthen M 51 BACKPATCH (E.TRUE, M.QUAD)
S.NEXT = MERGE (E.FALSE, S1.NEXT)

S > if E then M1 §1 N else M2 S2 BACKPATCH (E.TRUE, M1.QUAD)
BACKPATCH (E.FALSE, M2.QUAD)
S.NEXT = MERGE (S1.NEXT, N.NEXT, S2.NEXT)

S > while M1 E do M2 S1 BACKPATCH (S1.NEXT, M1.QUAD)
BACKPATCH (E.TRUE, M2.QUAD)
S.NEXT = E.FALSE
GEN (goto M1.QUAD)

S > begin L end S.NEXT = L.NEXT
S>A S.NEXT = MAKELIST ()
L>L1;MS BACKPATCH (L1.NEXT, M.QUAD)

L.NEXT = S.NEXT

L=>S L.NEXT = S.NEXT
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M=z M.QUAD = NEXTQUAD
N-=>eg N.NEXT = MAKELIST (NEXTQUAD)
GEN (goto )

Postfix Translations

In an production A = «, the translation rule of A.CODE consists of the concatenation of
the CODE translations of the non-terminals in « in the same order as the non-terminals
appearin a.

= Productions can be factored to achieve Postfix form.
Postfix translation of while statement
The production
S <> while M1 E do M2 S1
can be factored as
S=>C8S1
C->WEdo
W > while

A suitable translation scheme would be

Production Semantic Action
W = while W.QUAD = NEXTQUAD
C>WEdo C.QUAD = W.QUAD

BACKPATCH (E.TRUE, NEXTQUAD)
C.FALSE = E.FALSE

S>C8s1 BACKPATCH (S1.NEXT, C.QUAD)
S.NEXT = C.FALSE
GEN (goto C.QUAD)

Postfix translation of for statement
Consider the following production which stands for the for-statement
S > forL =E1step E2 to E3 do S1

Here L is any expression with |-value, usually a variable, called the index. E1, E2 and E3 are
expressions called the initial value, increment and limit, respectively. Semantically, the for-
statement is equivalent to the following program.

begin
INDEX =addr (L),
*INDEX = E1;
INCR =EZ;
LIMIT = E3;
while *INDEX <= L|M|T do
begin
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code for statement S1;
*INDEX = *INDEX + INCR;
end
end

The non-terminals L, E1, E2, E3 and S appear in the same order as in the production. The
production can be factored as

(1) F = forL
(2) T> F=E1byE2to E3 do
(3) S> TSt

A suitable translation scheme would be

Production Semantic Action
F = forL F.INDEX = L.INDEX
T=>F=E1byE2toE3do GEN (*F.INDEX = E1.PLACE)

INCR = NEWTEMP ()

LIMIT = NEWTEMP ()

GEN (INCR = E2.PLACE)

GEN (LIMIT = E3.PLACE)

T.QUAD = NEXTQUAD

T.NEXT = MAKELIST (NEXTQUAD)
GEN (IF *F.INDEX > LIMIT goto )
T.INDEX = F.INDEX

T.INCR = INCR

S>TS1 BACKPATCH (S1.NEXT, NEXTQUAD)
GEN (*T.INDEX = *T.INDEX + T.INCR)
GEN (goto T.QUAD)
S.NEXT = T.NEXT
Translation with a Top-Down Parser
= Any translation done by top-down parser can be done in a bottom-up parser also.
= Butin certain situations, transl|ation with a top-down parser is advantageous as tricks

such as placing a marker non-terminal can be avoided.
= Semantic routines can be called in the middle of productions in top-down parser.

Array references in arithmetic expressions
= Elements of arrays can be accessed quickly if the elements are stored in a block of
conseculive locations,
= For a one-dimensional array A:
Base (A) is the address of the first [ocation of the array A,
width is the width of each array element,
low is the index of the first array element
location of A[i] = baseA+(i-Jow)*width

baseA+(i-low)*width

can be re-written as
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i*width + (baseA-low*width) v\

should be computed at run-time can be computed at compile-time

= So, the location of Afi] can be computed at the run-time by evaluating the formula
i*width+c where c is (baseA-low*width) which is evaluated at compile-time.

»  [ntermediate code generator should produce the code to evaluate this formula i*width+c
(one multiplication and one addition operation).

= Atwo-dimensional array can be stored in either row-major (row-by-row) or column-major
(column-by-column),

= Most of the programming languages use row-major methad.

»  The |ocation of A[i1,i2] is baseA+ ((i1dow1)*n2+i2-low2)*width

baseA is the |ocation of the array A.

low1 is the index of the first row

low2 Is the index of the first column

n2 is the number of elements in each row

width is the width of each array element

Again, this formula can be re-written as

((i1*n2)+i2)*width + (baseA-((low1™n1)+low2) width)
—

should be computed at run-time can be computed at compile-time

»  Arrays of any dimension can be dealt in a similar but general manner,

In general, the location of A[i1.i2.....ik] is

(( e ((I1"n2)+i2) . )*nk+ik)*width + (baseA-
((...((low1*n1)+low2)...) nk+lowk)*width)

So, the intermediate code generator should produce the codes to evaluate the
following formula (to find the location of Afi1,i2,....ik]) :

(( w.. ((11°N2)+i2) ...)nk+k)*width + ¢

To evaluate the (( ... ((i1*n2)+i2) ...)*nk+ik portion of this formula, we can use the
recurrence equation:

el=i1
em=em-1*nm +im

Grammar and Trans|ation Scheme

The grammar and suitable translaticn scheme for arithmetic expressions with array references is
as given below:

Production Semantic Action

S 5L=E if (LLOFFSET = NULL) then GEN (L.PLACE = E.PLACE)
else GEN(L.PLACE [ L.OFFSET ] = E.PLACE)

E—E1+E2 E.PLACE = NEWTEMP ()
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GEN (E.PLACE = E1.PLACE + E2.PLACE)
E—(E1) E.PLACE = E1.PLACE

E->L if (L.OFFSET = NULL) then E.PLACE = L.PLACE
else {E.PLACE = NEWTEMP ( ); GEN (E.PLACE = L.PLACE[L.OFFSET])}

L—id L.PLACE = id.PLACE
L.OFFSET = NULL

L »ELIST] L.PLACE = NEWTEMP()
L.OFFSET = NEWTEMP ()
CEN (L.PLACE = ELIST.ARRAY - C)
GEN (L.OFFSET = ELIST.PLACE * WIDTH (ELIST.ARRAY))

ELIST — ELIST1,E  ELIST.ARRAY = ELIST1.ARRAY
ELIST.PLACE = NEWTEMP ()
ELIST.NDIM = ELIST1.NDIM + 1
GEN (ELIST.PLACE = ELIST1.PLACE * LIMIT (ELIST.ARRAY, ELIST.NDIM))
GEN (EL|ST.PLACE = E.PLACE + ELIST.PLACE)

ELIST »id[E ELIST.ARRAY = id.PLACE
ELIST.FLACE = E.PLACE
ELIST.NDIM = 1

Here, NDIM denotes the number of dimensions, LIMIT (AARAY, i) function returns the upper [imit
along the ith dimension of ARRAY i.e. ni, WIDTH (ARRAY) returns the number of bytes for one
element of ARRAY.

Declarations

Following is the grammar and a suitable translation scheme for declaration statements:

Production Semantic Action

D - integer, id ENTER (id.PLACE, integer)
D.ATTR = integer

D = real, id ENTER (id.PLACE, real)
D.ATTR = real

D->D1,id ENTER (id.PLACE, D1.ATTR)

D.ATTR = D1.ATTR
Here, ENTER makes the entry into symbol table while ATTR is used to trace the data type.
Procedure Calls
Following is the grammar and a suitable translation scheme for Procedure Calls:

Production Semantic Action

for each item p on QUEUE do
GEN (param p)
GEN (call id.PLACE)

S = callid (ELIST)
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ELIST = ELIST, E append E.PLACE to the end of QUEUE
ELIST> E initialize QUEUE to contain only E.PLACE
QUEUE is used to store the [ist of parameters in the procedure call.

Case Statements

The case statement has following syntax:

switch E
begin
case V1: 51
case V2: 52
case Vn-1: Sn-1
default: Sn
end

The translation scheme for this shown below:

code to evaluate Einto T

goto TEST
L1: code for S1
goto NEXT
L2: code tor S2

goto NEXT

Ln-1: code for Sn-1
goto NEXT

Ln: code for Sn
goto NEXT

TEST: if T=V1 goto L1
f T=V2goto L2

if T =Vn=1 goto Ln~1
goto Ln
NEXT:

47
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3.2 TYPE CHECKING

TYPE CHECKING
A compiler must check that the source program follows both syntactic and semantic conventions

of the source language.
This checking, called static checking, detects and reports programming errors.

Some examples of static checks:

1. Type checks — A compiler should report an error if an operator 1s applied to an incompatible
operand. Example: If an array variable and function variable are added together.

2. Flow-of-control checks — Statements that cause flow of control to leave a construct must have
some place to which to transfer the flow of control. Example: An error occurs when an
enclosing statement, such as break, does not exist in switch statement.

Position of type checker

token parser syntax | gne checker | SYNtax intermediate | intermediate
stream tree tree | code generator | fepresentation

e A type checker verifies that the type of a construct matches that expected by its context.
For example : arithmetic operator mod in Pascal requires integer operands, so a type
checker verifies that the operands of mod have type integer.

e Type information gathered by a type checker may be needed when code is generated.

TYPE SYSTEMS

The design of a type checker for a language 1s based on information about the syntactic
constructs in the language, the notion of types, and the rules for assigning types to language
constructs.

For example : “ if both operands of the arithmetic operators of +,- and * are of type integer, then
the result is of type integer ”

Tvpe Expressions
e The type of a language construct will be denoted by a “type expression.”

e A type expression is either a basic type or is formed by applying an operator called a type
constructor to other type expressions.

e The sets of basic types and constructors depend on the language to be checked.
The following are the definitions of type expressions:

1. Basic types such as boolean, char, integer, real are type expressions.

A special basic type, rype error , will signal an error during type checking; void denoting
“the absence of a value” allows statements to be checked.

2. Since type expressions may be named, a type name is a type expression.

3. A type constructor applied to type expressions is a type expression.
Constructors include:
Arrays : If T is a type expression then array (1,T) is a type expression denoting the type
of an array with elements of type T and index set 1.

Products : 1f Ty and T, are type expressions, then their Cartesian product T; X Tr1s a
type expression.
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Records : The difference between a record and a product is that the fields of a record have
names. The record type constructor will be applied to a tuple formed from field names and
field types.
For example:
type row = record
address: integer;
lexeme: array/[1..15] of char
end,
var table: array/[1...101] of row;
declares the type name row representing the type expression record((address X integer) X
(lexeme X array(1..15,char))) and the variable rable to be an array of records of this type.

Pointers : If T is a type expression, then pointer(T) is a type expression denoting the type
“pointer to an object of type T”.
For example, var p: T row declares variable p to have type pointer(row).

Functions : A function in programming languages maps a domain type D to a range type R.
The type of such function is denoted by the type expression D — R

4. Type expressions may contain variables whose values are type expressions.
Tree representation for char x char — pointer (integer)
—
X / pointer
char char integer
Type systems

» A type system 1s a collection of rules for assigning type expressions to the various parts of
a program.

» A type checker implements a type system. It is specified in a syntax-directed manner.

» Different type systems may be used by different compilers or processors of the same
language.

Static and Dynamic Checking of Types

Checking done by a compiler 1s said to be static, while checking done when the target
program runs is termed dynamic.

Any check can be done dynamically, if the target code carries the type of an element
along with the value of that element.
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Sound type system

A sound type system eliminates the need for dynamic checking for type errors because it
allows us to determine statically that these errors cannot occur when the target program runs.
That is, if a sound type system assigns a type other than type error to a program part, then type
errors cannot occur when the target code for the program part is run.

Strongly typed language
A language is strongly typed if its compiler can guarantee that the programs it accepts
will execute without type errors.

Error Recovery

r Since type checking has the potential for catching errors in program, it is desirable for
type checker to recover from errors, so it can check the rest of the input.

r Error handling has to be designed into the type system right from the start; the type
checking rules must be prepared to cope with errors.

SPECIFICATION OF A SIMPLE TYPE CHECKER

Here, we specify a type checker for a simple language in which the type of each identifier
must be declared before the identifier is used. The type checker is a translation scheme that
synthesizes the type of each expression from the types of its subexpressions. The type checker
can handle arrays, pointers, statements and functions.

A Simple Language

Consider the following grammar:

P—-D:E

D—-D;D|id:T

T — char | integer | array [num Jof T| 1T T
E — literal |num |[id|[EmodE|E[E]|E 1

Translation scheme:

P—D:E

D—-D:D

D—id:T { addtype (1d.entry , T.type) }
T — char { T.type : = char }

T — integer { T.nype . = integer }
T—-1TI { T.type : = pointer(Ty.type) }

T —array [ num ] of T1 { T.type : =array ( 1... num.val, Ty.type) }

In the above language,

— There are two basic types : char and integer ;

— type erroris used to signal errors;

— the prefix operator 1 builds a pointer type. Example , T integer leads to the type expression
pointer ( integer ).
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Type checking of expressions

In the following rules, the attribute fype for E gives the type expression assigned to the
expression generated by E.

1. E — literal { E.type : =char}
E — num { E.type : = integer }
Here, constants represented by the tokens literal and num have type char and integer.

2 E—id { E.type : = lookup (id.entry) }
lookup (e ) 1s used to fetch the type saved in the symbol table entry pointed to by e.

3E-E modE; {Epe: =ifE, type=integer and
Eo. type = integer then integer
else type error }
The expression formed by applying the mod operator to two subexpressions of type integer has
type integer; otherwise, its type 1s fype error.

4 E—-E[E] { E.type - =1f Estype = integer and
E.type = array(s,t) then ¢
else type error }
In an array reference E; [ Ez], the index expression E; must have type integer. The result is
the element type 7 obtained from the type array(s,t) of E,.

5 E—E 1 { E.type : = if E;.type = pointer (1) then ¢
else type error }

The postfix operator 1 yields the object pointed to by its operand. The type of E 1 1s the type 7
of the object pointed to by the pointer E.

Type checking of statements

Statements do not have values; hence the basic type void can be assigned to them. If an error is
detected within a statement, then type error is assigned.

Translation scheme for checking the type of statements:

1. Assignment statement:
S—id:=E { S.type : = if id.type = E.type then void
else type error }

2. Conditional statement:
S—ifEthenS, {S.ype: =ifE.type = boolean then S,.type
else rype error}

3. While statement:
S — whileEdo Sy { S.type : =if E.type = boolean then S;.type
else type error }
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4. Sequence of statements:
S—=58:% { S.type . = if Sy.type = void and
Si.type = void then void
else type error }

Type checking of functions

The rule for checking the type of a function application is :
E — E; (Ey) { E.type . =if Ey.type = s and
Ei.fype =s — t then 1
else type error }
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4.1 STORAGE ORGANIZATION

SOURCE LANGUAGE ISSUES

Procedures:

A procedure definition is a declaration that associates an identifier with a statement. The

identifier is the procedure name, and the statement is the procedure body.

For example, the following is the definition of procedure named readarray -

procedure readarray,
var 1 : integer;
begin

fori:=1to9 doread(a[i])

end;

When a procedure name appears within an executable statement, the procedure is said to be
called at that point.

Activation trees:

An activation tree is used to depict the way control enters and leaves activations. In an
activation tree,

1. Each node represents an activation of a procedure.

2. The root represents the activation of the main program.

3. The node for a is the parent of the node for b if and only if control flows from activation a to
b.

4. The node for a is to the left of the node for b if and only if the lifetime of a occurs before the
lifetime of A.

Control stack:

e A control stack 1s used to keep track of live procedure activations. The idea is to push the
node for an activation onto the control stack as the activation begins and to pop the node
when the activation ends.

e The contents of the control stack are related to paths to the root of the activation tree.
When node 7 1s at the top of control stack, the stack contains the nodes along the path
from n to the root.
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The Scope of a Declaration:
A declaration is a syntactic construct that associates information with a name.
Declarations may be explicit, such as:
var 1 : integer ;
or they may be implicit. Example, any variable name starting with I is assumed to denote an
integer.

The portion of the program to which a declaration applies is called the scope of that declaration.

Binding of names:
Even 1if each name 1s declared once in a program, the same name may denote different
data objects at run time. “Data object” corresponds to a storage location that holds values.

The term environment refers to a function that maps a name to a storage location.
The term stare refers to a function that maps a storage location to the value held there.

environment stare

name storage value

When an environment associates storage location s with a name x, we say that x 1s bound
to s. This association is referred to as a binding of x.

STORAGE ORGANISATION

e The executing target program runs in its own logical address space in which each
program value has a location.

e The management and organization of this logical address space is shared between the
complier, operating system and target machine. The operating system maps the logical
address into physical addresses, which are usually spread throughout memory.

Typical subdivision of run-time memory:

Code

Static Data

Stack

|

free memory

f

Heap
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Run-time storage comes in blocks, where a byte is the smallest unit of addressable
memory. Four bytes form a machine word. Multibyte objects are stored in consecutive
bytes and given the address of first byte.

The storage layout for data objects is strongly influenced by the addressing constraints of
the target machine.

A character array of length 10 needs only enough bytes to hold 10 characters, a compiler
may allocate 12 bytes to get alignment, leaving 2 bytes unused.

This unused space due to alignment considerations is referred to as padding.

The size of some program objects may be known at run time and may be placed in an
area called static.

The dynamic areas used to maximize the utilization of space at run time are stack and
heap.

Activation records:

Dept

Procedure calls and returns are usually managed by a run time stack called the control
stack.

Each live activation has an activation record on the control stack, with the root of the
activation tree at the bottom, the latter activation has its record at the top of the stack.
The contents of the activation record vary with the language being implemented. The
diagram below shows the contents of activation record.

e Actual parameters
weed  Returned values

Control link

Saved machine states

_
aed  TEMIpOraries

Temporary values such as those arising from the evaluation of expressions.

Local data belonging to the procedure whose activation record this is.

A saved machine status, with information about the state of the machine just before the
call to procedures.

An access link may be needed to locate data needed by the called procedure but found
elsewhere.

A control link pointing to the activation record of the caller.
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Space for the return value of the called functions, if any. Again, not all called procedures
return a value, and 1if one does, we may prefer to place that value in a register for
efficiency.

The actual parameters used by the calling procedure. These are not placed in activation
record but rather in registers, when possible, for greater efficiency.

STORAGE ALLOCATION STRATEGIES

The different storage allocation strategies are :

1. Static allocation — lays out storage for all data objects at compile time

2. Stack allocation — manages the run-time storage as a stack.

3. Heap allocation — allocates and deallocates storage as needed at run time from a data area
known as heap.

STATIC ALLOCATION

In static allocation, names are bound to storage as the program is compiled, so there is no
need for a run-time support package.

Since the bindings do not change at run-time, everytime a procedure is activated, its
names are bound to the same storage locations.

Therefore values of local names are retained across activations of a procedure. That is,
when control returns to a procedure the values of the locals are the same as they were
when control left the last time.

From the type of a name, the compiler decides the amount of storage for the name and
decides where the activation records go. At compile time, we can fill in the addresses at
which the target code can find the data 1t operates on.

STACK ALLOCATION OF SPACE

All compilers for languages that use procedures, functions or methods as units of user-
defined actions manage at least part of their run-time memory as a stack.

Each time a procedure is called , space for its local variables is pushed onto a stack, and
when the procedure terminates, that space is popped off the stack.

Calling sequences:

Procedures called are implemented in what is called as calling sequence, which consists

of code that allocates an activation record on the stack and enters information into its

fields.

A return sequence 1s similar to code to restore the state of machine so the calling

procedure can continue its execution after the call.

The code in calling sequence is often divided between the calling procedure (caller) and

the procedure it calls (callee).

When designing calling sequences and the layout of activation records, the following

principles are helpful:

» Values communicated between caller and callee are generally placed at the
beginning of the callee’s activation record, so they are as close as possible to the
caller’s activation record.
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» Fixed length items are generally placed in the middle. Such items typically include
the control link, the access link, and the machine status fields.

» Items whose size may not be known early enough are placed at the end of the
activation record. The most common example is dynamically sized array, where the
value of one of the callee’s parameters determines the length of the array.

»  We must locate the top-of-stack pointer judiciously. A common approach is to have
it point to the end of fixed-length fields in the activation record. Fixed-length data
can then be accessed by fixed offsets, known to the intermediate-code generator,
relative to the top-of-stack pointer.

‘ Parameters and returned values
czflller' S control link
RENEiEn links and saved status
i R D o ——— 4
caller’s temporaries and local data
bili
: responsibility Parameters and returned values
callee’s
activation control link
record links and saved status
__________________________________ |, fop sp
callee’s _
responsiblility temporaries and local data

Division of tasks between caller and callee
e The calling sequence and its division between caller and callee are as follows.

» The caller evaluates the actual parameters.

» The caller stores a return address and the old value of 7op sp into the callee’s
activation record. The caller then increments the fop sp to the respective
positions.

» The callee saves the register values and other status information.

» The callee initializes its local data and begins execution.

e A suitable, corresponding return sequence is:

» The callee places the return value next to the parameters.

» Using the information in the machine-status field, the callee restores fop sp and
other registers, and then branches to the return address that the caller placed in
the status field.

» Although rop sp has been decremented, the caller knows where the return value
is, relative to the current value of top sp; the caller therefore may use that value.
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Variable length data on stack:

e The run-time memory management system must deal frequently with the allocation of
space for objects, the sizes of which are not known at the compile time, but which are
local to a procedure and thus may be allocated on the stack.

e The reason to prefer placing objects on the stack is that we avoid the expense of garbage
collecting their space.

e The same scheme works for objects of any type if they are local to the procedure called
and have a size that depends on the parameters of the call.

H‘

activation —
record for p

o
[~}
-
-
o |
&)
=~
=
=
=
A

T T
8i¢e.
o =2=]
=1 =
3| 188
3| isis
(@lve;
y 3

arrays of p

A

) o

-t -t

— -

=+ o

< <

) oo
A

activation record for control link y[0p Sp
procedure g calledbyp | T
arrays of q top
v ’

Access to dynamically allocated arrays

e Procedure p has three local arrays, whose sizes cannot be determined at compile time.
The storage for these arrays is not part of the activation record for p.

e Access to the data is through two pointers, fop and top-sp. Here the top marks the actual
top of stack; it points the position at which the next activation record will begin.

e The second rop-sp is used to find local, fixed-length fields of the top activation record.

e The code to reposition top and ftop-sp can be generated at compile time, in terms of sizes
that will become known at run time.
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HEAP ALLOCATION
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Stack allocation strategy cannot be used if either of the following 1s possible :

1. The values of local names must be retained when an activation ends.

2. A called activation outlives the caller.

e Heap allocation parcels out pieces of contiguous storage, as needed for activation records

or other objects.

e Pieces may be deallocated in any order, so over the time the heap will consist of alternate

areas that are free and in use.

Position in the
activation tree

Activation records in the heap

Remarks

r q(1,9)

Retained activation
record for r

e The record for an activation of procedure r is retained when the activation ends.

e Therefore, the record for the new activation q(1 , 9) cannot follow that for s physically.

e [f the retained activation record for r 1s deallocated, there will be free space in the heap
between the activation records for s and q.
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5.1 CODE GENERATION

The final phase in compiler model is the code generator. It takes as input an intermediate
representation of the source program and produces as output an equivalent target program. The
code generation techniques presented below can be used whether or not an optimizing phase occurs
before code generation.

Position of code generator

sourci> front end intermediiate ! code | intermediate code target
program code ™ optimizer 1  COCE generator [ Program
symbol
table

ISSUES IN THE DESIGN OF A CODE GENERATOR The
following issues arise during the code generation phase :

Input to code generator
Target program
Memory management
Instruction selection
Register allocation
Evaluation order

ogakrwpE

1. Input to code generator:
The input to the code generation consists of the intermediate representation of the source
program produced by front end , together with information in the symbol table to
determine run-time addresses of the data objects denoted by the names in the
intermediate representation.

Intermediate representation can be :
a. Linear representation such as postfix notation
b. Three address representation such as quadruples
c. Virtual machine representation such as stack machine code
d. Graphical representations such as syntax trees and dags.

Prior to code generation, the front end must be scanned, parsed and translated into
intermediate representation along with necessary type checking. Therefore, input to code
generation is assumed to be error-free.

2. Target program:
The output of the code generator is the target program. The output may be :

a. Absolute machine language
- It can be placed in a fixed memory location and can be executed immediately.
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b. Relocatable machine language
- It allows subprograms to be compiled separately.

c. Assembly language
- Code generation is made easier.

3. Memory management:
Names in the source program are mapped to addresses of data objects in run-time
memory by the front end and code generator.

It makes use of symbol table, that is, a name in a three-address statement refers to a
symbol-table entry for the name.

Labels in three-address statements have to be converted to addresses of
instructions. For example,
J : goto i generates jump instruction as follows :

it i <j, a backward jump instruction with target address equal to location of
code for quadruple i is generated.
if i > j, the jump is forward. We must store on a list for quadruple i the
location of the first machine instruction generated for quadruple j. When i is
processed, the machine locations for all instructions that forward jumps to i
are filled.

4. Instruction selection:
The instructions of target machine should be complete and uniform.

Instruction speeds and machine idioms are important factors when efficiency of target
program is considered.

The quality of the generated code is determined by its speed and size.

The former statement can be translated into the latter statement as shown below:

a=h+c .
distiie can be translated into

l

MOV bRy
ADD c,Ry
MOV Rpa
MOV a Rg +—— This can be eliminated
ADD eRg
MOV Rg,d

5. Register allocation
Instructions involving register operands are shorter and faster than those involving
operands in memory.

The use of registers is subdivided into two subproblems :

Register allocation — the set of variables that will reside in registers at a point in
the program is selected.
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Register assignment — the specific register that a variable will reside in is picked.

Certain machine requires even-odd register pairs for some operands and results.
For example , consider the division instruction of the form :

D xvy

where, x — dividend even register in even/odd register pair
y — divisor
even register holds the remainder
odd register holds the quotient

6. Evaluation order
The order in which the computations are performed can affect the efficiency of the
target code. Some computation orders require fewer registers to hold intermediate
results than others.

TARGET MACHINE

Familiarity with the target machine and its instruction set is a prerequisite for designing a
good code generator.

The target computer is a byte-addressable machine with 4 bytes to a
word. It has n general-purpose registers, Ro, R1, . . ., Rn-1.
It has two-address instructions of the form:
op source, destination
where, op is an op-code, and source and destination are data fields.

It has the following op-codes :

MOV (move source to destination)
ADD (add source to destination)
SUB  (subtract source from destination)

The source and destination of an instruction are specified by combining registers and
memory locations with address modes.

Address modes with their assembly-language forms

MODE FORM ADDRESS ADDED COST
absolute M M 1
register R R 0
indexed c(R) c+contents(R) 1

indirect register *R contents (R) 0
indirect indexed *c(R) contents(c+ 1
contents(R))

literal # c 1
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For example : MOV Ro, M stores contents of Register Ro into memory location M ; MOV
4(Ro), M stores the value contents(4+contents(Ro)) into M.

Instruction costs :

Instruction cost = 1+cost for source and destination address modes. This cost corresponds
to the length of the instruction.

Address modes involving registers have cost zero.

Address modes involving memory location or literal have cost one.
Instruction length should be minimized if space is important. Doing so also minimizes
the time taken to fetch and perform the instruction.
For example : MOV RO, R1 copies the contents of register RO into R1. It has cost one,
since it occupies only one word of memory.
The three-address statement a : = b + ¢ can be implemented by many different instruction
sequences :

i) MOV b, Ro
ADD c, Ro cost=6
MOV Ry, a

ii) MOV b, a
ADDc, a cost=6

iii) Assuming Ro, R1 and R2 contain the addresses of a, b, and ¢ :
MOV *R1, *Ro
ADD *R2, *Rq cost=2

In order to generate good code for target machine, we must utilize its
addressing capabilities efficiently.

RUN-TIME STORAGE MANAGEMENT

Information needed during an execution of a procedure is kept in a block of storage called an
activation record, which includes storage for names local to the procedure.
The two standard storage allocation strategies are:
1. Static allocation
2. Stack allocation
In static allocation, the position of an activation record in memory is fixed at compile
time.
In stack allocation, a new activation record is pushed onto the stack for each execution of
a procedure. The record is popped when the activation ends.
The following three-address statements are associated with the run-time allocation and
deallocation of activation records:
1. Call,
2. Return,
3. Halt, and
4. Action, a placeholder for other statements.
We assume that the run-time memory is divided into areas for:
1. Code
2. Static data
3. Stack
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Static allocation

Implementation of call statement:

The codes needed to implement static allocation are as follows:

MOV #here + 20, callee.static_area /*1t saves return address*/
GOTO callee.code_area /*1t transfers control to the target code for the called procedure */
where,

callee.static_area — Address of the activation record
callee.code_area — Address of the first instruction for called procedure
#here + 20 — Literal return address which is the address of the instruction following GOTO.

Implementation of return statement:

A return from procedure callee is implemented by :

GOTO *callee.static_area

This transfers control to the address saved at the beginning of the activation record.
Implementation of action statement:

The instruction ACTION is used to implement action statement.

Implementation of halt statement:

The statement HALT is the final instruction that returns control to the operating

system. Stack allocation

Static allocation can become stack allocation by using relative addresses for storage in
activation records. In stack allocation, the position of activation record is stored in register so words
in activation records can be accessed as offsets from the value in this register.

The codes needed to implement stack allocation are as follows:
Initialization of stack:

MOV #stackstart , SP [* initializes stack */

Code for the first procedure

HALT /[* terminate execution */
Implementation of Call statement:

ADD #caller.recordsize, SP /* increment stack pointer */
MOV #here + 16, *SP [*Save return address */

GOTO callee.code_area
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where,
caller.recordsize — size of the activation record
#here + 16 — address of the instruction following the GOTO

Implementation of Return statement:
GOTO*0(SP) [*return to the caller */

SUB #caller.recordsize, SP  /* decrement SP and restore to previous value */

BASIC BLOCKS AND FLOW GRAPHS
Basic Blocks

A basic block is a sequence of consecutive statements in which flow of control enters at
the beginning and leaves at the end without any halt or possibility of branching except at
the end.

The following sequence of three-address statements forms a basic

block:t1:=a*a

to:=a*b
t3:=2*t
fg:=11+13
ts:=b*hb
tg:=tg+15

Basic Block Construction:

Algorithm: Partition into basic blocks
Input: A sequence of three-address statements
Output: A list of basic blocks with each three-address statement in exactly one block

Method:

1. We first determine the set of leaders, the first statements of basic blocks. The rules we
use are of the following:

a. The first statement is a leader.

b. Any statement that is the target of a conditional or unconditional goto is a
leader.

c. Any statement that immediately follows a goto or conditional goto statement is
a leader.

2. For each leader, its basic block consists of the leader and all statements up to but not
including the next leader or the end of the program.
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Consider the following source code for dot product of two vectors a and b of length 20

begin

end

prod :=0;

i:=1;

do begin
prod :=prod+ a[i] * b[i];
i =i+l

end

while i <= 20

The three-address code for the above source program is given as :

(1)  prod:=0

2 i=1

(B)  t1:=4*i

(4)  t=at] I*compute a[i] */
(5)  t3:=4*i

6)  t:=bts] I*compute b[i] */
()  tsi=tots

(8)  to:=prod+s

9 prod = t6

(10) tr=i+l

1y  i=t

(12)  ifi<=20 goto (3)

Basic block 1: Statement (1) to (2)

Basic block 2: Statement (3) to (12)
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Transformations on Basic Blocks:

A number of transformations can be applied to a basic block without changing the set of
expressions computed by the block. Two important classes of transformation are :

Structure-preserving transformations
Algebraic transformations

1. Structure preserving transformations:

a) Common subexpression elimination:

a:=b+c a:=b+c
b:=a-—d b:=a-d
c:=b+c c:=b+c
d:=a-d d:=b

Since the second and fourth expressions compute the same expression, the basic block can
be transformed as above.

b) Dead-code elimination:

Suppose X is dead, that is, never subsequently used, at the point where the statement x :
=y + z appears in a basic block. Then this statement may be safely removed without
changing the value of the basic block.

¢) Renaming temporary variables:

A statementt:=b +c (tisatemporary) can be changedtou: =b + c (u is a new temporary)
and all uses of this instance of t can be changed to u without changing the value of the basic
block.

Such a block is called a normal-form block.
d) Interchange of statements:
Suppose a block has the following two adjacent statements:

tl:=b+c
t2:=x+y

We can interchange the two statements without affecting the value of the block if
and only if neither x nor y is t1 and neither b nor c is t2.

2. Algebraic transformations:

Algebraic transformations can be used to change the set of expressions computed by a

basic block into an algebraically equivalent set.

Examples:

i) x:=x+0orx:=x*1can be eliminated from a basic block without changing the set of
expressions it computes.

i) The exponential statement x : =y * * 2 can be replaced by x : =y *y.
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Flow Graphs

Flow graph is a directed graph containing the flow-of-control information for the set of
basic blocks making up a program.

The nodes of the flow graph are basic blocks. It has a distinguished initial node.
E.g.: Flow graph for the vector dot product is given as follows:

prod: =0 Bl
i:=1
—
tl:=4*j
t2:=aftl]
t3:=4*|j B2
t4:=b[t3]
th:=t2*t4
t6 : = prod + t5
prod : =16
t7:=i+1
i:=t7
if i <= 20 goto B2

B1 is the initial node. B2 immediately follows B1, so there is an edge from B1 to B2. The
target of jump from last statement of B1 is the first statement B2, so there is an edge from
B1 (last statement) to B2 (first statement).

B1 is the predecessor of B2, and B2 is a successor of B1.

Loops

A loop is a collection of nodes in a flow graph such that
1. All nodes in the collection are strongly connected.

2. The collection of nodes has a unique entry.
A loop that contains no other loops is called an inner loop.

NEXT-USE INFORMATION

If the name in a register is no longer needed, then we remove the name from the register
and the register can be used to store some other names.

Dept. of CS&A, SAS, VMRF By : A. VIJAYA KUMAR



Compiler Design

y and z.

Input: Basic block B of three-address statements

Output: At each statement i: x=y op z, we attach to i the liveliness and next-uses of x,

Method: We start at the last statement of B and scan backwards.

1. Attach to statement i the information currently found in the symbol table
regarding the next-use and liveliness of x, y and z.

2. In the symbol table, set x to “not live” and “no next use”.

3. Inthe symbol table, set y and z to “live”, and next-uses of yand zto i.

Symbol Table:
Names Liveliness Next-use
X not live no next-use
y Live i
z Live i

A SIMPLE CODE GENERATOR

A code generator generates target code for a sequence of three- address statements and

effectively uses registers to store operands of the statements.

For example: consider the three-address statement a := b+c
It can have the following sequence of codes:

ADD Rj, Ri

(or)
ADD c, Ri

(or)
MOV c, R;
ADD R;j, Ri

Register and Address Descriptors:

Cost=1 /I if Ri contains b and Rj contains ¢

Cost=2 /[ if ¢ is in a memory location

Cost=3 /I move ¢ from memory to Rj and add

A register descriptor is used to keep track of what is currently in each registers. The
register descriptors show that initially all the registers are empty.

An address descriptor stores the location where the current value of the name can be

found at run time.
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A code-generation algorithm:

The algorithm takes as input a sequence of three-address statements constituting a basic block.
For each three-address statement of the form x : =y op z, perform the following actions:

1.

Invoke a function getreg to determine the location L where the result of the computation y op
z should be stored.

. Consult the address descriptor for y to determine y’, the current location of y. Prefer the register for

y’ if the value of y is currently both in memory and a register. If the value of y is not already in L,
generate the instruction MOV y’ | L to place a copy of y in L.

. Generate the instruction OP z’ , L where z’ is a current location of z. Prefer a register to a

memory location if z is in both. Update the address descriptor of x to indicate that x is in location
L. If x isin L, update its descriptor and remove x from all other descriptors.

. If the current values of y or z have no next uses, are not live on exit from the block, and are

in registers, alter the register descriptor to indicate that, after execution of x : =y op z , those
registers will no longer contain y or z.

Generating Code for Assignment Statements:

The assignment d : = (a-b) + (a-c) + (a-c) might be translated into the following three-
address code sequence:

t:=a->b
u:=a-c¢
v:=t+u
d:=v+u

with d live at the end.

Code sequence for the example is:

Statements Code Generated Register descriptor | Address descriptor
Register empty
t:=a-b MOV a, Ro Ro contains t tin Ro
SUB b, RO
u:=a-c¢ MOV a, R1 Ro contains t tinRo
SUBc,R1 R1 contains u uinR1
v:i=t+u ADD R1, Ro Ro contains v uinR1
R1 contains u vinRo
d:=v+u ADD R1, Ro Ro contains d dinRo
MOV Ry, d d in Ro and memory
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Generating Code for Indexed Assignments
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The table shows the code sequences generated for the indexed assignment statements

a:=b[i]andali]:=Db

Statements Code Generated Cost
a:=DbJ[i] MOV b(Rj), R 2
afil:=b MOV b, a(Rj) 3

Generating Code for Pointer Assignments

The table shows the code sequences generated for the pointer assignments

a:=*pand*p:=a

Statements Code Generated Cost
a:=*p MOV *Rp, a 2
*p:=a MOV a, *Rp 2

Generating Code for Conditional Statements

Statement Code
if x<ygoto z CMP x,y
Clz /[* jJump to z if condition code
IS negative */
X:=Yy+z MOV'y, Ro
if x<0gotoz ADD z, Ro
MOV Ro,x
Cl z

THE DAG REPRESENTATION FOR BASIC BLOCKS

A DAG for a basic block is a directed acyclic graph with the following labels on nodes:

1. Leaves are labeled by unique identifiers, either variable names or constants.
2. Interior nodes are labeled by an operator symbol.

3. Nodes are also optionally given a sequence of identifiers for labels to store the

computed values.

DAGs are useful data structures for implementing transformations on basic blocks.
It gives a picture of how the value computed by a statement is used in subsequent

Statements.

It provides a good way of determining common sub - expressions.

Dept. of CS&A, SAS, VMRF

By : A. VIJAYA KUMAR



73
Compiler Design

Algorithm for construction of DAG

Input: A basic block
Output: A DAG for the basic block containing the following information:
1. A label for each node. For leaves, the label is an identifier. For interior nodes, an
operator symbol.
2. For each node a list of attached identifiers to hold the computed values.
Case (i) x:=yOPz
Case (i) x:=0OPy
Case (iii))x: =y
Method:
Step 1: If y is undefined then create node(y).
If z is undefined, create node(z) for case(i).
Step 2: For the case(i), create a node(OP) whose left child is node(y) and right child is

node(z). ( Checking for common sub expression). Let n be this node.

For case(ii), determine whether there is node(OP) with one child node(y). If not create such a
node.

For case(iii), node n will be node(y).

Step 3: Delete x from the list of identifiers for node(x). Append x to the list of attached

identifiers for the node n found in step 2 and set node(x) to n.

Example: Consider the block of three- address statements:

1. t1:=4%i

2. t2:=at1]

3. t3:=4*i

4. ta:=Dbts]

5. t5:=1t2*t4

6. tg:=prod+ts
7. prod:=t6

8. t7:=i+l

9. i=ty

10. if i<=20 goto (1)
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Stages in DAG Construction

(a) 1
Staterent (1)
4 I0
(b) t2
Statement (2)
a
tl
4 10
£ node for 4*I0 esst
(c) already, hence attach
identifier t3 to the existing

node for Statement (3)

t1,t3

4 10

o (0)e (0)
‘ Statement (4)
a o £1.43
b
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(e)
Statement (5)

()

Statement (6), attach
t5 identifier prod for

prod0 Statement (7)
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® t6, prod
Staternent (8), attach
identifier 1 for
prod0 Statement (9)
4 t1,t3 £7.i
4 10 1
(h)

Final DAG

Application of DAGsS:

1. We can automatically detect common sub expressions.
2. We can determine which identifiers have their values used in the block.
3. We can determine which statements compute values that could be used outside the block.
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GENERATING CODE FROM DAGs

The advantage of generating code for a basic block from its dag representation is that, from a dag
we can easily see how to rearrange the order of the final computation sequence than we can starting from
a linear sequence of three-address statements or quadruples.

Rearranging the order
The order in which computations are done can affect the cost of resulting object code.

For example, consider the following basic block:

t1:=a+b
to:=c+d
t3:=e—-12
f4:=t1-13

Generated code sequence for basic block:

MOV a, Ro
ADD Db, Ro
MOV ¢, R1
ADDd, R1
MOV Rq, t1
MOV e, Ro
SUBR1,Rp
MOV t1, R1
SUB Rop, R1
MOV R1, 14

Rearranged basic block:
Now t1 occurs immediately before t4.

to:=c+d
t3:=e—-12
t1:=a+bh
fg:=t1-13

Revised code sequence:

MOV ¢, Ro
ADD d, Ro
MOV a, Ro
SUBRg, R1
MOV a, Ro
ADD b, Ro
SUBR1, Ro
MOV Ro, t1

In this order, two instructions MOV Rg, t1 and MOV t1 , R1 have been saved.
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A Heuristic ordering for Dags

The heuristic ordering algorithm attempts to make the evaluation of a node immediately
follow the evaluation of its leftmost argument.

The algorithm shown below produces the ordering in reverse.
Algorithm:

1) while unlisted interior nodes remain do begin
2) select an unlisted node n, all of whose parents have been listed;

3) list n;
4) while the leftmost child m of n has no unlisted parents and is not a leaf do
begin
5) list m;
6) n:=m
end
end

Example: Consider the DAG shown below:

9 10

Initially, the only node with no unlisted parents is 1 so set n=1 at line (2) and list 1 at line (3).
Now, the left argument of 1, which is 2, has its parents listed, so we list 2 and set n=2 at line (6).

Now, at line (4) we find the leftmost child of 2, which is 6, has an unlisted parent 5. Thus we select a
new n at line (2), and node 3 is the only candidate. We list 3 and proceed down its left chain, listing 4,
5 and 6. This leaves only 8 among the interior nodes so we list that.

The resulting list is 1234568 and the order of evaluation is 8654321.
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Code sequence:

tg:=d+e
ts:=a+b
t5:=tg—cC
fg:=t5*tg
t3:=t4d-e
o:=tg+t 14
f1:=t2*t3

This will yield an optimal code for the DAG on machine whatever be the number of registers.
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5.2 CODE OPTIMIZATION
INTRODUCTION

The code produced by the straight forward compiling algorithms can often be made to run
faster or take less space, or both. This improvement is achieved by program transformations
that are traditionally called optimizations. Compilers that apply code-improving
transformations are called optimizing compilers.

Optimizations are classified into two categories. They are
Machine independent optimizations:
Machine dependant optimizations:

Machine independent optimizations:

Machine independent optimizations are program transformations that improve the target
code without taking into consideration any properties of the target machine.

Machine dependant optimizations:

Machine dependant optimizations are based on register allocation and utilization of special
machine-instruction sequences.

The criteria for code improvement transformations:

Simply stated, the best program transformations are those that yield the most benefit for the
least effort.

The transformation must preserve the meaning of programs. That is, the optimization must
not change the output produced by a program for a given input, or cause an error such as
division by zero, that was not present in the original source program. At all times we take the
“safe” approach of missing an opportunity to apply a transformation rather than risk
changing what the program does.

A transformation must, on the average, speed up programs by a measurable amount. We are also
interested in reducing the size of the compiled code although the size of the code has less importance
than it once had. Not every transformation succeeds in improving every program, occasionally an
“optimization” may slow down a program slightly.

The transformation must be worth the effort. It does not make sense for a compiler writer to
expend the intellectual effort to implement a code improving transformation and to have the
compiler expend the additional time compiling source programs if this effort is not repaid when
the target programs are executed. “Peephole” transformations of this kind are simple enough and
beneficial enough to be included in any compiler.
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Organization for an Optimizing Compiler:

code aplmnise
front cnd —— _d_—/~- —— >—=| codc gencrator

Ve S

zoatrol Bow d.l}}'S.S dzta fiow znalvsis
e, B ' & ransformer

o l‘_,__:"'

Flow analysis is a fundamental prerequisite for many important types of code
improvement.
Generally control flow analysis precedes data flow analysis.

Control flow analysis (CFA) represents flow of control usually in form of graphs, CFA
constructs such as

control flow

graph Call graph
Data flow analysis (DFA) is the process of ascerting and collecting information prior to
program execution about the possible modification, preservation, and use of certain entities
(such as values or attributes of variables) in a computer program.

PRINCIPAL SOURCES OF OPTIMISATION
A transformation of a program is called local if it can be performed by looking only at
the statements in a basic block; otherwise, it is called global.
Many transformations can be performed at both the local and global levels. Local

transformations are usually performed first.

Function-Preserving Transformations

There are a number of ways in which a compiler can improve a program without
changing the function it computes.
The transformations

Common sub expression
elimination, Copy propagation,
Dead-code elimination, and

Constant folding

are common examples of such function-preserving transformations. The other
transformations come up primarily when global optimizations are performed.
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Frequently, a program will include several calculations of the same value, such as an
offset in an array. Some of the duplicate calculations cannot be avoided by the
programmer because they lie below the level of detail accessible within the source
language.

Common Sub expressions elimination:

An occurrence of an expression E is called a common sub-expression if E was
previously computed, and the values of variables in E have not changed since the
previous computation. We can avoid recomputing the expression if we can use the
previously computed value.

For example
t1: = 4%i
t2: = a[tl]
t3: = 4%j
t4: = 4%i
15:=n

te: = b [t4] +t5

The above code can be optimized using the common sub-expression elimination as

t1: = 4%i
t2: =a[t1]
t3: = 4%]
15:=n

te: = b [t1] +t5

The common sub expression t4: =4*i is eliminated as its computation is alre ady in t.
And value of i is not been changed from definition to use.

Copy Propagation:
Assignments of the form f : = g called copy statements, or copies for short. The idea
behind the copy-propagation transformation is to use g for f, whenever possible after the
copy statement f: = g. Copy propagation means use of one variable instead of another.

This may not appear to be an improvement, but as we shall see it gives us an opportunity
to eliminate x.

For example:

The optimization using copy propagation can be done as follows:
A=Pi*r*r;
Here the variable x is eliminated

Dead-Code Eliminations:

A variable is live at a point in a program if its value can be used subsequently; otherwise, it is dead at
that point. A related idea is dead or useless code, statements that compute
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values that never get used. While the programmer is unlikely to introduce any dead code
intentionally, it may appear as the result of previous transformations. An optimization can
be done by eliminating dead code.
Example:

i=0;
if(i=1)
{
a=b+5;
}

Here, ‘if” statement is dead code because this condition will never get satisfied.
Constant folding:

We can eliminate both the test and printing from the object code. More generally,
deducing at compile time that the value of an expression is a constant and using the
constant instead is known as constant folding.

One advantage of copy propagation is that it often turns the copy statement into dead
code.
For example,
a=3.14157/2 can be replaced by
a=1.570 there by eliminating a division operation.

Loop Optimizations:

We now give a brief introduction to a very important place for optimizations, namely loops,
especially the inner loops where programs tend to spend the bulk of their time. The running time
of a program may be improved if we decrease the number of instructions in an inner loop, even if
we increase the amount of code outside that loop.

Three techniques are important for loop optimization:

code motion, which moves code outside a loop;
Induction-variable elimination, which we apply to replace variables from inner loop.
Reduction in strength, which replaces and expensive operation by a cheaper one, such as
a multiplication by an addition.

Code Motion:
An important modification that decreases the amount of code in a loop is code motion. This
transformation takes an expression that yields the same result independent of the number of
times a loop is executed ( a loop-invariant computation) and places the expression before the
loop. Note that the notion “before the loop” assumes the existence of an entry for the loop.

For example, evaluation of limit-2 is a loop-invariant computation in the following while-
statement:

while (i <= limit-2) /* statement does not change limit*/

Code motion will result in the equivalent of
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t= limit-2;
while (i<=t) /* statement does not change limit or t */

Induction Variables :

Loops are usually processed inside out. For example consider the loop around B3.
Note that the values of j and t4 remain in lock-step; every time the value of j decreases by

1, that of t4 decreases by 4 because 4*j is assigned to t4. Such identifiers are called
induction variables.

When there are two or more induction variables in a loop, it may be possible to get rid of
all but one, by the process of induction-variable elimination. For the inner loop around
B3 in Fig. we cannot get rid of either j or t4 completely; t4 is used in B3 and j in B4.
However, we can illustrate reduction in strength and illustrate a part of the process of

induction-variable elimination. Eventually j will be eliminated when the outer loop of
B2 - B5 is considered.

Example:

As the relationship t4:=4*j surely holds after such an assignment to t4 in Fig. and t4 is not
changed elsewhere in the inner loop around B3, it follows that just after the statement j:=j-1 the

relationship t4:= 4*j-4 must hold. We may therefore replace the assignment t 4:= 4*j by t4:= t4-4.
The only problem is that t 4 does not have a value when we enter block B3 for the first time.
Since we must maintain the relationship t4=4*j on entry to the block B3, we place an
initializations of t4 at the end of the block where j itself is

= el d = i B1
[=h [=h
t:= 4*n t:=4*n
= gt vz gltl]
ek |
g \ 1 : B2 - 'i 7 B2
N
=} =l
M= B3 1= 44 B
t5:= a[td] 15:= a[td]
if t5v goto B3 | iF6> v goto B3
iy goto B6 B4 Ifiv=| goto B B4
B B6
BE
before after

initialized, shown by the dashed addition to block B1 in second Fig.
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The replacement of a multiplication by a subtraction will speed up the object code
if multiplication takes more time than addition or subtraction, as is the case on
many machines.

Reduction In Strength:

Reduction in strength replaces expensive operations by equivalent cheaper ones on the target
machine. Certain machine instructions are considerably cheaper than others and can often be
used as special cases of more expensive operators.

For example, x2 is invariably cheaper to implement as x*x than as a call to an
exponentiation routine. Fixed-point multiplication or division by a power of two is
cheaper to implement as a shift. Floating-point division by a constant can be
implemented as multiplication by a constant, which may be cheaper.

OPTIMIZATION OF BASIC BLOCKS
There are two types of basic block optimizations. They are :

Structure-Preserving Transformations
Algebraic Transformations

Structure-Preserving Transformations:
The primary Structure-Preserving Transformation on basic blocks are:
Common sub-expression elimination
Dead code elimination
Renaming of temporary variables
Interchange of two independent adjacent statements.
Common sub-expression elimination:
Common sub expressions need not be computed over and over again. Instead they can be computed

once and kept in store from where it’s referenced when encountered again — of course providing
the variable values in the expression still remain constant.

Example:
a: =b+c
b: =a-d
c: =b+c
d: =a-d

The 2" and 4™ statements compute the same expression: b+c and a-d

Basic block can be transformed to

1
+
Q5

oo
o
O 9 9 T
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Dead code elimination:

It’s possible that a large amount of dead (useless) code may exist in the program. This might be
especially caused when introducing variables and procedures as part of construction or error-correction of
a program — once declared and defined, one forgets to remove them in case they serve no purpose.
Eliminating these will definitely optimize the code.

Renaming of temporary variables:
A statement t:=b+c where t is a temporary name can be changed to u:=b+c where u is

another temporary name, and change all uses of t to u.
In this we can transform a basic block to its equivalent block called normal-form block.

Interchange of two independent adjacent statements:
Two statements
t1:=b+c
to:=x+y

can be interchanged or reordered in its computation in the basic block when value of t 1
does not affect the value of t.

Algebraic Transformations:

Algebraic identities represent another important class of optimizations on basic blocks.
This includes simplifying expressions or replacing expensive operation by cheaper ones
i.e. reduction in strength.

Another class of related optimizations is constant folding. Here we evaluate constant
expressions at compile time and replace the constant expressions by their values. Thus
the expression 2*3.14 would be replaced by 6.28.

The relational operators <=, >=, <, >, + and = sometimes generate unexpected common
sub expressions.

Associative laws may also be applied to expose common sub expressions. For example,
if the source code has the assignments

a:=b+c
e :=c+d+b

the following intermediate code may be generated:
a :=b+c
t :=c+d
e =t+b
Example:

X:=x+0 can be removed

X:=y**2 can be replaced by a cheaper statement x:=y*y
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The compiler writer should examine the language carefully to determine what
rearrangements of computations are permitted, since computer arithmetic does not always
obey the algebraic identities of mathematics. Thus, a compiler may evaluate x*y-x*z as
x*(y-z) but it may not evaluate a+(b-c) as (a+b)-c.

LOOPS IN FLOW GRAPH

A graph representation of three-address statements, called a flow graph, is useful for
understanding code-generation algorithms, even if the graph is not explicitly constructed by a
code-generation algorithm. Nodes in the flow graph represent computations, and the edges
represent the flow of control.

Dominators:

In a flow graph, a node d dominates node n, if every path from initial node of the flow
graph to n goes through d. This will be denoted by d dom n. Every initial node dominates all the
remaining nodes in the flow graph and the entry of a loop dominates all nodes in the loop. Similarly
every node dominates itself.

Example:

*In the flow graph below,

*Initial node,nodel dominates every node.

*node 2 dominates itself

*node 3 dominates all but 1 and 2.

*node 4 dominates all but 1,2 and 3.

*node 5 and 6 dominates only themselves,since flow of control can skip around either by
goin through the other.

*node 7 dominates 7,8 ,9 and 10.

*node 8 dominates 8,9 and 10.

*node 9 and 10 dominates only themselves.
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The way of presenting dominator information is in a tree, called the dominator tree in
which the initial node is the root.

The parent of each other node is its immediate dominator. Each
node d dominates only its descendents in the tree.

The existence of dominator tree follows from a property of dominators; each node has a
unique immediate dominator in that is the last dominator of n on any path from the initial

node to n.

In terms of the dom relation, the immediate dominator m has the property is d=!n and d
dom n, then d dom m.

D(1)={1}
D(2)={1,2}
D(3)={1,3}
D(4)={1,3,4}
D(5)={1,3,4,5}
D(6)={1,3,4,6}
D(7)={1,3.4,7}
D(8)={1,3,4,7,8}
D(9)={1,3,4,7,8,9}

D(10)={1,3,4,7,8,10}
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Natural Loop:

One application of dominator information is in determining the loops of a flow graph
suitable for improvement.

The properties of loops are

A loop must have a single entry point, called the header. This entry point-dominates all
nodes in the loop, or it would not be the sole entry to the loop.

There must be at least one way to iterate the loop(i.e.)at least one path back to the header.

One way to find all the loops in a flow graph is to search for edges in the flow graph whose

heads dominate their tails. If a—b is an edge, b is the head and a is the tail. These types of
edges are called as back edges.

Example:

In the above graph,
7—4 ADOM7
10 -7 7DOM 10
4 -3
8§—3
91

The above edges will form loop in flow graph.

Given a back edge n — d, we define the natural loop of the edge to be d plus th e set of nodes
that can reach n without going through d. Node d is the header of the loop.

Algorithm: Constructing the natural loop of a back edge.
Input: A flow graph G and a back edge n—d.
Output: The set loop consisting of all nodes in the natural loop n—d.

Method: Beginning with node n, we consider each node m*d that we know is in loop, to make sure
that m’s predecessors are also placed in loop. Each node in loop, except for d, is placed once on
stack, so its predecessors will be examined. Note that because d is put in the loop initially, we
never examine its predecessors, and thus find only those nodes that reach n without going through
d.

Procedure insert(m);

if mis not in loop then begin
loop :=loop U {m},;
push m onto stack

end;

stack : = empty;
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loop : = {d};

insert(n);

while stack is not empty do begin

end

pop m, the first element of stack, off stack;
for each predecessor p of m do insert(p)

Inner loop:

If we use the natural loops as “the loops”, then we have the useful property that unless two
loops have the same header, they are either disjointed or one is entirely contained in the
other. Thus, neglecting loops with the same header for the moment, we have a natural notion
of inner loop: one that contains no other loop.

When two natural loops have the same header, but neither is nested within the other, they
are combined and treated as a single loop.

Pre-Headers:

Several transformations require us to move statements “before the header”. Therefore begin
treatment of a loop L by creating a new block, called the preheater.

The pre-header has only the header as successor, and all edges which formerly entered
the header of L from outside L instead enter the pre-header.

Edges from inside loop L to the header are not changed.

Initially the pre-header is empty, but transformations on L may place statements in it.

\ / \ /

header pre-header
loop L l
hea der
loop L
(a) Before (b) After

Reducible flow graphs:

Reducible flow graphs are special flow graphs, for which several code optimization
transformations are especially easy to perform, loops are unambiguously defined,
dominators can be easily calculated, data flow analysis problems can also be solved
efficiently.

Exclusive use of structured flow-of-control statements such as if-then-else, while-do,
continue, and break statements produces programs whose flow graphs are always
reducible.
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The most important properties of reducible flow graphs are that there are no jumps into
the middle of loops from outside; the only entry to a loop is through its header.

Definition:

A flow graph G is reducible if and only if we can partition the edges into two disjoint
groups, forward edges and back edges, with the following properties.

The forward edges from an acyclic graph in which every node can be reached from
initial node of G.

The back edges consist only of edges where heads dominate theirs
tails. Example: The above flow graph is reducible.

If we know the relation DOM for a flow graph, we can find and remove all the back
edges.

The remaining edges are forward edges.
If the forward edges form an acyclic graph, then we can say the flow graph reducible.

In the above example remove the five back edges 4—3, 7—4, 8—3, 9—1 and 10—7
whose heads dominate their tails, the remaining graph is acyclic.

The key property of reducible flow graphs for loop analysis is that in such flow graphs every
set of nodes that we would informally regard as a loop must contain a back edge.
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VINAYAKA MISSIONS RESEARCH FOUNDATION, SALEM.
SCHOOL OF ARTS & SCIENCE - AVIT CAMPUS, CHENNALIL

DEPARTMENT OF COMPUTER SCIENCE
QUESTION BANK

BOARD : COMPUTER SCIENCE
PROGRAM : M.Sc COMPUTER SCIENCE - BATCH (2018-2020)
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COURSE TITLE : COMPILER DESIGN
UNIT -1

PART - A (6 MARKS)

1)
2

N O O &~ QW

)
)
)
)
)
)
)

8
9)

What is a compiler? Give a short note on phases of compiler.
Explain the variety of Intermediate forms.

Give the classification of a compiler

Describe the properties of parse trees.

Give short note on deterministic and non-deterministic automata.
Differentiate between tokens and patterns.

Describe about the structure of a compiler.

Give short note on lexical analyser

Differentiate between compiler and interpreter.

10) Give a short note on regular expression.

PART - B (10 MARKS)

)

Discuss briefly about structure of a compiler.

Discuss about the implementation of lexical analyser.
Explain about regular expression and its property.
Construct and optimize the REGEX of (a/b)* abb
Explain about DFA and NFA

Prepare the NFA state transition table in the given automata diagrammatic
representation.

UNIT - II

PART - A (6 MARKS)

D)

Write about syntax analyser and its significance.
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2) Write down the procedure of bottom up parsing and explain it.

Define a context free grammar.

Describe the Top down parsing techniques with give an example.

What is parsing? Explain its concepts.

What do you mean by handle pruning?

)
)
)
6) List the merits and demerits of operator precedence parsing
)
) Write the algorithm for FIRST and FOLLOW.

)

Write a short note on YACC and Explain it briefly.

10) Mention the types of LR parser and explain it.

PART - B (10 MARKS)

1) List the properties of LR parser and explain the types of LR parser

2

4

5) Describe the variog

4N

E— (E)
E—
EtE,
E_— E-E
E_, E*
E_,

E E/E
E id

6) Why LR parsing is

PART - A (6 MARKS)

) Explain about syntax analyser and its techniques.
3) Explain runtime environment with suitable example.
)

Optimize the following grammar with bottom up parsing techniques.

ation strategies in detail.

ctive?

UNIT - III

1) What is intermediate code generation and explain its benefits.

2

N U1 B~ W

7
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Describe about syntax tree.

What are the different types of three address statements?

Give the syntax - directed definition for if else statement.

)
)
) Write about parse tree with give an example.
)
) Write the code generation algorithm.

)

What is meant by syntax directed information? Explain it.
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8)
9)

What are the three functions used for back patching?

Define Quadruple and explain its merits.

10) What is type checking? explain it.

PART - B (10 MARKS)

1)

Explain type checking of expressions and statements.

How could you generate the intermediate code for the flow of control
statements?

Explain syntax tree functions with give an example.
Give the semantic rules for declarations in a procedure.
Explain in detail about the recursive evaluators.

Explain about the parse tree with give an example.

UNIT - IV

PART - A (6 MARKS)

D)
2

N U1 B~ W

)
)
)
)
)
)

7
8)

Describe the state allocation of space.

Explain the variable length data on stack

List the various storage allocation and define them.
What is dynamic storage allocation.

Define back patching with different functions.
Define Boolean expression and short circuit code
Define data structures used for symbol table.

What are the intermediate languages?

PART - B (10 MARKS)

What are the different parameter passing methods in a procedure call?
Explain in details about the static allocation.

Explain the common sub expression eliminations.

Describe the procedure calling methods with give an example.

Clearly mention the heap allocation methods.

Explain about the generating code for assignment statements.

UNIT -V

PART - A (6 MARKS)

)
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Write about the generating code for indexed assignments.
What is basic block?

What are the methods available in loop optimization?
Write down the characteristics of peephole optimization.
Describe the runtime storage management.

What is a DAG?

List out the optimization techniques.

Distinguish between basic blocks and flow graphs.

PART - B (10 MARKS)
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Describe the peephole optimization techniques with give an example.
Explain DAG representation of the basic block with an example.
Discuss run time storage management of code generator.

Explain the optimization techniques of basic blocks.

Write down the details description of Basic blocks and flow graph functions
with an example.
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