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SYLLABUS 

 

DSC V: COMPILER DESIGN 
 

Objectives: At the end of the course, the student should be able to do:  
 

 Parsing techniques and different levels of translation.  

 Apply the various optimization techniques.  

 Use the different compiler construction tools.  

 

UNIT I 

Introduction on the phase of the complier – Lexical Analysis, Regular Expression, Non 

deterministic Automata, Deterministic Automata equivalent to NFA’s – Minimizing the states of 

DFA, Implementation of Lexical Analyzer. 
 

UNIT II 

Syntax Analysis – Top down Parsing Concepts, Recursive Descent Parsing, Predictive 

Parsers, Non recursive Pedictive Parsing – Bottom Up Parsing, Handle pruning, Shift reduce 

parsing – Operator Predence Parsing – Error recovery in Parsing, LR Parsers, Parser Generators – 

YACC. 
 

UNIT III 

Intermediate Code Generation: Syntax directed Definitions, Construction of Syntax trees 

– Top down Translation, Bottom up Evaluation of inherited Attributed, Recursive Evaluators, 

Assigning Space at Complier Construction time – Type checking – Overloading of functions and 

operators Polymorphic function. 
 

UNIT IV 

Storage Organization : Storage Organization, Storage Allocation Strategies, Parameter 

Passing, Symbol tables, Dynamic Storage Allocation, Intermediate Languages – Representation 

of Declarations, Assignment Statement, Boolean Expression, Back patching, Procedure calls. 
 

UNIT V 

Code Generation and Optimization: Design of the code generators, Runtime storage 

Management, Basic blocks and flow graphs, Register Allocation and Assignment, DAG 

representation of Basic blocks, Peephole optimization, Code optimization – The principle sources 

of optimization, Optimization of basic blocks, Global data flow Analysis, Loop optimizations. 
 
 

TEXT BOOKS: 

 

 Alfred Aho, Ravi Sethi, JeffyD.Ullman, “Compilers – Principles, Techniques and Tools”, 

1986, Addison Wesley. 

 Dick Grune, Henri E. Bal, CerielJ.H.Jacobs, Koen G. Langondeon, “Modern Compiler 

Design”, Wiley, Singapore, 2003 
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1.1 INTRODUCTION OF LANGUAGE PROCESSING SYSTEM  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

                                    Fig 1.1: Language Processing System 

Preprocessor 

 

A preprocessor produce input to compilers. They may perform the following functions. 

 

1. Macro processing: A preprocessor may allow a user to define macros that are short hands 

for longer constructs.  
2. File inclusion: A preprocessor may include header files into the program text.  
3. Rational preprocessor: these preprocessors augment older languages with more modern flow-

of-control and data structuring facilities. 

4. Language Extensions: These preprocessor attempts to add capabilities to the language by 

certain amounts to build-in macro 
 

COMPILER 

 

Compiler is a translator program that translates a program written in (HLL) the source program and 

translate it into an equivalent program in (MLL) the target program. As an important part of a compiler 

is error showing to the programmer. 
 
 
 
 
 
 

 

Fig 1.2: Structure of Compiler 
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Executing a program written n HLL programming language is basically of two parts. the source 

program must first be compiled translated into a object program. Then the results object program 

is loaded into a memory executed. 
 
 
 
 
 
 
 
 

Fig 1.3: Execution process of source program in Compiler 

 

ASSEMBLER  
Programmers found it difficult to write or read programs in machine language. They begin to use a 

mnemonic (symbols) for each machine instruction, which they would subsequently translate into 

machine language. Such a mnemonic machine language is now called an assembly language. Programs 

known as assembler were written to automate the translation of assembly language in to machine 

language. The input to an assembler program is called source program, the output is a machine 

language translation (object program). 
 

INTERPRETER  
An interpreter is a program that appears to execute a source program as if it were machine language.  
 
 
 
 
 

 

Fig1.4: Execution in Interpreter 

 

Languages such as BASIC, SNOBOL, LISP can be translated using interpreters. JAVA also uses 

interpreter. The process of interpretation can be carried out in following phases. 

1. Lexical analysis 

2. Synatx analysis 

3. Semantic analysis 

4. Direct Execution 

 

Advantages:  
Modification of user program can be easily made and implemented as execution proceeds.  
Type of object that denotes a various may change dynamically.  
Debugging a program and finding errors is simplified task for a program used for interpretation.  
The interpreter for the language makes it machine independent. 

Disadvantages: 

The execution of the program is slower.  
Memory consumption is more. 

 

LOADER AND LINK-EDITOR: 

 

Once the assembler procedures an object program, that program must be placed into memory and 

executed. The assembler could place the object program directly in memory and transfer control to it, 
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thereby causing the machine language program to be execute. This would waste core by leaving the 

assembler in memory while the user’s program was being executed. Also the programmer would have 

to retranslate his program with each execution, thus wasting translation time. To over come this 

problems of wasted translation time and memory. System programmers developed another component 

called loader 

“A loader is a program that places programs into memory and prepares them for execution.” It would 

be more efficient if subroutines could be translated into object form the loader could”relocate” directly 

behind the user’s program. The task of adjusting programs o they may be placed in arbitrary core 

locations is called relocation. Relocation loaders perform four functions. 
 

1.2 TRANSLATOR  
A translator is a program that takes as input a program written in one language and produces as output 

a program in another language. Beside program translation, the translator performs another very 

important role, the error-detection. Any violation of d HLL specification would be detected and 

reported to the programmers. Important role of translator are: 

1 Translating the HLL program input into an equivalent ml program. 

2 Providing diagnostic messages wherever the programmer violates specification of the HLL. 

 

1.3 LIST OF COMPILERS  
1. Ada compilers 

2 .ALGOL compilers 

3 .BASIC compilers 

4 .C# compilers 

5 .C compilers 

6 .C++ compilers 

7 .COBOL compilers 

8 .Common Lisp compilers 

9. ECMAScript interpreters 

10. Fortran compilers 

11 .Java compilers 

12. Pascal compilers 

13. PL/I compilers 

14. Python compilers 

15. Smalltalk compilers 

 

1.4 STRUCTURE OF THE COMPILER DESIGN 

 

Phases of a compiler: A compiler operates in phases. A phase is a logically interrelated operation  
that takes source program in one representation and produces output in another representation. The 

phases of a compiler are shown in below 

There are two phases of compilation. 

a. Analysis (Machine Independent/Language Dependent)  
b. Synthesis(Machine Dependent/Language independent) 

 

Compilation process is partitioned into no-of-sub processes called ‘phases’.  
Lexical Analysis:-  
LA or Scanners reads the source program one character at a time, carving the source program into 

a sequence of automic units called tokens. 
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Fig 1.5: Phases of Compiler 

 

Syntax Analysis:-  
The second stage of translation is called Syntax analysis or parsing. In this phase expressions, 

statements, declarations etc… are identified by using the results of lexical analysis. Syntax analysis is 

aided by using techniques based on formal grammar of the programming language. 
 

Intermediate Code Generations:-  
An intermediate representation of the final machine language code is produced. This phase bridges the 

analysis and synthesis phases of translation. 
 

Code Optimization :-  
This is optional phase described to improve the intermediate code so that the output runs faster and 

takes less space. 
 

Code Generation:- 

The last phase of translation is code generation. A number of optimizations to reduce the length of 

machine language program are carried out during this phase. The output of the code generator is the 

machine language program of the specified computer. 
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Table Management (or) Book-keeping:-

program and records essential information 

information called a ‘Symbol Table’. 

 
This is the portion to keep the names used by the about 

each. The data structure used to record this 

 
 
Error Handlers:-  
It is invoked when a flaw error in the source program is detected. The output of LA is a stream of 

tokens, which is passed to the next phase, the syntax analyzer or parser. The SA groups the tokens 

together into syntactic structure called as expression. Expression may further be combined to form 

statements. The syntactic structure can be regarded as a tree whose leaves are the token called as parse 

trees. 
 

The parser has two functions. It checks if the tokens from lexical analyzer, occur in pattern that are 

permitted by the specification for the source language. It also imposes on tokens a tree-like structure 

that is used by the sub-sequent phases of the compiler. 
 

Example, if a program contains the expression A+/B after lexical analysis this expression might appear 

to the syntax analyzer as the token sequence id+/id. On seeing the /, the syntax analyzer should detect 

an error situation, because the presence of these two adjacent binary operators violates the formulations 

rule of an expression. Syntax analysis is to make explicit the hierarchical structure of the incoming 

token stream by identifying which parts of the token stream should be grouped. 
 

Example, (A/B*C has two possible interpretations.)  
1, divide A by B and then multiply by C or 

2, multiply B by C and then use the result to divide A.  
each of these two interpretations can be represented in terms of a parse tree. 

 

Intermediate Code Generation:-  
The intermediate code generation uses the structure produced by the syntax analyzer to create a stream 

of simple instructions. Many styles of intermediate code are possible. One common style uses 

instruction with one operator and a small number of operands. The output of the syntax analyzer is 

some representation of a parse tree. the intermediate code generation phase transforms this parse tree 

into an intermediate language representation of the source program. 
 

Code Optimization  
This is optional phase described to improve the intermediate code so that the output runs faster and 
takes less space. Its output is another intermediate code program that does the some job as the original, 
but in a way that saves time and / or spaces.  

a. Local Optimization:-  
There are local transformations that can be applied to a program to make an improvement. 

For example, 

If A > B goto L2 
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Goto L3  
L2 : 

 

This can be replaced by a single statement 

If A < B goto L3 

 

Another important local optimization is the elimination of common sub-expressions 

A:=B+C+D 

E:=B+C+F  
Might be evaluated as 

 

T1:=B+C 

A:=T1+D 

E:=T1+F  
Take this advantage of the common sub-expressions B + C. 

 

b. Loop Optimization:- 

Another important source of optimization concerns about increasing the speed of loops. A 

typical loop improvement is to move a computation that produces the same result each time 

around the loop to a point, in the program just before the loop is entered. 
 

Code generator :-  
Code Generator produces the object code by deciding on the memory locations for data, selecting code 

to access each datum and selecting the registers in which each computation is to be done. Many 

computers have only a few high speed registers in which computations can be performed quickly. A 

good code generator would attempt to utilize registers as efficiently as possible. 
 

Table Management OR Book-keeping :-  
A compiler needs to collect information about all the data objects that appear in the source program. 

The information about data objects is collected by the early phases of the compiler- lexical and 

syntactic analyzers. The data structure used to record this information is called as Symbol Table. 
 

Error Handing :-  
One of the most important functions of a compiler is the detection and reporting of errors in the source 

program. The error message should allow the programmer to determine exactly where the errors have 

occurred. Errors may occur in all or the phases of a compiler. 
 

Whenever a phase of the compiler discovers an error, it must report the error to the error handler, which 

issues an appropriate diagnostic msg. Both of the table-management and error-Handling routines 

interact with all phases of the compiler. 
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Example:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 1.6: Compilation Process of a source code through phases 
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1.5 OVER VIEW OF LEXICAL ANALYSIS  
• To identify the tokens we need some method of describing the possible tokens that can 

appear in the input stream. For this purpose we introduce regular expression, a notation 

that can be used to describe essentially all the tokens of programming language.  
• Secondly , having decided what the tokens are, we need some mechanism to recognize 

these in the input stream. This is done by the token recognizers, which are designed using 

transition diagrams and finite automata. 
 

1.6 ROLE OF LEXICAL ANALYZER  
The LA is the first phase of a compiler. It main task is to read the input character and produce 

as output a sequence of tokens that the parser uses for syntax analysis. 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1.7: Role of Lexical analyzer 
 

Upon receiving a ‘get next token’ command form the parser, the lexical analyzer reads the 

input character until it can identify the next token. The LA return to the parser representation for 

the token it has found. The representation will be an integer code, if the token is a simple construct 

such as parenthesis, comma or colon.  
LA may also perform certain secondary tasks as the user interface. One such task is striping 

out from the source program the commands and white spaces in the form of blank, tab and new 

line characters. Another is correlating error message from the compiler with the source program. 
 

1.7 TOKEN, LEXEME, PATTERN: 

Token: Token is a sequence of characters that can be treated as a single logical 

entity. Typical tokens are, 
1) Identifiers 2) keywords 3) operators 4) special symbols 5)constants 

Pattern: A set of strings in the input for which the same token is produced as output. This 

set of strings is described by a rule called a pattern associated with the token. 

Lexeme: A lexeme is a sequence of characters in the source program that is matched by 

the pattern for a token. 
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                         Fig. 1.8: Example of Token, Lexeme and Pattern 

1.8 LEXICAL ERRORS: 
 
Lexical errors are the errors thrown by your lexer when unable to continue. Which means that 

there's no way to recognise a lexeme as a valid token for you lexer. Syntax errors, on the other side, 

will be thrown by your scanner when a given set of already recognised valid tokens don't match 

any of the right sides of your grammar rules. simple panic-mode error handling system requires 

that we return to a high-level parsing function when a parsing or lexical error is detected. 
 

Error-recovery actions are: 

i. Delete one character from the remaining input.  
ii. Insert a missing character in to the remaining input.  
iii. Replace a character by another character.  
iv. Transpose two adjacent characters. 

 

1.9 REGULAR EXPRESSIONS  
Regular expression is a formula that describes a possible set of string. Component of regular 

expression.. 
X 

. 

[x y z] 

R? 

R* 

R+ 

R1R2 

R1|R1 

 
the character x 

any character, usually accept a new line  
any of the characters x, y, z, ….. 

a R or nothing (=optionally as R) 

zero or more occurrences….. 

one or more occurrences …… 

an R1 followed by an R2 

either an R1 or an R2.  
A token is either a single string or one of a collection of strings of a certain type. If we view the 
set of strings in each token class as an language, we can use the regular-expression notation to 
describe tokens. 
Consider an identifier, which is defined to be a letter followed by zero or more letters or digits. 

In regular expression notation we would write. 

Identifier = letter (letter | digit)* 
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Here are the rules that define the regular expression over alphabet .  
• is a regular expression denoting { € }, that is, the language containing only the empty 

string.  
• For each ‘a’ in Σ, is a regular expression denoting { a }, the language with only one string 

consisting of the single symbol ‘a’ .  
• If R and S are regular expressions, then 

 

(R) | (S) means L(r) U L(s) 

R.S means L(r).L(s)  
R* denotes L(r*) 

 

1.10. REGULAR DEFINITIONS 

For notational convenience, we may wish to give names to regular expressions and to define 

regular expressions using these names as if they were symbols. 

Identifiers are the set or string of letters and digits beginning with a letter. The following regular 

definition provides a precise specification for this class of string. 

Example-1,  
Ab*|cd? Is equivalent to (a(b*)) | (c(d?)) 

Pascal identifier 

Letter - A | B | ……| Z | a | b |……| z| 

Digits - 0 | 1 | 2 | …. | 9  
Id - letter (letter / digit)* 

 

Recognition of tokens:  
We learn how to express pattern using regular expressions. Now, we must study how to take the 

patterns for all the needed tokens and build a piece of code that examins the input string and finds 

a prefix that is a lexeme matching one of the patterns. 

Stmt →if expr then stmt 

| If expr then else stmt 

| є 

Expr →term relop term 

| term 

Term →id 

|number 

For relop ,we use the comparison operations of languages like Pascal or SQL where = is “equals” 

and < > is “not equals” because it presents an interesting structure of lexemes. 

The terminal of grammar, which are if, then , else, relop ,id and numbers are the names of tokens 

as far as the lexical analyzer is concerned, the patterns for the tokens are described using regular 

definitions. 

digit → [0,9] 

digits →digit+ 

number →digit(.digit)?(e.[+-]?digits)? 

letter → [A-Z,a-z] 

id →letter(letter/digit)* 

if → if 

then →then 
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else →else 

relop →< | > |<= | >= | = = | < > 

 

In addition, we assign the lexical analyzer the job stripping out white space, by recognizing the 

“token” we defined by: 

WS → (blank/tab/newline)+  
Here, blank, tab and newline are abstract symbols that we use to express the ASCII characters of 

the same names. Token ws is different from the other tokens in that ,when we recognize it, we do 

not return it to parser ,but rather restart the lexical analysis from the character that follows the 

white space . It is the following token that gets returned to the parser. 
 

 Lexeme Token Name Attribute Value 

 Any WS - - 

 if if - 

 then then - 

 else else - 

 Any id Id Pointer to table entry 

A mber number Pointer to table ent 

 < relop LT 

 <= relop LE 

 == relop EQ 

 <> relop NE 

 
 

 

1.11. TRANSITION DIAGRAM:  
Transition Diagram has a collection of nodes or circles, called states. Each state represents a 

condition that could occur during the process of scanning the input looking for a lexeme that 

matches one of several patterns . 

Edges are directed from one state of the transition diagram to another. each edge is labeled by a 

symbol or set of symbols. 

If we are in one state s, and the next input symbol is a, we look for an edge out of state s labeled 

by a. if we find such an edge ,we advance the forward pointer and enter the state of the transition 

diagram to which that edge leads.  
Some important conventions about transition diagrams are  

1. Certain states are said to be accepting or final .These states indicates that a lexeme has been 

found, although the actual lexeme may not consist of all positions b/w the lexeme Begin 

and forward pointers we always indicate an accepting state by a double circle.  
2. In addition, if it is necessary to return the forward pointer one position, then we shall 

additionally place a * near that accepting state.  
3. One state is designed the state ,or initial state ., it is indicated by an edge labeled “start” 

entering from nowhere .the transition diagram always begins in the state before any input 

symbols have been used. 
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Fig. 1.9: Transition diagram of Relational operators 

 

As an intermediate step in the construction of a LA, we first produce a stylized flowchart, 

called a transition diagram. Position in a transition diagram, are drawn as circles and are called 

as states. 
 
 
 
 
 
 
 
 
 
 

Fig. 1.10: Transition diagram of Identifier 

 

The above TD for an identifier, defined to be a letter followed by any no of letters or digits.A 

sequence of transition diagram can be converted into program to look for the tokens specified 

by the diagrams. Each state gets a segment of code. 
 

1.12. FINITE AUTOMATON  
• A recognizer for a language is a program that takes a string x, and answers “yes” if x is a 

sentence of that language, and “no” otherwise.  
• We call the recognizer of the tokens as a finite automaton.  
• A finite automaton can be: deterministic (DFA) or non-deterministic (NFA)  
• This means that we may use a deterministic or non-deterministic automaton as a lexical 

analyzer.  
• Both deterministic and non-deterministic finite automaton recognize regular sets.  
• Which one? 

–  deterministic – faster recognizer, but it may take more space 

–  non-deterministic – slower, but it may take less space  
–  Deterministic automatons are widely used lexical analyzers.  

• First, we define regular expressions for tokens; Then we convert them into a DFA to get a 

lexical analyzer for our tokens. 
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1.13. Non-Deterministic Finite Automaton (NFA)  
• A non-deterministic finite automaton (NFA) is a mathematical model that consists 

of: o S - a set of states  
o  Σ - a set of input symbols (alphabet) 
o move - a transition function move to map state-symbol pairs to sets of states. 
o s0 - a start (initial) state  
o  F- a set of accepting states (final states) 

• ε- transitions are allowed in NFAs. In other words, we can move from one state to 

another one without consuming any symbol. 

• A NFA accepts a string x, if and only if there is a path from the starting state to one of 

accepting states such that edge labels along this path spell out x.  
Example:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1.14. Deterministic Finite Automaton (DFA) 

 

• A Deterministic Finite Automaton (DFA) is a special form of a NFA.  
• No state has ε- transition  
• For each symbol a and state s, there is at most one labeled edge a leaving s. i.e. 

transition function is from pair of state-symbol to state (not set of states) 
 

Example: 
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1.15. Converting RE to NFA  
• This is one way to convert a regular expression into a NFA.  
• There can be other ways (much efficient) for the conversion.  
• Thomson’s Construction is simple and systematic method.  
• It guarantees that the resulting NFA will have exactly one final state, and one start state.  
• Construction starts from simplest parts (alphabet symbols).  
• To create a NFA for a complex regular expression, NFAs of its sub-expressions 

are combined to create its NFA.  
• To recognize an empty string ε: 

 
 
 
 

• To recognize a symbol a in the alphabet Σ: 
 
 

 

• For regular expression r1 | r2:  
 
 
 
 
 
 
 

 

N(r1) and N(r2) are NFAs for regular expressions r1 and r2. 
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• For regular expression r1 r2  
 
 
 

 

Here, final state of N(r1) becomes the final state of N(r1r2).  
• For regular expression r*  

 
 
 
 
 
 

 

Example: 

For a RE (a|b) * a, the NFA construction is shown below.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1.16. Converting NFA to DFA (Subset Construction)  
We merge together NFA states by looking at them from the point of view of the input characters:  

• From the point of view of the input, any two states that are connected by an –transition 

may as well be the same, since we can move from one to the other without consuming any 

character. Thus states which are connected by an -transition will be represented by the same 

states in the DFA.  
• If it is possible to have multiple transitions based on the same symbol, then we can regard 

a transition on a symbol as moving from a state to a set of states (ie. the union of all those 

states reachable by a transition on the current symbol). Thus these states will be combined 

into a single DFA state.  
To perform this operation, let us define two functions:  

• The -closure function takes a state and returns the set of states reachable from it based on 

(one or more) -transitions. Note that this will always include the state itself. We should be 

able to get from a state to any state in its -closure without consuming any input.  
• The function move takes a state and a character, and returns the set of states reachable 

by one transition on this character. 
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We can generalise both these functions to apply to sets of states by taking the union of 

the application to individual states. 
 

For Example, if A, B and C are states, move({A,B,C},`a') = move(A,`a') move(B,`a') 

move(C,`a'). 

The Subset Construction Algorithm is a follows: 

 

put ε-closure({s0}) as an unmarked state into the set of DFA (DS) 

while (there is one unmarked S1 in DS) do 

begin 

mark S1 

for each input symbol a do 

begin 

S2 ← ε-closure(move(S1,a)) 

if (S2 is not in DS) then 

add S2 into DS as an unmarked state 

transfunc[S1,a] ← S2 

end 

end 

 

• a state S in DS is an accepting state of DFA if a state in S is an accepting state of NFA  
• the start state of DFA is ε-closure({s0}) 

 

1.17.  Lexical Analyzer Generator  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

overhead is limited. 
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2. SYNTAX ANALYSIS 

 

 

2.1 ROLE OF THE PARSER : 
  

Parser for any grammar is program that takes as input string w (obtain set of strings tokens from 

the lexical analyzer) and produces as output either a parse tree for w , if w is a valid sentences 

of grammar or error message indicating that w is not a valid sentences of given grammar. The 

goal of the parser is to determine the syntactic validity of a source string is valid, a tree is built 

for use by the subsequent phases of the computer. The tree reflects the sequence of derivations 

or reduction used during the parser. Hence, it is called parse tree. If string is invalid, the parse 

has to issue diagnostic message identifying the nature and cause of the errors in string. Every 

elementary subtree in the parse tree corresponds to a production of the grammar. 
 

There are two ways of identifying an elementry sutree: 

 

1. By deriving a string from a non-terminal or 
 

2. By reducing a string of symbol to a non-terminal. 

 

The two types of parsers employed are: 
 

a. Top down parser: which build parse trees from top(root) to 

bottom(leaves) 

b. Bottom up parser: which build parse trees from leaves and work up 

the root. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig . 2.1: position of parser in compiler model. 
 

2.2 CONTEXT FREE GRAMMARS 
 

Inherently recursive structures of a programming language are defined by a context-free 
 

Grammar. In a context-free grammar, we have four triples G( V,T,P,S). 
 

Here , V is finite set of terminals (in our case, this will be the set of tokens) 
 

T is a finite set of non-terminals (syntactic-variables) 
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P is a finite set of productions rules in the following form 
 

A → α where A is a non-terminal and α is a string of terminals and non-terminals 

(including the empty string) 
 

S is a start symbol (one of the non-terminal symbol) 
 

L(G) is the language of G (the language generated by G) which is a set of sentences. 
 

A sentence of L(G) is a string of terminal symbols of G. If S is the start symbol of G then 
 

ω is a sentence of L(G) iff S ⇒ ω where ω is a string of terminals of G. If G is a context-

free grammar, L(G) is a context-free language. Two grammar G1 and G2 are equivalent, if 

they produce same grammar. 
 

Consider the production of the form S ⇒ α, If α contains non-terminals, it is called as a sentential 

form of G. If α does not contain non-terminals, it is called as a sentence of G. 
 

 

In general a derivation step is 
 

αAβ ⇒ αγβ is sentential form and if there is a production rule A→γ in our grammar. where α 

and β are arbitrary strings of terminal and non-terminal symbols α1 ⇒ α2 ⇒ ... ⇒ αn (αn derives 

from α1 or α1 derives αn ). There are two types of derivaion 
 

1 At each derivation step, we can choose any of the non-terminal in the sentential form of G 

for the replacement. 
 
2 If we always choose the left-most non-terminal in each derivation step, this derivation is 

called as left-most derivation. 
 

Example: 

E→E+E|E–E|E*E|E/E|-E E→(E) 

 
E → id 

 
Leftmost derivation : 

E→E+E 
 

→ E * E+E →id* E+E→id*id+E→id*id+id 
 

The string is derive from the grammar w= id*id+id, which is consists of all terminal 

symbols 

Rightmost derivation 
 

E→E+E 
 

→ E+E * E→E+ E*id→E+id*id→id+id*id 

Given grammar G : E → E+E | E*E | ( E ) | - E | 

id Sentence to be derived : – (id+id) 
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LEFTMOST DERIVATION RIGHTMOST DERIVATION 
 

E→-E E→-E 
 

E→-(E) E→-(E) 
 

E→-(E+E) E→-(E+E) 
 

E → - ( id+E ) E → - ( E+id ) 
 

E → - ( id+id ) E → - ( id+id ) 
 

• String that appear in leftmost derivation are called left sentinel forms. 
 

• String that appear in rightmost derivation are called right sentinel forms. 
 

Sentinels:  
• Given a grammar G with start symbol S, if S → α , where α may contain non-

terminals or terminals, then α is called the sentinel form of G. 
 
Yield or frontier of tree:  

• Each interior node of a parse tree is a non-terminal. The children of node can be a 

terminal or non-terminal of the sentinel forms that are read from left to right. The 

sentinel form in the parse tree is called yield or frontier of the tree. 

 
 
2.3. PARSE TREE 
 

• Inner nodes of a parse tree are non-terminal symbols. 
 

• The leaves of a parse tree are terminal symbols. 
 

• A parse tree can be seen as a graphical representation of a derivation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Ambiguity: 
 

A grammar that produces more than one parse for some sentence is said to be ambiguous 

grammar. 
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Example : Given grammar G : E → E+E | E*E | ( E ) | - E | id 

 

The sentence id+id*id has the following two distinct leftmost derivations: 
 

E→E+E E→E*E 
 

E → id + E E → E + E * E 
 

E → id + E * E E → id + E * E 
 

E → id + id * E E → id + id * E 
 

E → id + id * id E → id + id * id 

 

The two corresponding parse trees are :  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example: 
 

To disambiguate the grammar E → E+E | E*E | E^E | id | (E), we can use precedence of 

operators as follows: 
 

^ (right to left) 

/,* (left to right) -

,+ (left to right) 

We get the following unambiguous grammar: 
 

E→E+T|T 
 

T→T*F|F 
 

F→G^F|G 
 

G → id | (E) 
 

Consider this example, G: stmt → if expr then stmt | if expr then stmt else stmt | other 

This grammar is ambiguous since the string if E1 then if E2 then S1 else S2 has the 

following 
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Two parse trees for leftmost derivation :  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

To eliminate ambiguity, the following grammar may be used: 
 

stmt → matched_stmt | unmatched_stmt 
 

matched_stmt → if expr then matched_stmt else matched_stmt | other 
 

unmatched_stmt → if expr then stmt | if expr then matched_stmt else unmatched_stmt 
 

Eliminating Left Recursion: 
 
A grammar is said to be left recursive if it has a non-terminal A such that there is a derivation 
 
A=>Aα for some string α. Top-down parsing methods cannot handle left-recursive grammars. 
 

Hence, left recursion can be eliminated as follows: 
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If there is a production A → Aα | β it can be replaced with a sequence of two productions 

A→βA’  
A’→αA’|ε  

Without changing the set of strings derivable from A. 
 

Example : Consider the following grammar for arithmetic expressions: 
 

E→E+T|T 
 

T→T*F|F 
 

F → (E) | id 
 

First eliminate the left recursion for E as 
 

E→TE’ 
 

E’→+TE’|ε 
 

Then eliminate for T as 
 

T→FT’ 
 

T’→ *FT’ | ε 
 

Thus the obtained grammar after eliminating left recursion 

is E→TE’ 
 

E’→+TE’|ε 
 

T→FT’ 
 

T’→*FT’|ε 
 

F → (E) | id 
 

Algorithm to eliminate left recursion: 

 

1. Arrange the non-terminals in some order A1, A2 . . . An. 
 
2. for i := 1 to n do begin 
 

for j := 1 to i-1 do begin 
 

replace each production of the form Ai → Aj γ 
 

by the productions Ai → δ1 γ | δ2γ | . . . | δk γ 
 

where Aj → δ1 | δ2 | . . . | δk are all the current Aj-productions; 
 

end 
 

eliminate the immediate left recursion among the Ai-productions 
 

end 
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Left factoring: 

 

Left factoring is a grammar transformation that is useful for producing a grammar suitable for 

predictive parsing. When it is not clear which of two alternative productions to use to expand 

a non-terminal A, we can rewrite the A-productions to defer the decision until we have seen 

enough of the input to make the right choice. 
 
If there is any production A → αβ1 | αβ2 , it can be rewritten as 

A→αA’ 

A’→β1|β2 
 

Consider the grammar , G : S → iEtS | iEtSeS | a 
 

E → b 
 

Left factored, this grammar becomes 
 

S → iEtSS’ | a 
 

S’ → eS | ε 
 

E → b 
 

2.4 TOP-DOWN PARSING 
 

It can be viewed as an attempt to find a left-most derivation for an input string or an 

attempt to construct a parse tree for the input starting from the root to the leaves. 

Types of top-down parsing : 
 

1. Recursive descent parsing 
 

2. Predictive parsing 
 
2.4.1. RECURSIVE DESCENT PARSING 
 
� Recursive descent parsing is one of the top-down parsing techniques that uses a set of 

recursive procedures to scan its input. 

� This parsing method may involve backtracking, that is, making repeated scans of the 

input. 
 
Example for backtracking : 
 

Consider the grammar G : S → cAd 
 

A → ab | a 
 

and the input string w=cad. 
 

The parse tree can be constructed using the following top-down approach : 
 

Step1: 
 

Initially create a tree with single node labeled S. An input pointer points to ‘c’, the first 

symbol of w. Expand the tree with the production of S. 
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Step2: 
 

The leftmost leaf ‘c’ matches the first symbol of w, so advance the input pointer to the second symbol 

of w ‘a’ and consider the next leaf ‘A’. Expand A using the first alternative. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Step3: 
 

The second symbol ‘a’ of w also matches with second leaf of tree. So advance the input pointer 

to third symbol of w ‘d’. But the third leaf of tree is b which does not match with the input 

symbol d. 
 
Hence discard the chosen production and reset the pointer to second position. This is called 
 

backtracking. 
 

Step4: 
 

Now try the second alternative for A.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Now we can halt and announce the successful completion of parsing. 
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Example for recursive decent parsing: 
 
A left-recursive grammar can cause a recursive-descent parser to go into an infinite loop. 
 

Hence, elimination of left-recursion must be done before parsing. 
 

Consider the grammar for arithmetic expressions 
 

E→E+T|T 
 

T→T*F|F 
 

F → (E) | id 
 

After eliminating the left-recursion the grammar 

becomes, E→TE’ 
 
E’→+TE’|ε 
 

T→FT’ 
 

T’→*FT’|ε 
 

F → (E) | id 
 

Now we can write the procedure for grammar as follows: 
 

Recursive procedure: 
 

Procedure E() 
 

begin 
 

T( ); 
 

EPRIME( ); 
 

End 
 

Procedure EPRIME( ) 
 

begin 
 

If input_symbol=’+’ then 
 

ADVANCE( ); 
 

T( ); 
 

EPRIME( ); 
 

end 
 

Procedure T( ) 
 

begin 
 

F( ); 
 

TPRIME( ); 
 

End 
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Procedure TPRIME( )             

Begin             

If input_symbol=’*’ then             

ADVANCE( );             

F( );             

TPRIME( );             

End             

Procedure F( )             

Begin             

If input-symbol=’id’ then             

ADVANCE( );             

else if input-symbol=’(‘ then             

ADVANCE( );             

E( );             

else if input-symbol=’)’ then             

ADVANCE( );             

End             

else ERROR( );             

Stack implementation:             
              

 PROCEDURE INPUT STRING 
             

 E( )  id+id*id 
              

 T( )  id+id*id 
              

 F( )  id+id*id 
            

 ADVANCE( ) id+id*id 
            

 TPRIME( ) id+id*id 
            

 EPRIME( ) id+id*id 
          

 ADVANCE( ) id+id*id 
          

 T( ) id+id*id 
          

 F( )  id+id*id 
       

 ADVANCE( ) id+id*id 
       

 TPRIME( ) id+id*id 
      

 ADVANCE( ) id+id*id 
       

 F( )  id+id*id 
     

 ADVANCE( ) id+id*id 
     

 TPRIME( ) id+id*id 
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2.4.2. PREDICTIVE PARSING 
 
� Predictive parsing is a special case of recursive descent parsing where no 

backtracking is required. 
 
� The key problem of predictive parsing is to determine the production to be applied 

for a non-terminal in case of alternatives. 
 
Non-recursive predictive parser  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The table-driven predictive parser has an input buffer, stack, a parsing table and an output 

stream. 
 
Input buffer: 
 

It consists of strings to be parsed, followed by $ to indicate the end of the input string. 
 

Stack: 
 
It contains a sequence of grammar symbols preceded by $ to indicate the bottom of the stack. 
 

Initially, the stack contains the start symbol on top of $. 
 

Parsing table: 
 

It is a two-dimensional array M[A, a], where ‘A’ is a non-terminal and ‘a’ is a terminal. 
 

Predictive parsing program: 
 

The parser is controlled by a program that considers X, the symbol on top of stack, and a, the 

current input symbol. These two symbols determine the parser action. There are three 

possibilities: 
 

1. If X = a = $, the parser halts and announces successful completion of parsing. 
 

2. If X = a ≠ $, the parser pops X off the stack and advances the input pointer to 

the next input symbol. 
 

3. If X is a non-terminal , the program consults entry M[X, a] of the parsing table M. 

This entry will either be an X-production of the grammar or an error entry. 
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If M[X, a] = {X → UVW},the parser replaces X on top of the stack by 

UVW If M[X, a] = error, the parser calls an error recovery routine. 

Algorithm for nonrecursive predictive parsing: 
 

Input : A string w and a parsing table M for grammar G. 
 

Output : If w is in L(G), a leftmost derivation of w; otherwise, an error indication. 
 

Method : Initially, the parser has $S on the stack with S, the start symbol of G on top, and w$ 

in the input buffer. The program that utilizes the predictive parsing table M to produce a parse 

for the input is as follows: 
 
set ip to point to the first symbol of w$; 
 

repeat 
 

let X be the top stack symbol and a the symbol pointed to by 

ip; if X is a terminal or $ then 
 

if X = a then 
 

pop X from the stack and advance ip 
 

else error() 
 

else 

 
 

/* X is a non-terminal */ 
 

if M[X, a] = X →Y1Y2 … Yk then begin 
 

pop X from the stack; 
 
push Yk, Yk-1, … ,Y1 onto the stack, with Y1 on top; 
 

output the production X → Y1 Y2 . . . Yk 
 

end 
 

else error() 
 

until X = $ 
 

Predictive parsing table construction: 
 

The construction of a predictive parser is aided by two functions associated with a grammar 
 

G : 
 

1. FIRST 
 
2. FOLLOW 

Rules for first( ): 

1. If X is terminal, then FIRST(X) is {X}. 
 
2. If X → ε is a production, then add ε to FIRST(X). 
 
3. If X is non-terminal and X → aα is a production then add a to FIRST(X). 
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4. If X is non-terminal and X → Y 1 Y2…Yk is a production, then place a in FIRST(X) if for some i, 

a is in FIRST(Yi), and ε is in all of FIRST(Y1),…,FIRST(Yi-1); that is, Y1,….Yi-1 

=> ε. If ε is in FIRST(Yj) for all j=1,2,..,k, then add ε to FIRST(X).  
Rules for follow( ):  
1. If S is a start symbol, then FOLLOW(S) contains $. 
 
2. If there is a production A → αBβ, then everything in FIRST(β) except ε is placed 

in follow(B).  
3. If there is a production A → αB, or a production A → αBβ where FIRST(β) contains ε, then  

everything in FOLLOW(A) is in FOLLOW(B). 

Algorithm for construction of predictive parsing table: 

Input : Grammar G 

 

 

1. For each production A → α of the grammar, do steps 2 and 3.  
2. For each terminal a in FIRST(α), add A → α to M[A, a].  
3. If ε is in FIRST(α), add A → α to M[A, b] for each terminal b in FOLLOW(A). If ε is 

in FIRST(α) and $ is in FOLLOW(A) , add A → α to M[A, $].  
4. Make each undefined entry of M be error. 
 

Example: 
 

Consider the following grammar : 
 

E→E+T|T 
 

T→T*F|F 
 

F → (E) | id 
 

After eliminating left-recursion the grammar is 
 

E→TE’ 
 

E’→+TE’|ε 
 

T→FT’ 
 

T’→*FT’|ε 
 

F → (E) | id 
 

First( ) : 
 

FIRST(E) = { ( , id} 
 

FIRST(E’) ={+ , ε } 
 

FIRST(T) = { ( , id} 
 

FIRST(T’) = {*, ε } 
 

FIRST(F) = { ( , id } 
 

Follow( ): 
 

FOLLOW(E) = { $, ) } 
 

FOLLOW(E’) = { $, ) } 
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FOLLOW(T) = { +, $, ) } 
 

FOLLOW(T’) = { +, $, ) } 
 

FOLLOW(F) = {+, * , $ , ) }  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

LL(1) grammar: 
 

The parsing table entries are single entries. So each location has not more than one entry.  

This type of grammar is called LL(1) grammar.  
Consider this following grammar:  
S → iEtS | iEtSeS | a  
E → b 
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After eliminating left factoring, we have  
S → iEtSS’ | a  
S’→ eS | ε  
E → b 
 
To construct a parsing table, we need FIRST() and FOLLOW() for all the non-

terminals. FIRST(S) = { i, a }  
FIRST(S’) = {e, ε } 
 
FIRST(E) = { b}  
FOLLOW(S) = { $ ,e }  
FOLLOW(S’) = { $ ,e }  
FOLLOW(E) = {t}  
 
 
 
 
 
 
 
 
 
 
 
 

 

Since there are more than one production, the grammar is not LL(1) grammar.  
Actions performed in predictive parsing:  
1. Shift  
2. Reduce  
3. Accept  
4. Error 

 

1. Elimination of left recursion, left factoring and ambiguous grammar.  
2. Construct FIRST() and FOLLOW() for all non-terminals.  
3. Construct predictive parsing table.  
4. Parse the given input string using stack and parsing table. 
 

2.5. BOTTOM-UP PARSING  
Constructing a parse tree for an input string beginning at the leaves and going towards the root 
is called bottom-up parsing.  
A general type of bottom-up parser is a shift-reduce parser. 
 

2.5.1. SHIFT-REDUCE PARSING  
Shift-reduce parsing is a type of bottom -up parsing that attempts to construct a parse tree for 

an input string beginning at the leaves (the bottom) and working up towards the root (the top).  
Example:  
Consider the grammar: 
S → aABe  
A → Abc | b 

B → d  
The sentence to be recognized is abbcde. 
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3.1 Intermediate Code Generation 
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3.2 TYPE CHECKING  
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4.1 STORAGE ORGANIZATION  
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5.1 CODE GENERATION 
 
 

 

The final phase in compiler model is the code generator. It takes as input an intermediate 

representation of the source program and produces as output an equivalent target program. The 

code generation techniques presented below can be used whether or not an optimizing phase occurs 

before code generation. 
 

  Position of code generator   
 

source 

 
intermediate 

 
intermediate 

 
target 

 

front end code code  

program code code program 
 

 optimizer generator  

     
 

       
  

 
 

 

symbol 
 

table 

 

ISSUES IN THE DESIGN OF A CODE GENERATOR The 

following issues arise during the code generation phase : 

1. Input to code generator  
2. Target program 

3. Memory management 

4. Instruction selection 

5. Register allocation 

6. Evaluation order 

 
1. Input to code generator: 

The input to the code generation consists of the intermediate representation of the source 
program produced by front end , together with information in the symbol table to 
determine run-time addresses of the data objects denoted by the names in the 

intermediate representation. 

 

Intermediate representation can be :  
a. Linear representation such as postfix notation 

b. Three address representation such as quadruples 

c. Virtual machine representation such as stack machine code 

d. Graphical representations such as syntax trees and dags. 

 
Prior to code generation, the front end must be scanned, parsed and translated into 
intermediate representation along with necessary type checking. Therefore, input to code 
generation is assumed to be error-free. 

 

2. Target program: 
The output of the code generator is the target program. The output may be :  

a. Absolute machine language  
- It can be placed in a fixed memory location and can be executed immediately. 
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b. Relocatable machine language  
- It allows subprograms to be compiled separately. 

 
c. Assembly language  

- Code generation is made easier. 
 

3. Memory management: 
Names in the source program are mapped to addresses of data objects in run-time 
memory by the front end and code generator. 

 

It makes use of symbol table, that is, a name in a three-address statement refers to a 
symbol-table entry for the name. 

 
Labels in three-address statements have to be converted to addresses of 
instructions. For example,  

j : goto i generates jump instruction as follows :  
if i < j, a backward jump instruction with target address equal to location of 
code for quadruple i is generated.  
if i > j, the jump is forward. We must store on a list for quadruple i the 

location of the first machine instruction generated for quadruple j. When i is 
processed, the machine locations for all instructions that forward jumps to i 

are filled. 

 

4. Instruction selection: 
The instructions of target machine should be complete and uniform. 

 

Instruction speeds and machine idioms are important factors when efficiency of target 
program is considered. 

 

The quality of the generated code is determined by its speed and size. 

 

The former statement can be translated into the latter statement as shown below:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

5. Register allocation 
Instructions involving register operands are shorter and faster than those involving 
operands in memory. 

 

The use of registers is subdivided into two subproblems :  
Register allocation – the set of variables that will reside in registers at a point in 
the program is selected. 
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Register assignment – the specific register that a variable will reside in is picked. 

 

Certain machine requires even-odd register pairs for some operands and results. 
For example , consider the division instruction of the form :  

D x, y 

 

where, x – dividend even register in even/odd register pair 

y – divisor 
 

even register holds the remainder 
 

odd register holds the quotient 
 

6. Evaluation order 
The order in which the computations are performed can affect the efficiency of the 
target code. Some computation orders require fewer registers to hold intermediate 
results than others. 

 

TARGET MACHINE 

 

Familiarity with the target machine and its instruction set is a prerequisite for designing a 
good code generator.  
The target computer is a byte-addressable machine with 4 bytes to a 

word. It has n general-purpose registers, R0, R1, . . . , Rn-1.  
It has two-address instructions of the form:  

op source, destination  
where, op is an op-code, and source and destination are data fields. 

 

It has the following op-codes :  
MOV  (move source to destination) 

ADD (add source to destination)  
SUB (subtract source from destination) 

 

The source and destination of an instruction are specified by combining registers and 
memory locations with address modes. 

 

Address modes with their assembly-language forms  
 

MODE FORM ADDRESS ADDED COST 

    

absolute M M 1 

    

register R R 0 

    

indexed c(R) c+contents(R) 1 

    

indirect register *R contents (R) 0 

    

indirect indexed *c(R) contents(c+ 1 

  contents(R))  
    

literal #c c 1 
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For example : MOV R0, M stores contents of Register R0 into memory location M ; MOV 

4(R0), M stores the value contents(4+contents(R0)) into M. 

 

Instruction costs : 
 

Instruction cost = 1+cost for source and destination address modes. This cost corresponds 
to the length of the instruction.  

Address modes involving registers have cost zero.  
Address modes involving memory location or literal have cost one.  

Instruction length should be minimized if space is important. Doing so also minimizes 
the time taken to fetch and perform the instruction.  
For example : MOV R0, R1 copies the contents of register R0 into R1. It has cost one, 
since it occupies only one word of memory.  
The three-address statement a : = b + c can be implemented by many different instruction 
sequences : 

 

i) MOV b, R0 

ADD c, R0 cost = 6 

MOV R0, a 

 

ii) MOV b, a 
 

ADD c, a cost = 6 
 

iii) Assuming R0, R1 and R2 contain the addresses of a, b, and c : 

MOV *R1, *R0 

ADD *R2, *R0 cost = 2 

 

In order to generate good code for target machine, we must utilize its 

addressing capabilities efficiently. 

 

RUN-TIME STORAGE MANAGEMENT 

 

Information needed during an execution of a procedure is kept in a block of storage called an 

activation record, which includes storage for names local to the procedure.  
The two standard storage allocation strategies are:  

1. Static allocation 

2. Stack allocation  
In static allocation, the position of an activation record in memory is fixed at compile 
time.  
In stack allocation, a new activation record is pushed onto the stack for each execution of 
a procedure. The record is popped when the activation ends.  
The following three-address statements are associated with the run-time allocation and 
deallocation of activation records:  

1. Call, 

2. Return, 

3. Halt, and 

4. Action, a placeholder for other statements. 
We assume that the run-time memory is divided into areas for:  

1. Code 

2. Static data 

3. Stack 
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Static allocation 

 

Implementation of call statement: 
 

The codes needed to implement static allocation are as follows: 
 

MOV #here + 20, callee.static_area /*It saves return address*/ 

 

GOTO callee.code_area /*It transfers control to the target code for the called procedure */ 

 

where, 
 
callee.static_area – Address of the activation record 
 
callee.code_area – Address of the first instruction for called procedure 
 
#here + 20 – Literal return address which is the address of the instruction following GOTO. 
 

Implementation of return statement: 
 

A return from procedure callee is implemented by : 

 

GOTO *callee.static_area 

 

This transfers control to the address saved at the beginning of the activation record. 
 

Implementation of action statement: 
 

The instruction ACTION is used to implement action statement. 
 

Implementation of halt statement: 
 

The statement HALT is the final instruction that returns control to the operating 

system. Stack allocation 

 
Static allocation can become stack allocation by using relative addresses for storage in 

activation records. In stack allocation, the position of activation record is stored in register so words 

in activation records can be accessed as offsets from the value in this register. 
 

The codes needed to implement stack allocation are as follows: 
 

Initialization of stack: 
 

MOV #stackstart , SP 

 
 

/* initializes stack */ 
  

Code for the first procedure 

 

HALT 

 
 

/* terminate execution */ 
  

Implementation of Call statement: 
 

ADD #caller.recordsize, SP 

 
 

/* increment stack pointer */ 
  

MOV #here + 16, *SP 

  
/*Save return address */ 
 

 
GOTO callee.code_area 
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where, 
 
caller.recordsize – size of the activation record 
 
#here + 16 – address of the instruction following the GOTO 

 

Implementation of Return statement: 
 

GOTO *0 ( SP ) /*return to the caller */ 

 

SUB #caller.recordsize, SP /* decrement SP and restore to previous value */ 
 
 

 

BASIC BLOCKS AND FLOW GRAPHS 

 

Basic Blocks 

 

A basic block is a sequence of consecutive statements in which flow of control enters at 
the beginning and leaves at the end without any halt or possibility of branching except at 
the end.  
The following sequence of three-address statements forms a basic 

block: t1 : = a * a  
t2 : = a * b 

t3 : = 2 * t2 

t4 : = t1 + t3 

t5 : = b * b 

t6 : = t4 + t5 
 

 

Basic Block Construction:  
 

 

Algorithm: Partition into basic blocks 

 

Input: A sequence of three-address statements 

 

Output: A list of basic blocks with each three-address statement in exactly one block 

 

Method: 

 

1. We first determine the set of leaders, the first statements of basic blocks. The rules we 
use are of the following:  

a. The first statement is a leader.  
b. Any statement that is the target of a conditional or unconditional goto is a 

leader.  
c. Any statement that immediately follows a goto or conditional goto statement is 

a leader.  
2. For each leader, its basic block consists of the leader and all statements up to but not 

including the next leader or the end of the program. 
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Consider the following source code for dot product of two vectors a and b of length 20  
 

 

begin 

 

prod :=0; 

 

i:=1; 

 

do begin 

 

prod :=prod+ a[i] * b[i]; 

 

i :=i+1; 

 

end 

 

while i <= 20 

 

end 
 
 

 

The three-address code for the above source program is given as :  

(1) prod := 0  

(2) i := 1  

(3) t1 := 4* i  

(4) t2 := a[t1] /*compute a[i] */ 

(5) t3 := 4* i  

(6) t4 := b[t3] /*compute b[i] */ 

(7) t5 := t2*t4  

(8) t6 := prod+t5  

(9) prod := t6  

(10) t7 := i+1  

(11) i := t7  

(12) if i<=20 goto (3)  

    
 

 

Basic block 1: Statement (1) to (2) 

 

Basic block 2: Statement (3) to (12) 
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Transformations on Basic Blocks: 
 

A number of transformations can be applied to a basic block without changing the set of 

expressions computed by the block. Two important classes of transformation are : 
 

Structure-preserving transformations 

Algebraic transformations 

1. Structure preserving transformations: 
 

a) Common subexpression elimination: 
 

a : = b + c 
 

b : = a – d 
 

c : = b + c 
 

d : = a – d 

 
 

a : = b + c 
 
b : = a - d 
 
c : = b + c 
 
d : = b 
  

Since the second and fourth expressions compute the same expression, the basic block can 

be transformed as above. 
 

b) Dead-code elimination: 
 

Suppose x is dead, that is, never subsequently used, at the point where the statement x : 

= y + z appears in a basic block. Then this statement may be safely removed without 

changing the value of the basic block. 
 

c) Renaming temporary variables: 
 

A statement t : = b + c ( t is a temporary ) can be changed to u : = b + c (u is a new temporary) 

and all uses of this instance of t can be changed to u without changing the value of the basic 

block. 
 

Such a block is called a normal-form block. 
 

d) Interchange of statements: 
 

Suppose a block has the following two adjacent statements: 
 

t1 : = b + c 
 

t2 : = x + y 

 

We can interchange the two statements without affecting the value of the block if 

and only if neither x nor y is t1 and neither b nor c is t2. 
 

2. Algebraic transformations: 
 

Algebraic transformations can be used to change the set of expressions computed by a 

basic block into an algebraically equivalent set.  
Examples: 

 

i) x : = x + 0 or x : = x * 1 can be eliminated from a basic block without changing the set of 

expressions it computes. 
 

ii) The exponential statement x : = y * * 2 can be replaced by x : = y * y. 
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Flow Graphs 

 

Flow graph is a directed graph containing the flow-of-control information for the set of 
basic blocks making up a program.  
The nodes of the flow graph are basic blocks. It has a distinguished initial node. 

E.g.: Flow graph for the vector dot product is given as follows: 
 

 

prod : = 0 B1 

i : = 1  
   

 
 
 

t1 : = 4 * i 
 

t2 : = a [ t1 ] 

t3 : = 4 * i B2 

t4 : = b [ t3 ] 
 

t5 : = t2 * t4 
 

t6 : = prod + t5 
 

prod : = t6 
 

t7 : = i + 1 
 

i : = t7 
 

if i <= 20 goto B2 
 
 
 
 
 

 

B1 is the initial node. B2 immediately follows B1, so there is an edge from B1 to B2. The 

target of jump from last statement of B1 is the first statement B2, so there is an edge from 

B1 (last statement) to B2 (first statement).  

B1 is the predecessor of B2, and B2 is a successor of B1. 
 

 

Loops 

 

A loop is a collection of nodes in a flow graph such that  
1. All nodes in the collection are strongly connected. 

2. The collection of nodes has a unique entry. 
A loop that contains no other loops is called an inner loop. 

 

 

NEXT-USE INFORMATION 

 

If the name in a register is no longer needed, then we remove the name from the register 
and the register can be used to store some other names. 
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Input: Basic block B of three-address statements 

 

Output: At each statement i: x= y op z, we attach to i the liveliness and next-uses of x, 

y and z. 

 

Method: We start at the last statement of B and scan backwards. 

 

1. Attach to statement i the information currently found in the symbol table 
regarding the next-use and liveliness of x, y and z.  

2. In the symbol table, set x to “not live” and “no next use”.  
3. In the symbol table, set y and z to “live”, and next-uses of y and z to i. 

 
 
 

 

Symbol Table:   
    

 Names Liveliness Next-use 

    

 x not live no next-use 

    

 y Live i 
    

 z Live i 
     
 

 

A SIMPLE CODE GENERATOR 

 

A code generator generates target code for a sequence of three- address statements and 
effectively uses registers to store operands of the statements. 

 

For example: consider the three-address statement a := b+c 
It can have the following sequence of codes: 

 

ADD Rj, Ri 

 
 

Cost = 1 

 
 

// if Ri contains b and Rj contains c 

  
(or) 

 

ADD c, Ri 

 
 

Cost = 2 

 
 

// if c is in a memory location 
  

(or) 

 

MOV c, Rj 

 
 

Cost = 3 

 
 

// move c from memory to Rj and add 

  
ADD Rj, Ri 

 

Register and Address Descriptors: 
 

A register descriptor is used to keep track of what is currently in each registers. The 
register descriptors show that initially all the registers are empty.  
An address descriptor stores the location where the current value of the name can be 
found at run time. 
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A code-generation algorithm: 

 

The algorithm takes as input a sequence of three-address statements constituting a basic block.  
For each three-address statement of the form x : = y op z, perform the following actions: 

 

1. Invoke a function getreg to determine the location L where the result of the computation y op 
z should be stored. 

 
2. Consult the address descriptor for y to determine y’, the current location of y. Prefer the register for 

y’ if the value of y is currently both in memory and a register. If the value of y is not already in L, 

generate the instruction MOV y’ , L to place a copy of y in L. 

 

3. Generate the instruction OP z’ , L where z’ is a current location of z. Prefer a register to a 

memory location if z is in both. Update the address descriptor of x to indicate that x is in location 

L. If x is in L, update its descriptor and remove x from all other descriptors. 

 

4. If the current values of y or z have no next uses, are not live on exit from the block, and are 
in registers, alter the register descriptor to indicate that, after execution of x : = y op z , those 
registers will no longer contain y or z. 

 

Generating Code for Assignment Statements: 
 

The assignment d : = (a-b) + (a-c) + (a-c) might be translated into the following three-
address code sequence:  

t : = a – b 
 

u : = a – c 
 

v : = t + u 
 

d : = v + u 
 
with d live at the end. 

 

Code sequence for the example is:  
 

Statements Code Generated Register descriptor Address descriptor 
 

    
 

  Register empty  
 

    
 

t : = a - b MOV a, R0 R0 contains t t in R0 
 

 SUB b, R0    
 

     
 

u : = a - c MOV a , R1 R0 contains t t in R0 
 

 SUB c , R1 R1 contains u u in R1 
 

     
 

v : = t + u ADD R1, R0 R0 contains v u in R1 
 

  R1 contains u v in R0 
 

     
 

d : = v + u ADD R1, R0 R0 contains d d in R0 
 

 MOV R0, d   d in R0 and memory 
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Generating Code for Indexed Assignments 

 

The table shows the code sequences generated for the indexed assignment statements 
 
a : = b [ i ] and a [ i ] : = b  

 

Statements Code Generated Cost 
   

a : = b[i] MOV b(Ri), R 2 
   

a[i] : = b MOV b, a(Ri) 3 
    
 

 

Generating Code for Pointer Assignments 

 

The table shows the code sequences generated for the pointer assignments 
 
a : = *p and *p : = a  

 

Statements Code Generated Cost 
   

a : = *p MOV *Rp, a 2 
   

*p : = a MOV a, *Rp 2 
    
 

 

Generating Code for Conditional Statements  
 

Statement  
 

if x < y goto z 

 
 

Code  
 

CMP x, y 
 

   CJ< z /* jump to z if condition code 

is negative */ 
 

 

x : = y +z   
if x < 0 goto z  

 

MOV y, R0 
 

ADD z, R0 

MOV R0,x  
CJ< z  
 

 

 

THE DAG REPRESENTATION FOR BASIC BLOCKS 

 

A DAG for a basic block is a directed acyclic graph with the following labels on nodes:  
1. Leaves are labeled by unique identifiers, either variable names or constants. 

2. Interior nodes are labeled by an operator symbol.  
3. Nodes are also optionally given a sequence of identifiers for labels to store the 

computed values.  
DAGs are useful data structures for implementing transformations on basic blocks.  

It gives a picture of how the value computed by a statement is used in subsequent 
statements.  

It provides a good way of determining common sub - expressions. 
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Algorithm for construction of DAG  

 

Input: A basic block 

 

Output: A DAG for the basic block containing the following information: 

 

1. A label for each node. For leaves, the label is an identifier. For interior nodes, an 
operator symbol.  

2. For each node a list of attached identifiers to hold the computed values.  
Case (i) x : = y OP z 

 

Case (ii) x : = OP y 

 

Case (iii) x : = y 

 

Method: 

 

Step 1: If y is undefined then create node(y). 

 

If z is undefined, create node(z) for case(i). 

 

Step 2: For the case(i), create a node(OP) whose left child is node(y) and right child is 

 

node(z). ( Checking for common sub expression). Let n be this node. 

 

For case(ii), determine whether there is node(OP) with one child node(y). If not create such a 

node. 

 

For case(iii), node n will be node(y). 

 

Step 3: Delete x from the list of identifiers for node(x). Append x to the list of attached 

identifiers for the node n found in step 2 and set node(x) to n. 

 
 

Example: Consider the block of three- address statements:  
 

1. t1 := 4* i 

2. t2 := a[t1]  
3. t3 := 4* i  
4. t4 := b[t3]  
5. t5 := t2*t4  
6. t6 := prod+t5  
7. prod := t6  
8. t7 := i+1  
9. i := t7  
10. if i<=20 goto (1) 
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Stages in DAG Construction  
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Application of DAGs: 
 

1. We can automatically detect common sub expressions. 

2. We can determine which identifiers have their values used in the block.  
3. We can determine which statements compute values that could be used outside the block. 
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GENERATING CODE FROM DAGs 

 

The advantage of generating code for a basic block from its dag representation is that, from a dag 

we can easily see how to rearrange the order of the final computation sequence than we can starting from 

a linear sequence of three-address statements or quadruples. 

 

Rearranging the order  
The order in which computations are done can affect the cost of resulting object code. 
 

For example, consider the following basic block: 

t1 : = a + b 

t2 : = c + d 

t3 : = e – t2 

t4 : = t1 – t3 

 

Generated code sequence for basic block: 
 

MOV a , R0 

ADD b , R0 

MOV c , R1 

ADD d , R1 

MOV R0 , t1 

MOV e , R0 

SUB R1 , R0 

MOV t1 , R1 

SUB R0 , R1 

MOV R1 , t4 

 

Rearranged basic block:  
Now t1 occurs immediately before t4. 
 

t2 : = c + d 

t3 : = e – t2 

t1 : = a + b 

t4 : = t1 – t3 

 

Revised code sequence: 
 

MOV c , R0 

ADD d , R0 

MOV a , R0 

SUB R0 , R1 

MOV a , R0 

ADD b , R0 

SUB R1 , R0 

MOV R0 , t4 
 

In this order, two instructions MOV R0 , t1 and MOV t1 , R1 have been saved. 
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A Heuristic ordering for Dags 

 

The heuristic ordering algorithm attempts to make the evaluation of a node immediately 

follow the evaluation of its leftmost argument. 
 

The algorithm shown below produces the ordering in reverse. 
 

Algorithm: 
 

1) while unlisted interior nodes remain do begin  
2) select an unlisted node n, all of whose parents have been listed;  
3) list n;  
4) while the leftmost child m of n has no unlisted parents and is not a leaf do 
 

 begin 

5) list m; 

6) n : = m 

 end 

 end 
 

 

Example: Consider the DAG shown below: 
 

1  
*  

 

2 + - 3 

 

4 

* 
 

 

 5 
- 

  
+ 

8 
 

     
 

 6   +  7   c d    11  e    12 
 

a 
9 

b 
10 

   
 

     
 

 

Initially, the only node with no unlisted parents is 1 so set n=1 at line (2) and list 1 at line (3). 

 

Now, the left argument of 1, which is 2, has its parents listed, so we list 2 and set n=2 at line (6). 

 

Now, at line (4) we find the leftmost child of 2, which is 6, has an unlisted parent 5. Thus we select a 

new n at line (2), and node 3 is the only candidate. We list 3 and proceed down its left chain, listing 4, 

5 and 6. This leaves only 8 among the interior nodes so we list that. 

 

The resulting list is 1234568 and the order of evaluation is 8654321. 
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Code sequence: 
 

t8 : = d + e 

t6 : = a + b 

t5 : = t6 – c 

t4 : = t5 * t8 

t3 : = t4 – e 

t2 : = t6 + t4 

t1 : = t2 * t3 

 

This will yield an optimal code for the DAG on machine whatever be the number of registers. 
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5.2 CODE OPTIMIZATION 

 

INTRODUCTION 

 

The code produced by the straight forward compiling algorithms can often be made to run 

faster or take less space, or both. This improvement is achieved by program transformations 

that are traditionally called optimizations. Compilers that apply code-improving 

transformations are called optimizing compilers. 
 

Optimizations are classified into two categories. They are 

Machine independent optimizations:  
Machine dependant optimizations: 

 

Machine independent optimizations: 
 

Machine independent optimizations are program transformations that improve the target 

code without taking into consideration any properties of the target machine. 

 

Machine dependant optimizations: 
 

Machine dependant optimizations are based on register allocation and utilization of special 

machine-instruction sequences. 

 

The criteria for code improvement transformations: 

 

Simply stated, the best program transformations are those that yield the most benefit for the 
least effort. 

 

The transformation must preserve the meaning of programs. That is, the optimization must 

not change the output produced by a program for a given input, or cause an error such as 

division by zero, that was not present in the original source program. At all times we take the 
“safe” approach of missing an opportunity to apply a transformation rather than risk 

changing what the program does. 

 

A transformation must, on the average, speed up programs by a measurable amount. We are also 

interested in reducing the size of the compiled code although the size of the code has less importance 

than it once had. Not every transformation succeeds in improving every program, occasionally an 

“optimization” may slow down a program slightly. 

 

The transformation must be worth the effort. It does not make sense for a compiler writer to 

expend the intellectual effort to implement a code improving transformation and to have the 

compiler expend the additional time compiling source programs if this effort is not repaid when 

the target programs are executed. “Peephole” transformations of this kind are simple enough and 

beneficial enough to be included in any compiler. 
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Organization for an Optimizing Compiler:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Flow analysis is a fundamental prerequisite for many important types of code 
improvement. 

Generally control flow analysis precedes data flow analysis.  
Control flow analysis (CFA) represents flow of control usually in form of graphs, CFA 
constructs such as  

control flow 

graph Call graph  
Data flow analysis (DFA) is the process of ascerting and collecting information prior to 

program execution about the possible modification, preservation, and use of certain entities 

(such as values or attributes of variables) in a computer program. 
 

 

PRINCIPAL SOURCES OF OPTIMISATION 

 

A transformation of a program is called local if it can be performed by looking only at 
the statements in a basic block; otherwise, it is called global.  
Many transformations can be performed at both the local and global levels. Local 
transformations are usually performed first. 

 

Function-Preserving Transformations  
 

There are a number of ways in which a compiler can improve a program without 
changing the function it computes.  

The transformations 

 

Common sub expression 
elimination, Copy propagation,  
Dead-code elimination, and 

Constant folding 

 

are common examples of such function-preserving transformations. The other 
transformations come up primarily when global optimizations are performed. 
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Frequently, a program will include several calculations of the same value, such as an 
offset in an array. Some of the duplicate calculations cannot be avoided by the 

programmer because they lie below the level of detail accessible within the source 
language. 

 

Common Sub expressions elimination: 

 

An occurrence of an expression E is called a common sub-expression if E was 

previously computed, and the values of variables in E have not changed since the 
previous computation. We can avoid recomputing the expression if we can use the 

previously computed value.  
For example 

t1: = 4*i 

t2: = a [t1] 

t3: = 4*j 

t4: = 4*i 

t5: = n 

t6: = b [t4] +t5 

 

The above code can be optimized using the common sub-expression elimination as 

t1: = 4*i 

t2: = a [t1] 

t3: = 4*j 

t5: = n 

t6: = b [t1] +t5 
 

The common sub expression t4: =4*i is eliminated as its computation is alre ady in t1. 
And value of i is not been changed from definition to use. 

 

Copy Propagation: 

 

Assignments of the form f : = g called copy statements, or copies for short. The idea 
behind the copy-propagation transformation is to use g for f, whenever possible after the 

copy statement f: = g. Copy propagation means use of one variable instead of another. 

This may not appear to be an improvement, but as we shall see it gives us an opportunity 
to eliminate x.  

For example: 

 

x=Pi; 

…… 

A=x*r*r; 

 

The optimization using copy propagation can be done as follows: 

 

A=Pi*r*r; 

 

Here the variable x is eliminated 

 

Dead-Code Eliminations: 

 

A variable is live at a point in a program if its value can be used subsequently; otherwise, it is dead at 

that point. A related idea is dead or useless code, statements that compute 
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values that never get used. While the programmer is unlikely to introduce any dead code  
intentionally, it may appear as the result of previous transformations. An optimization can  
be done by eliminating dead code. 

Example: 

 

i=0; 

if(i=1) 

{ 

a=b+5; 

} 

 

Here, ‘if’ statement is dead code because this condition will never get satisfied. 

 

Constant folding: 

 

We can eliminate both the test and printing from the object code. More generally, 
deducing at compile time that the value of an expression is a constant and using the 
constant instead is known as constant folding. 

 

One advantage of copy propagation is that it often turns the copy statement into dead 
code.  

For example,  
a=3.14157/2 can be replaced by 

a=1.570 there by eliminating a division operation. 

 

Loop Optimizations: 

 

We now give a brief introduction to a very important place for optimizations, namely loops, 

especially the inner loops where programs tend to spend the bulk of their time. The running time 

of a program may be improved if we decrease the number of instructions in an inner loop, even if 

we increase the amount of code outside that loop.  
Three techniques are important for loop optimization: 

 

code motion, which moves code outside a loop;  
Induction-variable elimination, which we apply to replace variables from inner loop.  

Reduction in strength, which replaces and expensive operation by a cheaper one, such as 
a multiplication by an addition. 

 

Code Motion: 

 

An important modification that decreases the amount of code in a loop is code motion. This 

transformation takes an expression that yields the same result independent of the number of 

times a loop is executed ( a loop-invariant computation) and places the expression before the 

loop. Note that the notion “before the loop” assumes the existence of an entry for the loop. 

For example, evaluation of limit-2 is a loop-invariant computation in the following while-

statement: 

 

while (i <= limit-2) /* statement does not change limit*/ 

Code motion will result in the equivalent of 
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t= limit-2; 

while (i<=t) /* statement does not change limit or t */ 

 

Induction Variables : 

 

Loops are usually processed inside out. For example consider the loop around B3.  

Note that the values of j and t4 remain in lock-step; every time the value of j decreases by 

1, that of t4 decreases by 4 because 4*j is assigned to t4. Such identifiers are called 
induction variables.  
When there are two or more induction variables in a loop, it may be possible to get rid of 
all but one, by the process of induction-variable elimination. For the inner loop around 

B3 in Fig. we cannot get rid of either j or t4 completely; t4 is used in B3 and j in B4. 

However, we can illustrate reduction in strength and illustrate a part of the process of 
induction-variable elimination. Eventually j will be eliminated when the outer loop of 
B2 - B5 is considered. 

 

Example: 

As the relationship t4:=4*j surely holds after such an assignment to t4 in Fig. and t4 is not 
changed elsewhere in the inner loop around B3, it follows that just after the statement j:=j-1 the 

relationship t4:= 4*j-4 must hold. We may therefore replace the assignment t 4:= 4*j by t4:= t4-4. 

The only problem is that t 4 does not have a value when we enter block B3 for the first time. 

Since we must maintain the relationship t4=4*j on entry to the block B3, we place an 

initializations of t4 at the end of the block where j itself is  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

before after 

 

initialized, shown by the dashed addition to block B1 in second Fig. 
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The replacement of a multiplication by a subtraction will speed up the object code 

if multiplication takes more time than addition or subtraction, as is the case on 

many machines. 

 

Reduction In Strength: 

 

Reduction in strength replaces expensive operations by equivalent cheaper ones on the target 

machine. Certain machine instructions are considerably cheaper than others and can often be 

used as special cases of more expensive operators.  
For example, x² is invariably cheaper to implement as x*x than as a call to an 
exponentiation routine. Fixed-point multiplication or division by a power of two is 
cheaper to implement as a shift. Floating-point division by a constant can be 
implemented as multiplication by a constant, which may be cheaper. 

 

OPTIMIZATION OF BASIC BLOCKS 

 

There are two types of basic block optimizations. They are : 

 

Structure-Preserving Transformations 

Algebraic Transformations 

 

Structure-Preserving Transformations: 

 

The primary Structure-Preserving Transformation on basic blocks are: 

 

Common sub-expression elimination 

Dead code elimination 

Renaming of temporary variables  
Interchange of two independent adjacent statements. 

 

Common sub-expression elimination: 

 

Common sub expressions need not be computed over and over again. Instead they can be computed 
once and kept in store from where it’s referenced when encountered again – of course providing 
the variable values in the expression still remain constant. 

 

Example: 

 

a: =b+c 

b: =a-d 

c: =b+c 

d: =a-d 
 

The 2
nd

 and 4
th

 statements compute the same expression: b+c and a-d 

 

Basic block can be transformed to 

 

a: = b+c 

b: = a-d 

c: = a 

d: = b 
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Dead code elimination: 

 

It’s possible that a large amount of dead (useless) code may exist in the program. This might be 

especially caused when introducing variables and procedures as part of construction or error-correction of 

a program – once declared and defined, one forgets to remove them in case they serve no purpose. 

Eliminating these will definitely optimize the code. 

 

Renaming of temporary variables: 

 

A statement t:=b+c where t is a temporary name can be changed to u:=b+c where u is 
another temporary name, and change all uses of t to u.  

In this we can transform a basic block to its equivalent block called normal-form block. 

 

Interchange of two independent adjacent statements: 

 

Two statements 
 

t1:=b+c 

 

t2:=x+y 

 

can be interchanged or reordered in its computation in the basic block when value of t 1 

does not affect the value of t2. 

 

Algebraic Transformations: 

 

Algebraic identities represent another important class of optimizations on basic blocks. 
This includes simplifying expressions or replacing expensive operation by cheaper ones 
i.e. reduction in strength.  
Another class of related optimizations is constant folding. Here we evaluate constant 
expressions at compile time and replace the constant expressions by their values. Thus 
the expression 2*3.14 would be replaced by 6.28.  
The relational operators <=, >=, <, >, + and = sometimes generate unexpected common 
sub expressions.  
Associative laws may also be applied to expose common sub expressions. For example, 
if the source code has the assignments 

 

a :=b+c 

e :=c+d+b 

 

the following intermediate code may be generated: 

 

a :=b+c 

t :=c+d 

e :=t+b 

 

Example: 

 

x:=x+0 can be removed 

 

x:=y**2 can be replaced by a cheaper statement x:=y*y 
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The compiler writer should examine the language carefully to determine what 
rearrangements of computations are permitted, since computer arithmetic does not always 

obey the algebraic identities of mathematics. Thus, a compiler may evaluate x*y-x*z as 
x*(y-z) but it may not evaluate a+(b-c) as (a+b)-c. 

 

LOOPS IN FLOW GRAPH 

 

A graph representation of three-address statements, called a flow graph, is useful for 

understanding code-generation algorithms, even if the graph is not explicitly constructed by a 
code-generation algorithm. Nodes in the flow graph represent computations, and the edges 

represent the flow of control. 

 

Dominators:  
In a flow graph, a node d dominates node n, if every path from initial node of the flow 

graph to n goes through d. This will be denoted by d dom n. Every initial node dominates all the 

remaining nodes in the flow graph and the entry of a loop dominates all nodes in the loop. Similarly 
every node dominates itself. 

 

Example: 

 

*In the flow graph below, 

*Initial node,node1 dominates every node. 

*node 2 dominates itself 

*node 3 dominates all but 1 and 2. 

*node 4 dominates all but 1,2 and 3.  
*node 5 and 6 dominates only themselves,since flow of control can skip around either by 
goin through the other.  

*node 7 dominates 7,8 ,9 and 10. 

*node 8 dominates 8,9 and 10. 

*node 9 and 10 dominates only themselves.  
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The way of presenting dominator information is in a tree, called the dominator tree in 
which the initial node is the root.  
The parent of each other node is its immediate dominator. Each 

node d dominates only its descendents in the tree. 

The existence of dominator tree follows from a property of dominators; each node has a 
unique immediate dominator in that is the last dominator of n on any path from the initial 
node to n.  
In terms of the dom relation, the immediate dominator m has the property is d=!n and d 
dom n, then d dom m.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

D(1)={1} 

 

D(2)={1,2} 

 

D(3)={1,3} 

 

D(4)={1,3,4} 

 

D(5)={1,3,4,5} 

 

D(6)={1,3,4,6} 

 

D(7)={1,3,4,7} 

 

D(8)={1,3,4,7,8} 

 

D(9)={1,3,4,7,8,9} 

 

D(10)={1,3,4,7,8,10} 
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Natural Loop: 

 

One application of dominator information is in determining the loops of a flow graph 
suitable for improvement. 

 

The properties of loops are 

 

A loop must have a single entry point, called the header. This entry point-dominates all 
nodes in the loop, or it would not be the sole entry to the loop.  

There must be at least one way to iterate the loop(i.e.)at least one path back to the header. 

 

One way to find all the loops in a flow graph is to search for edges in the flow graph whose 
heads dominate their tails. If a→b is an edge, b is the head and a is the tail. These types of 
edges are called as back edges. 

 

Example: 

 

In the above graph, 

 

7 → 4 4DOM7 

10 →7 7 DOM 10 

4 → 3  

8 → 3  

 

9 →1 

 
The above edges will form loop in flow graph.  

Given a back edge n → d, we define the natural loop of the edge to be d plus th e set of nodes 

that can reach n without going through d. Node d is the header of the loop. 

 

Algorithm: Constructing the natural loop of a back edge. 

 

Input: A flow graph G and a back edge n→d. 

 

Output: The set loop consisting of all nodes in the natural loop n→d. 

 

Method: Beginning with node n, we consider each node m*d that we know is in loop, to make sure 

that m’s predecessors are also placed in loop. Each node in loop, except for d, is placed once on 
stack, so its predecessors will be examined. Note that because d is put in the loop initially, we 

never examine its predecessors, and thus find only those nodes that reach n without going through 
d. 

 

Procedure insert(m); 

if m is not in loop then begin 

loop := loop U {m}; 

push m onto stack  
end; 

 

stack : = empty; 
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loop : = {d}; 

insert(n); 

while stack is not empty do begin 

pop m, the first element of stack, off stack; 

for each predecessor p of m do insert(p)  
end 

 

Inner loop: 

 

If we use the natural loops as “the loops”, then we have the useful property that unless two 

loops have the same header, they are either disjointed or one is entirely contained in the 

other. Thus, neglecting loops with the same header for the moment, we have a natural notion 

of inner loop: one that contains no other loop.  
When two natural loops have the same header, but neither is nested within the other, they 
are combined and treated as a single loop. 

 

Pre-Headers: 

 

Several transformations require us to move statements “before the header”. Therefore begin 

treatment of a loop L by creating a new block, called the preheater. 

 

The pre-header has only the header as successor, and all edges which formerly entered 

the header of L from outside L instead enter the pre-header. 
 

Edges from inside loop L to the header are not changed. 
 

Initially the pre-header is empty, but transformations on L may place statements in it.  
 
 

 

header pre-header  

 
 

 

loop L 
 
 
 
 
 

 

(a) Before 

 
 
 
 

hea der 
 

loop L 

 

(b) After 
 

 

 

Reducible flow graphs: 
 

Reducible flow graphs are special flow graphs, for which several code optimization 

transformations are especially easy to perform, loops are unambiguously defined, 

dominators can be easily calculated, data flow analysis problems can also be solved 

efficiently. 

 

Exclusive use of structured flow-of-control statements such as if-then-else, while-do, 

continue, and break statements produces programs whose flow graphs are always 

reducible. 
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The most important properties of reducible flow graphs are that there are no jumps into 

the middle of loops from outside; the only entry to a loop is through its header. 

 

Definition: 

 

A flow graph G is reducible if and only if we can partition the edges into two disjoint 

groups, forward edges and back edges, with the following properties. 
 

The forward edges from an acyclic graph in which every node can be reached from 

initial node of G. 
 

The back edges consist only of edges where heads dominate theirs 

tails. Example: The above flow graph is reducible. 

 
If we know the relation DOM for a flow graph, we can find and remove all the back 

edges. 
 

The remaining edges are forward edges. 

 

If the forward edges form an acyclic graph, then we can say the flow graph reducible. 

 

In the above example remove the five back edges 4→3, 7→4, 8→3, 9→1 and 10→7 

whose heads dominate their tails, the remaining graph is acyclic. 

 

The key property of reducible flow graphs for loop analysis is that in such flow graphs every 

set of nodes that we would informally regard as a loop must contain a back edge. 
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VINAYAKA MISSIONS RESEARCH FOUNDATION, SALEM. 
SCHOOL OF ARTS & SCIENCE – AVIT CAMPUS, CHENNAI. 

 
DEPARTMENT OF COMPUTER SCIENCE 

QUESTION BANK 
  

BOARD   : COMPUTER SCIENCE 
PROGRAM  : M.Sc COMPUTER SCIENCE -  BATCH (2018-2020) 
REGULATION  : 2017 
YEAR/ SEMESTER : I YEAR / II SEM  

COURSE TITLE  : COMPILER DESIGN 
 

 
UNIT – I 

PART – A (6 MARKS)        
1) What is a compiler? Give a short note on phases of compiler. 

2) Explain the variety of Intermediate forms. 

3) Give the classification of a compiler 

4) Describe the properties of parse trees. 

5) Give short note on deterministic and non-deterministic automata. 

6) Differentiate between tokens and patterns. 

7) Describe about the structure of a compiler. 

8) Give short note on lexical analyser 

9) Differentiate between compiler and interpreter. 

10) Give a short note on regular expression. 

PART – B (10 MARKS)        
1) Discuss briefly about structure of a compiler. 

2) Discuss about the implementation of lexical analyser. 

3) Explain about regular expression and its property. 

4) Construct and optimize the REGEX of (a/b)* abb 

5) Explain about DFA and NFA 

6) Prepare the NFA state transition table in the given automata diagrammatic 

representation. 

UNIT – II 
PART – A (6 MARKS) 

1) Write about syntax analyser and its significance. 
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2) Write down the procedure of bottom up parsing and explain it. 

3) Describe the Top down parsing techniques with give an example. 

4) What is parsing? Explain its concepts. 

5) Define a context free grammar. 

6) List the merits and demerits of operator precedence parsing 

7) What do you mean by handle pruning? 

8) Write the algorithm for FIRST and FOLLOW. 

9) Write a short note on YACC and Explain it briefly. 

10) Mention the types of LR parser and explain it. 

 
PART – B (10 MARKS)        

1) List the properties of LR parser and explain the types of LR parser 

2) Explain about syntax analyser and its techniques. 

3) Explain runtime environment with suitable example. 

4) Optimize the following grammar with bottom up parsing techniques. 

 
 
 
 
 
 
 

5) Describe the various storage allocation strategies in detail. 

6) Why LR parsing is good and attractive? 

 
UNIT – III 

PART – A (6 MARKS)         
1) What is intermediate code generation and explain its benefits. 

2) What are the different types of three address statements? 

3) Describe about syntax tree. 

4) Write about parse tree with give an example. 

5) Give the syntax – directed definition for if else statement. 

6) Write the code generation algorithm. 

7) What is meant by syntax directed information? Explain it. 

 E         (E) 

E          

E+E 

E          E-E 

E          E* 

E 

E          E/E 

E          id 
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8) What are the three functions used for back patching? 

9) Define Quadruple and explain its merits. 

10) What is type checking? explain it. 

 
PART – B (10 MARKS)        

1) Explain type checking of expressions and statements. 

2) How could you generate the intermediate code for the flow of control 

statements? 

3) Explain syntax tree functions with give an example. 

4) Give the semantic rules for declarations in a procedure. 

5) Explain in detail about the recursive evaluators. 

6) Explain about the parse tree with give an example. 

UNIT – IV 
PART – A (6 MARKS)        

1) Describe the state allocation of space. 

2) Explain the variable length data on stack 

3) List the various storage allocation and define them. 

4) What is dynamic storage allocation. 

5) Define back patching with different functions. 

6) Define Boolean expression and short circuit code 

7) Define data structures used for symbol table. 

8) What are the intermediate languages? 

PART – B (10 MARKS)        
1) What are the different parameter passing methods in a procedure call? 

2) Explain in details about the static allocation. 

3) Explain the common sub expression eliminations. 

4) Describe the procedure calling methods with give an example. 

5) Clearly mention the heap allocation methods. 

6) Explain about the generating code for assignment statements. 

UNIT – V 

PART – A (6 MARKS)        
1) Compare the code generation and optimization 
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2) Write about the generating code for indexed assignments. 

3) What is basic block? 

4) What are the methods available in loop optimization? 

5) Write down the characteristics of peephole optimization. 

6) Describe the runtime storage management. 

7) What is a DAG? 

8) List out the optimization techniques. 

9) Distinguish between basic blocks and flow graphs. 

PART – B (10 MARKS)        
1) Describe the peephole optimization techniques with give an example. 

2) Explain DAG representation of the basic block with an example. 

3) Discuss run time storage management of code generator. 

4) Explain the optimization techniques of basic blocks. 

5) Write down the details description of Basic blocks and flow graph functions 

with an example. 

 


