

UNIT-IV

VIRTUALIZATION

Virtualization is a kind of technology that is rapidly transforming the IT landscape and has changed

the way people compute. It reduces hardware utilization, saves energy and costs and makes it possible

to run multiple applications and various operating systems on the same SERVER at the same time. It

increases the utilization, efficiency and flexibility of existing computer hardware.

1. NEED FOR VIRTUALIZATION

Virtualization provides various benefits including saving time and energy, decreasing costs and
minimizing overall risk.

 Provides ability to manage resources effectively.

 Increases productivity, as it provides secure remote access.

 Provides for data loss prevention.

What makes virtualization possible?

There is a software that makes virtualization possible. This software is known as a Hypervisor, also

known as a virtualization manager. It sits between the hardware and the operating system, and assigns

the amount of access that the applications and operating systems have with the processor and other

hardware resources.

2. TYPES OF VIRTUALIZATION

It would be easier to understand virtualization once we know about different types of virtualization,
which are as follows –

Let’s take them one by one.

Hardware/Server Virtualization

It is the most common type of virtualization as it provides advantages of hardware utilization and

application uptime. The basic idea of the technology is to combine many small physical servers into

one large physical server, so that the processor can be used more effectively and efficiently. The

operating system that is running on a physical server gets converted into a well-defined OS that runs
on the virtual machine.

The hypervisor controls the processor, memory, and other components by allowing different OS to
run on the same machine without the need for a source code.

Hardware virtualization is further subdivided into the following types:

 Full Virtualization – In it, the complete simulation of the actual hardware takes place to allow

software to run an unmodified guest OS.

 Para Virtualization – In this type of virtualization, software unmodified runs in modified OS

as a separate system.

 Partial Virtualization – In this type of hardware virtualization, the software may need

modification to run.

Network Virtualization

It refers to the management and monitoring of a computer network as a single managerial entity from

a single software-based administrator’s console. It is intended to allow network optimization of data

transfer rates, scalability, reliability, flexibility, and security. It also automates many network

administrative tasks. Network virtualization is specifically useful for networks experiencing a huge,

rapid, and unpredictable increase of usage.

The intended result of network virtualization provides improved network productivity and efficiency.

Two categories:

 Internal: Provide network like functionality to a single system.

 External: Combine many networks, or parts of networks into a virtual unit.

Storage Virtualization

In this type of virtualization, multiple network storage resources are present as a single storage device

for easier and more efficient management of these resources. It provides various advantages as

follows:

 Improved storage management in a heterogeneous IT environment

 Easy updates, better availability

 Reduced downtime

 Better storage utilization

 Automated management

In general, there are two types of storage virtualization:

 Block- It works before the file system exists. It replaces controllers and takes over at the disk

level.

 File- The server that uses the storage must have software installed on it in order to enable file-

level usage.

Memory Virtualization

It introduces a way to decouple memory from the server to provide a shared, distributed or networked

function. It enhances performance by providing greater memory capacity without any addition to the

main memory. That’s why a portion of the disk drive serves as an extension of the main memory.

Implementations –

 Application-level integration – Applications running on connected computers directly

connect to the memory pool through an API or the file system.

 Operating System Level Integration – The operating system first connects to the memory
pool, and makes that pooled memory available to applications.

Software Virtualization

It provides the ability to the main computer to run and create one or more virtual environments. It is

used to enable a complete computer system in order to allow a guest OS to run. For instance letting

Linux to run as a guest that is natively running a Microsoft Windows OS (or vice versa, running

Windows as a guest on Linux).

Types:

 Operating system

 Application virtualization

 Service virtualization

Data Virtualization

Without any technical details, you can easily manipulate data and know how it is formatted or where
it is physically located. It decreases the data errors and workload.

Desktop virtualization

It provides the work convenience and security. As one can access remotely, you are able to work from

any location and on any PC. It provides a lot of flexibility for employees to work from home or on the
go. It also protects confidential data from being lost or stolen by keeping it safe on central servers.

3. PROS AND CONS OF VIRTUALIZATION

Benefits of virtualization offered up by both organizations as well as vendors:

 Lower overall capital expenditures. Virtualization means that you don’t need to purchase a server

for every single application that you want to implement in your organization. By hosting multiple

virtual servers on a single physical machine, you dramatically reduce your cost overhead.

 Automated tasks. Virtualization lets you automate a number of significant routine IT tasks.

Something as simple as Operating System patches become much simpler and quicker.

 Greater redundancy. Virtualization should improve your uptime. Virtualization technologies

allow greater safety and security while reducing the points of contact.

 Faster deployment. In an virtualized environment, provisioning becomes quick and simple.

Deploying a virtual machine is overwhelmingly simpler than deploying a physical machine.

There can be some downsides to virtualization, as well:

 High upfront expenditures. When you’re implementing a virtualization strategy from the ground

up, chances are you’re going to have to sink more money into hardware in the immediate future.

While you’ll save in the long run, implementation can get pricey.

 Not all applications are ready for virtualization. There are still vendors not fully supporting

virtualized environments.

 The danger of server sprawl. Because servers are so easy to deploy in a virtualized environment,

there’s always the danger that new servers will be added even when they’re not needed. Instead of

the 10 or 20 virtual servers you really need, you might have 30 or 40.

4. VIRTUAL MACHINE

Virtual Machine is a completely separate individual operating system installation on your usual

operating system. It is implemented by software emulation and hardware virtualization.

Virtual machine is a software implementation of a physical machine - computer - that works and

executes analogically to it. Virtual machines are divided in two categories based on their use and

correspondence to real machine: system virtual machines and process virtual machines. First category

provides a complete system platform that executes complete operating system, second one will run a

single program.

Frequently multiple virtual machines with their own OS's are used in server consolidation, where

different services are run in separate virtual environments, but on the same physical machine.

The main advantages of virtual machines:

 Multiple OS environments can exist simultaneously on the same machine, isolated from each

other;

 Virtual machine can offer an instruction set architecture that differs from real computer's;

 Easy maintenance, application provisioning, availability and convenient recovery.

The main disadvantages:

 When multiple virtual machines are simultaneously running on a host computer, each virtual

machine may introduce an unstable performance, which depends on the workload on the

system by other running virtual machines;

 Virtual machine is not that efficient as a real one when accessing the hardware.

TYPES OF VIRTUAL MACHINE

virtual machines can be divided into two categories:

1. System Virtual Machines: A system platform that supports the sharing of the host computer's

physical resources between multiple virtual machines, each running with its own copy of the

operating system. The virtualization technique is provided by a software layer known as a

hypervisor, which can run either on bare hardware or on top of an operating system.

2. Process Virtual Machine: Designed to provide a platform-independent programming

environment that masks the information of the underlying hardware or operating system and

allows program execution to take place in the same way on any given platform.

5. PROCESS VIRTUAL MACHINE

6. SYSTEM VIRTUAL MACHINE

7. BINARY TRANSLATION

Depending on implementation technologies, hardware virtualization can be classified into two

categories:full virtualization and host-based virtualization. Full virtualization does not need to modify

the host OS. It relies on binary translation to trap and to virtualize the execution of certain sensitive,

nonvirtualizable instructions. The guest OSes and their applications consist of noncritical and critical

instructions. In a host-based system, both a host OS and a guest OS are used. A virtualization software

layer is built between the host OS and guest OS.

Full Virtualization

With full virtualization, noncritical instructions run on the hardware directly while critical instructions

are discovered and replaced with traps into the VMM to be emulated by software. Both the hypervisor

and VMM approaches are considered full virtualization. Why are only critical instructions trapped

into the VMM? This is because binary translation can incur a large performance overhead. Noncritical

instructions do not control hardware or threaten the security of the system, but critical instructions do.

Therefore, running noncritical instructions on hardware not only can promote efficiency, but also can

ensure system security.

Binary Translation of Guest OS Requests Using a VMM

This approach was implemented by VMware and many other software companies. As shown in

Figure 3.6, VMware puts the VMM at Ring 0 and the guest OS at Ring 1. The VMM scans the

instruction stream and identifies the privileged, control- and behavior-sensitive instructions. When

these instructions are identified, they are trapped into the VMM, which emulates the behavior of these

instructions. The method used in this emulation is called binary translation. Therefore, full

virtualization combines binary translation and direct execution. The guest OS is completely decoupled

from the underlying hardware. Consequently, the guest OS is unaware that it is being virtualized. The

performance of full virtualization may not be ideal, because it involves binary translation which is

rather time-consuming. In particular, the full virtualization of I/O-intensive applications is a really a

big challenge. Binary translation employs a code cache to store translated hot instructions to improve

performance, but it increases the cost of memory usage. At the time of this writing, the performance

of full virtualization on the x86 architecture is typically 80 percent to 97 percent that of the host

machine.

Host-Based Virtualization

An alternative VM architecture is to install a virtualization layer on top of the host OS. This host OS

is still responsible for managing the hardware. The guest OSes are installed and run on top of the

virtualization layer. Dedicated applications may run on the VMs. Certainly, some other applications

can also run with the host OS directly. This host-based architecture has some distinct advantages, as

enumerated next. First, the user can install this VM architecture without modifying the host OS. The

virtualizing software can rely on the host OS

to provide device drivers and other low-level services. This will simplify the VM design and ease its

deployment. Second, the host-based approach appeals to many host machine configurations.

Compared to the hypervisor/VMM architecture, the performance of the host-based architecture may

also be low. When an application requests hardware access, it involves four layers of mapping which

downgrades performance significantly. When the ISA of a guest OS is different from the ISA of the

underlying hardware, binary translation must be adopted. Although the host-based architecture has

flexibility, the performance is too low to be useful in practice.

Para-Virtualization with Compiler Support

Para-virtualization needs to modify the guest operating systems. A para-virtualized VM provides

special APIs requiring substantial OS modifications in user applications. Performance degradation is a

critical issue of a virtualized system. No one wants to use a VM if it is much slower than using a

physical machine. The virtualization layer can be inserted at different positions in a machine software

stack. However, para-virtualization attempts to reduce the virtualization overhead, and thus improve

performance by modifying only the guest OS kernel.

Figure 3.7 illustrates the concept of a para-virtualized VM architecture. The guest operating

systems are para-virtualized. They are assisted by an intelligent compiler to replace the

nonvirtualizable OS instructions by hypercalls as illustrated in Figure 3.8. The traditional x86

processor offers four instruction execution rings: Rings 0, 1, 2, and 3. The lower the ring number, the

higher the privilege of instruction being executed. The OS is responsible for managing the hardware

and the privileged instructions to execute at Ring 0, while user-level applications run at Ring 3. The

best example of para-virtualization is the KVM to be described below.

Para-Virtualization Architecture

When the x86 processor is virtualized, a virtualization layer is inserted between the hardware and the

OS. According to the x86 ring definition, the virtualization layer should also be installed at Ring 0.

Different instructions at Ring 0 may cause some problems. In Figure 3.8, we show that para-

virtualization replaces nonvirtualizable instructions with hypercalls that communicate directly with

the hypervisor or VMM. However, when the guest OS kernel is modified for virtualization, it can no

longer run on the hardware directly.

Although para-virtualization reduces the overhead, it has incurred other problems. First, its

compatibility and portability may be in doubt, because it must support the unmodified OS as well.

Second, the cost of maintaining para-virtualized OSes is high, because they may require deep OS

kernel modifications. Finally, the performance advantage of para-virtualization varies greatly due to

workload variations. Compared with full virtualization, para-virtualization is relatively easy and more

practical. The main problem in full virtualization is its low performance in binary translation. To

speed up binary translation is difficult. Therefore, many virtualization products employ the para-

virtualization architecture. The popular Xen, KVM, and VMware ESX are good examples.

KVM (Kernel-Based VM)

This is a Linux para-virtualization system—a part of the Linux version 2.6.20 kernel. Memory

management and scheduling activities are carried out by the existing Linux kernel. The KVM does the

rest, which makes it simpler than the hypervisor that controls the entire machine. KVM is a hardware-

assisted para-virtualization tool, which improves performance and supports unmodified guest OSes

such as Windows, Linux, Solaris, and other UNIX variants.

Para-Virtualization with Compiler Support

Unlike the full virtualization architecture which intercepts and emulates privileged and sensitive

instructions at runtime, para-virtualization handles these instructions at compile time. The guest OS

kernel is modified to replace the privileged and sensitive instructions with hypercalls to the hypervisor

or VMM. Xen assumes such a para-virtualization architecture.

The guest OS running in a guest domain may run at Ring 1 instead of at Ring 0. This implies that the

guest OS may not be able to execute some privileged and sensitive instructions. The privileged

instructions are implemented by hypercalls to the hypervisor. After replacing the instructions with

hypercalls, the modified guest OS emulates the behavior of the original guest OS. On an UNIX

system, a system call involves an interrupt or service routine. The hypercalls apply a dedicated service

routine in Xen.

8. HIGH LEVEL LANGUAGE VM

 Designing a special guest ISA/system interface is known to be HLL VM:

- With portability as the main goal

- Define an abstract interface that can be supported by all conventional OSes.

- Reflects important features of specific HLL or class of HLLs.

- Simplifies compilation

HLL VM is similar to process VM but..

- ISA defined for user-mode programs only

- ISA not designed for real hardware

 Only to be executed on virtual processor

 Referred to as virtual-ISA or v-ISA

- System interface is a set of standardized APIs.

HLL VMs from language / compiler perspective

Goal: Complete platform independence for applications

Virtual instruction set + libraries (Instead of ISA and OS interface)

P-Code VM

- Popularized HLL VMs

- Provided highly portable version of Pascal

- Consists of

 Primitive libraries

 Machine-independent object file format

 A set of byte-oriented ―pseudo-codes‖

 Virtual machine definition of pseudo-code semantics

- Instruction set

 Stack oriented

 Stack ―Frame‖ is part of VM definition

MP-Mark Pointer

EP-Extreme Pointer

NP-New Pointer

SP-Stack Pointer

Advantages

- Porting is simplified

 Don’t have to develop compilers for all platforms

- VM implementation is smaller/simpler than a compiler

- VM provides concise definition of semantics

- Through interpretation, startup time is reduced

- Generic I/O and Memory interface

 Tended to be least common denominator

Modern HLL VMs

- Superficially similar to P-code scheme

 Stack-oriented ISA

 Standard libraries

- Network Computing Environment

 Untrusted software

 Robustness

 Object-oriented programming

 Bandwidth is a consideration

 Good performance must be maintained

- Two major examples

 Java VM

 Microsoft Common Language Infrastructure (CLI)

- Compiler forms program files (e.g. class files)

 Standard format

- Program files contain both code and metadata

Java Virtual Machine Architecture --- CLI

- Analogous to an ISA

Java Virtual Machine Implementation -- CLR (Common Language Runtime)

- Analogous to a computer implementation

Java bytecodes – Microsoft Intermediate Language (MSIL), CIL, IL

- The instruction part of the ISA

Java Platform -- .Net framework

- ISA + libraries ; A higher level of ABI

Hypervisor - Xen Architecture

The hypervisor supports hardware-level virtualization (see Figure 3.1(b)) on bare metal devices like

CPU, memory, disk and network interfaces. The hypervisor software sits directly between the

physical hardware and its OS. This virtualization layer is referred to as either the VMM or the

hypervisor. The hypervisor provides hypercalls for the guest OSes and applications. Depending on the

functionality, a hypervisor can assume a micro-kernel architecture like the Microsoft Hyper-V. Or it

can assume a monolithic hypervisor architecture like the VMware ESX for server virtualization. A

micro-kernel hypervisor includes only the basic and unchanging functions (such as physical memory

management and processor scheduling). The device drivers and other changeable components are

outside the hypervisor. A monolithic hypervisor implements all the aforementioned functions,

including those of the device drivers. Therefore, the size of the hypervisor code of a micro-kernel

hypervisor is smaller than that of a monolithic hypervisor. Essentially, a hypervisor must be able to

convert physical devices into virtual resources dedicated for the deployed VM to use.

9. Hypervisors- The Xen Architecture

Xen is an open source hypervisor program developed by Cambridge University. Xen is a microkernel

hypervisor, which separates the policy from the mechanism. The Xen hypervisor implements all the

mechanisms, leaving the policy to be handled by Domain 0 does not include any device drivers

natively It just provides a mechanism by which a guest OS can have direct access to the physical

devices. As a result, the size of the Xen hypervisor is kept rather small. Xen provides a virtual

environment located between the hardware and the OS. A number of vendors are in the process of

developing commercial Xen hypervisors, among them are Citrix XenServer and Oracle VM. The

core components of a Xen system are the hypervisor, kernel, and applications. The organization of the

three components is important. Like other virtualization systems, many guest OSes can run on top of

the hypervisor. However, not all guest OSes are created equal, and one in particular controls the

others. The guest OS, which has control ability, is called Domain 0, and the others are called Domain

U. Domain 0 is a privileged guest OS of Xen. It is first loaded when Xen boots without any file

system drivers being available. Domain 0 is designed to access hardware directly and manage devices.

Therefore, one of the responsibilities of Domain 0 is to allocate and map hardware resources for the

guest domains (the Domain U domains). For example, Xen is based on Linux and its security level is

C2. Its management VM is named Domain 0, which has the privilege to manage other VMs

implemented on the same host. If Domain 0 is compromised, the hacker can control the entire system.

So, in the VM system, security policies are needed to improve the security of Domain 0. Domain 0,

behaving as a VMM, allows users to create, copy, save, read, modify, share, migrate, and roll back

VMs as easily as manipulating a file, which flexibly provides tremendous benefits for users.

Unfortunately, it also brings a series of security problems during the software life cycle and data

lifetime.

Traditionally, a machine’s lifetime can be envisioned as a straight line where the current state of the

machine is a point that progresses monotonically as the software executes. During this time,

configuration Changes are made, software is installed, and patches are applied. In such an

environment, the VM state is akin to a tree: At any point, execution can go into N different branches

where multiple instances of a VM can exist at any point in this tree at any given time. VMs are

allowed to roll back to previous states in their execution (e.g., to fix configuration errors) or rerun

from the same point many times (e.g., as a means of distributing dynamic content or circulating a

―live‖ system image).

10. KVM

Open source hypervisor based on Linux

KVM

 Kernel module that turns Linux into a virtual Machine Monitor

 Merged into the Linux kernel

QEMU

- Emulator used for I/O device virtualization

x86 virtualizations extensions

- Intel VT-x

- AMD (AMD-V)

Over the past years x86 virtualization has become widespread through server consolidation and

recently it is playing a role at the heart of cloud computing. KVM provides a virtualization solution

with world-class performance together with the benefits of an open source platform. This post

explains the key components of KVM and how they work together.

Hardware virtualization from Linux kernel

KVM is closely associated with Linux because it uses the Linux kernel as a bare metal hypervisor. A

host running KVM is actually running a Linux kernel and the KVM kernel module, which was

merged into Linux 2.6.20 and has since been maintained as part of the kernel. This approach takes

advantage of the insight that modern hypervisors must deal with a wide range of complex hardware

and resource management challenges that have already been solved in operating system kernels.

Linux is a modular kernel and is therefore an ideal environment for building a hypervisor.

Full Linux hardware support for network cards, storage, and servers

Since KVM uses the Linux kernel, KVM works with network cards, storage adapters, and other

hardware supported by Linux. This gives KVM excellent host hardware support that does not lag

behind bare metal operating systems.

 Hardware virtualization extensions provide secure and efficient way to run VM code on

physical CPU
At the heart of KVM is a Linux kernel module which safely executes guest code directly on the host

CPU. This is made efficient by hardware virtualization extensions, introduced in the mid-2000s by

both AMD and Intel and available in almost all modern x86 processors. Virtualization extensions

added a new mode of execution that allows unmodified guests to run without giving them full access

to memory and other resources.

Device emulation in user space

While guest code executes directly on the host CPU in a safe manner, most I/O accesses are

trapped instead of sending them directly to host devices. The guest sees an emulated chipset and PCI

bus on which both emulated and pass-through adapters can be added. KVM features paravirtualized

networking, storage, and memory ballooning drivers that improve efficiency of I/O and allow

adjusting the amount of RAM available to a guest at run-time.

Runs with SELinux isolation

Device emulation is performed by the qemu-kvm user space process on the host. This allows

the kernel module to stay lean and focus on the most performance-critical aspects while userspace

device emulation emulates hardware devices in an isolated process outside of the host kernel. The

sVirt feature locks down the qemu-kvm process with SELinux Mandatory Access Control so it can

only access files and resources it needs and nothing more.

Secure remote management API

Management tools need to monitor and access guests that might be running on remote hosts

or locally. This is done through a set of APIs and utilities that enable applications to manipulate

guests and automate management tasks. Libvirt provide the language bindings and command-line

utilities for developing applications and scripting common operations.

Each host runs the libvirt daemon, which provides secure remote management APIs but it can also be

configured to serve locally only and not be visible over the network. The libvirt daemon maintains

guest configurations across reboot and is the central point for setting up networking and storage pools.

Systems management can be added and uses libvirt API

Most administration is done with tools that use the libvirt API, especially the virsh command-line tool

which presents guest and host management operations. The graphical virt-manager tool can easily

manage local or remote guests. Third-party management tooling such as cloud stacks can be used for

higher-level datacenter or cloud management and they typically integrate with libvirt.

11.VMWare

VMware Infrastructure is the industry’s first full infrastructure virtualization suite that allows

enterprises and small businesses alike to transform, manage and optimize their IT systems

infrastructure through virtualization. VMware Infrastructure delivers comprehensive virtualization,

management, resource optimization, application availability and operational automation capabilities in

an integrated offering.

VMware Infrastructure includes the following components as :

• VMware ESX Server – A production-proven virtualization layer run on physical servers that abstract

processor, memory, storage and networking resources to be provisioned to multiple virtual machines

• VMware Virtual Machine File System (VMFS) – A high-performance cluster file system for virtual

machines

• VMware Virtual Symmetric Multi-Processing (SMP) – Enables a single virtual machine to use

multiple physical processors simultaneously

• VirtualCenter Management Server – The central point for configuring, provisioning and managing

virtualized IT infrastructure

• Virtual Infrastructure Client (VI Client) – An interface that allows administrators and users to

connect remotely to the VirtualCenter Management Server or individual ESX Server installations

from any Windows PC

 Virtual Infrastructure Web Access – A Web interface for virtual machine management and remote

consoles access

• VMware VMotion™ – Enables the live migration of running virtual machines from one physical

server to another with zero downtime, continuous service availability and complete transaction

integrity

• VMware High Availability (HA) – Provides easy-to-use, costeffective high availability for

applications running in virtual machines. In the event of server failure, affected virtual machines are

automatically restarted on other production servers that have spare capacity

• VMware Distributed Resource Scheduler (DRS) – Intelligently allocates and balances computing

capacity dynamically across collections of hardware resources for virtual machines

• VMware Consolidated Backup – Provides an easy to use, centralized facility for agent-free backup

of virtual machines. It simplifies backup administration and reduces the load on ESX Server

installations

• VMware Infrastructure SDK – Provides a standard interface for VMware and third-party solutions to

access VMware Infrastructure

12. VIRTUAL BOX

 Architecture

VirtualBox uses a layered architecture consisting of a set of kernel modules for running virtual

machines, an API for managing the guests, and a set of user programs and services. At the core is the

hypervisor, implemented as a ring 0 (privileged) kernel service. The kernel service consists of a

device driver named vboxsrv, which is responsible for tasks such as allocating physical memory for

the guest virtual machine, and several loadable hypervisor modules for things like saving and

restoring the guest process context when a host interrupt occurs, turning control over to the guest OS

to begin execution, and deciding when VT-x or AMD-V events need to be handled.

The hypervisor does not get involved with the details of the guest operating system scheduling.

Instead, those tasks are handled completely by the guest during its execution. The entire guest is run

as a single process on the host system and will run only when scheduled by the host. If they are

present, an administrator can use host resource controls such as scheduling classes and CPU caps or

reservations to give very predictable execution of the guest machine.

Additional device drivers will be present to allow the guest machine access to other host resources

such as disks, network controllers, and audio and USB devices. In reality, the hypervisor actually does

little work. Rather, most of the interesting work in running the guest machine is done in the guest

process. Thus the host's resource controls and scheduling methods can be used to control the guest

machine behavior.

In addition to the kernel modules, several processes on the host are used to support running guests. All

of these processes are started automatically when needed.

 VBoxSVC is the VirtualBox service process. It keeps track of all virtual machines that are

running on the host. It is started automatically when the first guest boots.

 vboxzoneacess is a daemon unique to Solaris that allows the VirtualBox device to be accessed

from an Oracle Solaris Container.

 VBoxXPCOMIPCD is the XPCOM process used on non-Windows hosts for interprocess

communication between guests and the management applications. On Windows hosts, the

native COM services are used.

 VirtualBox is the process that actually runs the guest virtual machine when started. One of

these processes exists for every guest that is running on the host. If host resource limits are

desired for the guest, this process enforces those controls.

Interacting with Oracle VM VirtualBox

There are two primary methods for a user to interact with VirtualBox: a simple graphical user

interface (GUI) and a very complete and detailed command-line interface (CLI). The GUI allows the

user to create and manage guest virtual machines as well as set most of the common configuration

options. When a guest machine is started from this user interface, a graphical console window opens

on the host that allows the user to interact with the guest as if it were running on real hardware. To

start the graphical interface, type the command VirtualBox at any shell prompt. On Oracle Solaris,

this command is found in /usr/bin and is available to all users.

13.HYPER-V ARCHITECTURE

 Hyper-V is a hypervisor-based virtualization platform and an enabling technology for one of

Windows Server 2008 R2’s marquee features, Live Migration. With Hyper-V version 1.0, Windows

Server 2008 was capable of Quick Migration, which could move VMs between physical hosts with

only a few seconds of down-time. With Live Migration, moves between physical targets happen in

millisecond, which means migration operations become invisible to connected users. To find out new

features and improvements in Windows Server 2008 R2 Hyper-V.

The hypervisor is the processor-specific virtualization platform that can host multiple virtual

machines (VMs) that are isolated from each other but share the underlying hardware resources by

virtualizing the processors, memory, and I/O devices.

Guest operating systems running in a Hyper-V virtual machine provide performance approaching the

performance of an operating system running on physical hardware if the necessary virtual server client

(VSC) drivers and services are installed on the guest operating system. Hyper-V virtual server client

(VSC) code, also known as Hyper-V enlightened I/O, enables direct access to the Hyper-V ―Virtual

Machine Bus‖ and is available with the installation of Hyper-V integration services. Both Windows

Server 2008 R2 and Windows 7 support Hyper-V enlightened I/O with Hyper-V integration services.

Hyper-V Integration services that provide VSC drivers are also available for other client operating

systems.

Hyper-V supports isolation in terms of a partition. A partition is a logical unit of isolation, supported

by the hypervisor, in which operating systems execute. The Microsoft hypervisor must have at least

one parent, or root, partition, running Windows Server 2008 R2. The virtualization stack runs in the

parent partition and has direct access to the hardware devices. The root partition then creates the child

partitions which host the guest operating systems. A root partition creates child partitions using the

hypercall application programming interface (API).

Partitions do not have access to the physical processor, nor do they handle the processor interrupts.

Instead, they have a virtual view of the processor and run in a virtual memory address region that is

private to each guest partition. The hypervisor handles the interrupts to the processor, and redirects

them to the respective partition. Hyper-V can also hardware accelerate the address translation between

various guest virtual address spaces by using an Input Output Memory Management Unit (IOMMU)

which operates independent of the memory management hardware used by the CPU. An IOMMU is

used to remap physical memory addresses to the addresses that are used by the child partitions.

Child partitions also do not have direct access to other hardware resources and are presented a virtual

view of the resources, as virtual devices (VDevs). Requests to the virtual devices are redirected either

via the VMBus or the hypervisor to the devices in the parent partition, which handles the requests.

The VMBus is a logical inter-partition communication channel. The parent partition hosts

Virtualization Service Providers (VSPs) which communicate over the VMBus to handle device access

requests from child partitions. Child partitions host Virtualization Service Consumers (VSCs) which

redirect device requests to VSPs in the parent partition via the VMBus. This entire process is

transparent to the guest operating system.

Virtual Devices can also take advantage of a Windows Server Virtualization feature, named

Enlightened I/O, for storage, networking, graphics, and input subsystems. Enlightened I/O is a

specialized virtualization-aware implementation of high level communication protocols (such as

SCSI) that utilize the VMBus directly, bypassing any device emulation layer. This makes the

communication more efficient but requires an enlightened guest that is hypervisor and VMBus aware.

Hyper-V enlightened I/O and a hypervisor aware kernel is provided via installation of Hyper-V

integration services. Integration components, which include virtual server client (VSC) drivers, are

also available for other client operating systems. Hyper-V requires a processor that includes hardware

assisted virtualization, such as is provided with Intel VT or AMD Virtualization (AMD-V)

technology.

The following diagram provides a high-level overview of the architecture of a Hyper-V environment

running on Windows Server 2008.

Overview of Hyper-V architecture

 APIC – Advanced Programmable Interrupt Controller. A device which allows priority levels

to be assigned to its interrupt outputs.

 Child Partition – Partition that hosts a guest operating system. All access to physical memory

and devices by a child partition is provided via the Virtual Machine Bus (VMBus) or the

hypervisor.

 Hypercall – Interface for communication with the hypervisor. The hypercall interface

accommodates access to the optimizations provided by the hypervisor.

 Hypervisor – A layer of software that sits between the hardware and one or more operating

systems. Its primary job is to provide isolated execution environments called partitions. The

hypervisor controls and arbitrates access to the underlying hardware.

 IC – Integration component. Component that allows child partitions to communication with

other partitions and the hypervisor.

 I/O stack – Input/output stack.

 MSR – Memory Service Routine.

 Root Partition – Manages machine-level functions such as device drivers, power

management, and device hot addition/removal. The root (or parent) partition is the only

partition that has direct access to physical memory and devices.

 VID – Virtualization Infrastructure Driver. Provides partition management services, virtual

processor management services, and memory management services for partitions.

 VMBus – Channel-based communication mechanism used for inter-partition communication

and device enumeration on systems with multiple active virtualized partitions. The VMBus is

installed with Hyper-V Integration Services.

 VMMS – Virtual Machine Management Service. Responsible for managing the state of all

virtual machines in child partitions.

 VMWP – Virtual Machine Worker Process. A user mode component of the virtualization

stack. The worker process provides virtual machine management services from the Windows

Server 2008 R2 instance in the parent partition to the guest operating systems in the child

partitions. The Virtual Machine Management Service spawns a separate worker process for

each running virtual machine.

 VSC – Virtualization Service Client. A synthetic device instance that resides in a child

partition. VSCs utilize hardware resources that are provided by Virtualization Service

Providers (VSPs) in the parent partition. They communicate with the corresponding VSPs in

the parent partition over the VMBus to satisfy a child partitions device I/O requests.

 VSP – Virtualization Service Provider. Resides in the root partition and provide synthetic

device support to child partitions over the Virtual Machine Bus (VMBus).

 WinHv – Windows Hypervisor Interface Library. WinHv is essentially a bridge between a

partitioned operating system’s drivers and the hypervisor which allows drivers to call the

hypervisor using standard Windows calling conventions

 WMI – The Virtual Machine Management Service exposes a set of Windows Management

Instrumentation (WMI)-based APIs for managing and controlling virtual machines.

