

OPERATING SYSTEMS

Senthil kumar s, AP , Dept of Computer Science & Applications, SAS, VMRF,

Chennai

OPERATING SYSTEMS

LECTURE NOTES (Semester – IV)

for

Bachelor of computer applications

Department of Computer Science and Applications

School of Arts & Science

Vinayaka Mission’s Research Foundation
A V Campus, Chennai – 603104.

Lecture Notes Prepared by:
s.senthil kumar Asst. Professor,

Page 2

VINAYAKA MISSIONS UNIVERSITY

SECONDD YEAR B.C.A.

SEMESTER IV

CORE COURSE – IX : OPERATING SYSTEM

 L T P C

 4 0 0 4

Objective: To provide an introduction to the internal operation of modern operating systems.

UNIT I 12 Hrs

Introduction: Operating System-An overview: Mainframe Systems, Desktop Systems, Multiprocessor Systems, Distributed

Systems, Clustered Systems, and Real- Time Systems. Computer-System Structures: Operation, I/O Structure, And Storage

Structure, Storage Hierarchy.Operating-System Structures: System Components, Operating-System Services, System Calls,

System Programs, System Structure

UNIT II 12 Hrs

Mass-Storage Structures: Disk Structure; Disk Scheduling; Disk Management; Swap- Space Management. Processes: Process

Concept; Process Scheduling, Operations On Processes.

CPU Scheduling: Basic Concepts; Scheduling Criteria; Scheduling Algorithms.

UNIT III 12 Hrs

Storage Management: Memory Management- Backward, Swapping, Contiguous Memory Allocation, Paging, Segmentation,

Segmentation with Paging.

UNIT IV 12 Hrs

File-System Interface: File Concept; Access Methods; Directory Structure; Protection.

File-System Implementation: File-System Structure; File-System Implementation; Directory Implementation; Allocation

Methods, Free-Space Management.

Protection: Goals of Protection; Domain Of Protection; Access Matrix; Implementation Of Access Matrix; Revocation Of

Access Rights.

UNIT V 12 Hrs

The Unix System: Evolution of UNIX – UNIX System Structure – Features of Unix - Operating System Services - Unix Kernel

- Architecture of Unix - System Concepts – Unix file system- Process management – Unix Commands and utilities.

 Total Hours: 60 Hrs

Text book:

1. A. Silberschatz et.al.-Operating System Concepts, 6th Edition, John Wiley Inc., 2003

Reference books:

1. H.M. Deitel -Operating Systems , 6th Edition, Pearson Education, 2006

2. D.M. Dhandhare - Operating Systems, 2nd Edition, Tata McGraw Hill, New Delhi, 2006

Page 3

Introduction

OVER VIEW OF OPERATING SYSTEM

What is an Operating System?

A program that acts as an intermediary between a user of a computer and the computer hardware

Operating system goals:

Execute user programs and make solving user problems easier

Make the computer system convenient to use

Use the computer hardware in an efficient manner

Computer System Structure

Computer system can be divided into four components

 Hardware – provides basic computing resources

CPU, memory, I/O devices

 Operating system
Controls and coordinates use of hardware among various applications and users

 Application programs – define the ways in which the system resources are used to solve the computing
problems of the users

Word processors, compilers, web browsers, database systems, video games

Users

People, machines, other computers

Four Components of a Computer System

Operating System Definition

OS is a resource allocator

Manages all resources

Decides between conflicting requests for efficient and fair resource use

OS is a control program

Controls execution of programs to prevent errors and improper use of the computer

No universally accepted definition

Everything a vendor ships when you order an operating system” is good approximation

But varies wildly

Page 4

 “The one program running at all times on the computer” is the kernel. Everything else is either a
system program (ships with the operating system) or an application program

Computer Startup

bootstrap program is loaded at power-up or reboot

Typically stored in ROM or EPROM, generally known as firmware

Initializes all aspects of system

Loads operating system kernel and starts execution

Computer System Organization

Computer-system operation

One or more CPUs, device controllers connect through common bus providing access to shared memory

Concurrent execution of CPUs and devices competing for memory cycles

Computer-System Operation

I/O devices and the CPU can execute concurrently

Each device controller is in charge of a particular device type

Each device controller has a local buffer

CPU moves data from/to main memory to/from local buffers

I/O is from the device to local buffer of controller

Device controller informs CPU that it has finished its operation by causing An interrupt

Common Functions of Interrupts

 Interrupt transfers control to the interrupt service routine generally, through the interrupt vector, which
contains the addresses of all the service routines

Interrupt architecture must save the address of the interrupted instruction

Incoming interrupts are disabled while another interrupt is being processed to prevent a lost interruptnA

trap is a software-generated interrupt caused either by an error or a user request

 An operating system is interrupt driven

Interrupt Handling

The operating system preserves the state of the CPU by storing registers and the program counter

Determines which type of interrupt has occurred:

polling

Page 5

I/O Structure

After I/O starts, control returns to user program only upon I/O comple

Wait instruction idles the CPU until the next interrupt

Wait loop (contention for memory access)

At most one I/O request is outstanding at a time, no simultaneous I/O

After I/O starts, control returns to user program without waiting for I/O

vectored interrupt system

Separate segments of code determine what action should be taken for each type of interrupt

Interrupt Timeline

tion

processing

completion

System call – request to the operating system to allow user to wait for I/O completion

Device-status table contains entry for each I/O device indicating its type, address, and state

Operating system indexes into I/O device table to determine device status and to modify table entry to

include interrupt

Direct Memory Access Structure

Used for high-speed I/O devices able to transmit information at close to memory speeds

Device controller transfers blocks of data from buffer storage directly to main memory without CPU

intervention

 Only one interrupt is generated per block, rather than the one interrupt per byte

Storage Structure

Main memory – only large storage media that the CPU can access directly

Secondary storage – extension of main memory that provides large nonvolatile storage capacity

Magnetic disks – rigid metal or glass platters covered with magnetic recording material

Disk surface is logically divided into tracks, which are subdivided into sectors

The disk controller determines the logical interaction between the device and the computer

Storage Hierarchy

Storage systems organized in hierarchy

Speed

Cost

Volatility

Caching – copying information into faster storage system; main memory can be viewed as a last cache for

secondary storage

Page 6

Caching

Important principle, performed at many levels in a computer (in hardware, operating system, software)

Information in use copied from slower to faster storage temporarily

Faster storage (cache) checked first to determine if information is there

If it is, information used directly from the cache (fast)

If not, data copied to cache and used there

Cache smaller than storage being cached

Cache management important design problem

Cache size and replacement policy

Computer-System Architecture

Most systems use a single general-purpose processor (PDAs through mainframes)

Most systems have special-purpose processors as well

Multiprocessors systems growing in use and importance

Also known as parallel systems, tightly-coupled systems

Advantages include

1.Increased throughput

2.Economy of scale

3. Increased reliability – graceful degradation or fault tolerance

Two types

1. Asymmetric Multiprocessing

2.Symmetric Multiprocessing

Page 7

How a Modern Computer Works

Symmetric Multiprocessing Architecture

A Dual-Core Design

Clustered Systems

Like multiprocessor systems, but multiple systems working together

Usually sharing storage via a storage-area network (SAN)

Provides a high-availability service which survives failures
Asymmetric clustering has one machine in hot-standby mode

Symmetric clustering has multiple nodes running applications, monitoring each other

 Some clusters are for high-performance computing (HPC)
Applications must be written to use parallelization

Operating System Structure

Multiprogramming needed for efficiency

Single user cannot keep CPU and I/O devices busy at all times

Multiprogramming organizes jobs (code and data) so CPU always has one to Execute

A subset of total jobs in system is kept in memory

Page 8

One job selected and run via job scheduling

When it has to wait (for I/O for example), OS switches to another job

Timesharing (multitasking) is logical extension in which CPU switches jobs so frequently that users

can interact with each job while it is running, creating interactive computing

Response time should be < 1 second

Each user has at least one program executing in memory [process

If several jobs ready to run at the same time [CPU scheduling

If processes don’t fit in memory, swapping moves them in and out to run

Virtual memory allows execution of processes not completely in memory

Memory Layout for Multiprogrammed System

Operating-System Operations

Interrupt driven by hardware

Software error or request creates exception or trap

Division by zero, request for operating system service

Other process problems include infinite loop, processes modifying each Other or the operating system

Dual-mode operation allows OS to protect itself and other system components

User mode and kernel mode

Mode bit provided by hardware

Provides ability to distinguish when system is running user code or kernel code

Some instructions designated as privileged, only executable in kernel mode

System call changes mode to kernel, return from call resets it to user

Transition from User to Kernel Mode

Timer to prevent infinite loop / process hogging resources

Set interrupt after specific period

Operating system decrements counter

When counter zero generate an interrupt

Set up before scheduling process to regain control or terminate program that exceeds allotted time

Page 9

UNIT - 1

OPERATING SYSTEM FUNCTIONS

Process Management

 A process is a program in execution. It is a unit of work within the system. Program is a passive entity,
process is an active entity.

Process needs resources to accomplish its task

CPU, memory, I/O, files

Initialization data

Process termination requires reclaim of any reusable resources

Single-threaded process has one program counter specifying location of next instruction to execute

Process executes instructions sequentially, one at a time, until completion

Multi-threaded process has one program counter per thread

Typically system has many processes, some user, some operating system running concurrently on one or

more CPUs

 Concurrency by multiplexing the CPUs among the processes / threads

Process Management Activities

 The operating system is responsible for the following activities in connection with process
management:

Creating and deleting both user and system processes

Suspending and resuming processes

Providing mechanisms for process synchronization

Providing mechanisms for process communication

Providing mechanisms for deadlock handling

Memory Management

All data in memory before and after processing

All instructions in memory in order to execute

Memory management determines what is in memory when

Optimizing CPU utilization and computer response to users

Page 10

 Dept. of Computer Science and Engineering

Memory management activities

Keeping track of which parts of memory are currently being used and by whom

Deciding which processes (or parts thereof) and data to move into and out of memory

Allocating and deallocating memory space as needed

Storage Management

OS provides uniform, logical view of information storage

Abstracts physical properties to logical storage unit - file

Each medium is controlled by device (i.e., disk drive, tape drive)

Varying properties include access speed, capacity, data-transfer rate, access method (sequential or

random)

File-System management

Files usually organized into directories

Access control on most systems to determine who can access what

OS activities include

Creating and deleting files and directories

Primitives to manipulate files and dirs

Mapping files onto secondary storage

Backup files onto stable (non-volatile) storage media

Mass-Storage Management

 Usually disks used to store data that does not fit in main memory or data that must be kept for a “long”
period of time

Proper management is of central importance

Entire speed of computer operation hinges on disk subsystem and its algorithms

MASS STORAGE activities

Free-space management

Storage allocation

Disk scheduling

Some storage need not be fast

Tertiary storage includes optical storage, magnetic tape

Still must be managed

Varies between WORM (write-once, read-many-times) and RW (read-write)

Performance of Various Levels of Storage

 Page 11

Operating System Services

One set of operating-system services provides functions that are helpful to the user:

User interface - Almost all operating systems have a user interface (UI)

Varies between Command-Line (CLI), Graphics User Interface (GUI), Batch

Program execution - The system must be able to load a program into memory and to run that program,

end execution, either normally or abnormally (indicating error)

I/O operations - A running program may require I/O, which may involve a file or an I/O device

 File-system manipulation - The file system is of particular interest. Obviously, programs need to read

and write files and directories, create and delete them, search them, list file Information, permission
management.

A View of Operating System Services

Operating System Services

 One set of operating-system services provides functions that are helpful to the user

Communications – Processes may exchange information, on the same computer or between computers

over a network Communications may be via shared memory or through message passing (packets

moved by the OS)

 Error detection – OS needs to be constantly aware of possible errors May occur in the CPU and memory

hardware, in I/O devices, in user program For each type of error, OS should take the appropriate action
to ensure correct and consistent computing Debugging facilities can greatly enhance the user’s and

programmer’s abilities to efficiently use the system

 Another set of OS functions exists for ensuring the efficient operation of the system itself via resource
sharing

 Resource allocation - When multiple users or multiple jobs running concurrently, resources must be
allocated to each of them

 Many types of resources - Some (such as CPU cycles, main memory, and file storage) may have special
allocation code, others (such as I/O devices) may have general request and release code

Accounting - To keep track of which users use how much and what kinds of computer resources

Protection and security - The owners of information stored in a multiuser or networked computer

system may want to control use of that information, concurrent processes should not interfere with each

 Page 12

other

Protection involves ensuring that all access to system resources is controlled

Security of the system from outsiders requires user authentication, extends to defending external I/O

devices from invalid access attempts

 If a system is to be protected and secure, precautions must be instituted throughout it. A chain is only as
strong as its weakest link.

User Operating System Interface - CLI

Command Line Interface (CLI) or command interpreter allows direct command entry

Sometimes implemented in kernel, sometimes by systems program

Sometimes multiple flavors implemented – shells

Primarily fetches a command from user and executes it

Sometimes commands built-in, sometimes just names of programs

If the latter, adding new features doesn’t require shell modification

User Operating System Interface - GUI

User-friendly desktop metaphor interface

Usually mouse, keyboard, and monitor

Icons represent files, programs, actions, etc

Various mouse buttons over objects in the interface cause various actions (provide information, options,
execute function, open directory (known as a folder)

Invented at Xerox PARC

Many systems now include both CLI and GUI interfaces

Microsoft Windows is GUI with CLI “command” shell

Apple Mac OS X as “Aqua” GUI interface with UNIX kernel underneath and shells available

Solaris is CLI with optional GUI interfaces (Java Desktop, KDE)

Bourne Shell Command Interpreter

 Page 13

System Calls

Programming interface to the services provided by the OS

Typically written in a high-level language (C or C++)

Mostly accessed by programs via a high-level Application Program Interface (API) rather than direct

system call usenThree most common APIs are Win32 API for Windows, POSIX API for POSIX-based

systems (including virtually all versions of UNIX, Linux, and Mac OS X), and Java API for the Java

virtual machine (JVM)

 Why use APIs rather than system calls?(Note that the system-call names used throughout this text are
generic)

Example of System Calls

Example of Standard API

Consider the ReadFile() function in the

Win32 API—a function for reading from a file

A description of the parameters passed to ReadFile()

HANDLE file—the file to be read

LPVOID buffer—a buffer where the data will be read into and written from

 Page 14

Standard C Library Example

DWORD bytesToRead—the number of bytes to be read into the buffer

LPDWORD bytesRead—the number of bytes read during the last read

LPOVERLAPPED ovl—indicates if overlapped I/O is being used

System Call Implementation

Typically, a number associated with each system call

System-call interface maintains a table indexed according to these

Numbers

The system call interface invokes intended system call in OS kernel and returns status of the system call

and any return values

The caller need know nothing about how the system call is implemented

Just needs to obey API and understand what OS will do as a result call

Most details of OS interface hidden from programmer by API

Managed by run-time support library (set of functions built into libraries included with compiler)

API – System Call – OS Relationship

Types of System Calls

Process control

File management

Device management

Information maintenance

Communications

Protection

Examples of Windows and Unix System Calls

System Programs

System programs provide a convenient environment for program development and execution. The can be

divided into:

File manipulation

Status information

File modification

Programming language support

Program loading and execution

Communications

Application programs

Most users’ view of the operation system is defined by system programs, not the actual system calls

Provide a convenient environment for program development and execution

Some of them are simply user interfaces to system calls; others are considerably more complex

File management - Create, delete, copy, rename, print, dump, list, and generally manipulate files and

directories

Status information

Some ask the system for info - date, time, amount of available memory, disk space, number of users

Others provide detailed performance, logging, and debugging information

Typically, these programs format and print the output to the terminal or other output devices

Some systems implement a registry - used to store and retrieve configuration information

File modification

Text editors to create and modify files

Special commands to search contents of files or perform transformations of the text

Programming-language support - Compilers, assemblers, debuggers and interpreters sometimes

provided

 Program loading and execution- Absolute loaders, relocatable loaders, linkage editors, and overlay-

loaders, debugging systems for higher-level and machine language

 Communications - Provide the mechanism for creating virtual connections among processes, users, and

computer systems

 Allow users to send messages to one another’s screens, browse web pages, send electronic-mail
messages, log in remotely, transfer files from one machine to another

PROCESS MANAGEMENT

Process Concept

An operating system executes a variety of programs:

Batch system – jobs

Time-shared systems – user programs or tasks

Textbook uses the terms job and process almost interchangeably

Process – a program in execution; process execution must progress in sequential fashion

A process includes:

program counter

stack

data section

Process in Memory

Process State

As a process executes, it changes state

new: The process is being created

running: Instructions are being executed

waiting: The process is waiting for some event to occur

ready: The process is waiting to be assigned to a processor

terminated: The process has finished execution

Diagram of Process State

Process Control Block (PCB)

Information associated with each process

Process state

Program counter

CPU registers

CPU scheduling information

Memory-management information

Accounting information

I/O status information

CPU Switch From Process to Process

Process Scheduling Queues

Job queue – set of all processes in the system

Ready queue – set of all processes residing in main memory, ready and waiting to execute

Device queues – set of processes waiting for an I/O device

Processes migrate among the various queues

Ready Queue and Various I/O Device Queues

Representation of Process Scheduling

Schedulers

 Long-term scheduler (or job scheduler) – selects which processes should be brought into the ready
queue

 Short-term scheduler (or CPU scheduler) – selects which process should be executed next and
allocates CPU

Addition of Medium Term Scheduling

Short-term scheduler is invoked very frequently (milliseconds) Þ (must be fast)

Long-term scheduler is invoked very infrequently (seconds, minutes) Þ (may be slow)

The long-term scheduler controls the degree of multiprogramming

Processes can be described as either:

I/O-bound process – spends more time doing I/O than computations, many short CPU bursts

CPU-bound process – spends more time doing computations; few very long CPU bursts

Context Switch

 When CPU switches to another process, the system must save the state of the old process and load the
saved state for the new process via a context switch

Context of a process represented in the PCB

Context-switch time is overhead; the system does no useful work while switching

Time dependent on hardware support

Process Creation

 Parent process create children processes, which, in turn create other processes, forming a tree of
processes

Generally, process identified and managed via a process identifier (pid)

Resource sharing

Parent and children share all resources

Children share subset of parent’s resources

Parent and child share no resources

Execution

Parent and children execute concurrently

Parent waits until children terminate

Address space

Child duplicate of parent

Child has a program loaded into it

UNIX examples

fork system call creates new process

exec system call used after a fork to replace the process’ memory space with a new program

Process Creation

C Program Forking Separate Process

int main()

{

pid_t pid;

/* fork another process */

pid = fork();

if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");

exit(-1);

}

else if (pid == 0) { /* child process */

execlp("/bin/ls", "ls", NULL);

}

else { /* parent process */

/* parent will wait for the child to complete */

wait (NULL);

printf ("Child Complete");

exit(0);

}}

Process Termination

Process executes last statement and asks the operating system to delete it (exit)

Output data from child to parent (via wait)

Process’ resources are deallocated by operating system

Parent may terminate execution of children processes (abort)

Child has exceeded allocated resources

Task assigned to child is no longer required

If parent is exiting Some operating system do not allow child to continue if its parent terminates

All children terminated - cascading termination

CPU Scheduler

Selects from among the processes in memory that are ready to execute, and allocates the CPU to one of them

CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

Scheduling under 1 and 4 is nonpreemptive

All other scheduling is preemptive

Dispatcher

 Dispatcher module gives control of the CPU to the process selected by the short-term scheduler; this
involves:

switching context

switching to user

mode

jumping to the proper location in the user program to restart that program

Dispatch latency – time it takes for the dispatcher to stop one process and start another running

Scheduling Criteria

CPU utilization – keep the CPU as busy as possible

Throughput – # of processes that complete their execution per time unit

Turnaround time – amount of time to execute a particular process

Waiting time – amount of time a process has been waiting in the ready queue

Response time – amount of time it takes from when a request was submitted until the first response is

produced, not output (for time-sharing environment)

Max CPU utilization

Max throughput

Min turnaround time

Min waiting time

Min response time

First-Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

P2 3

P3 3

Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

P1 P2 P3

0 24 27 30

Waiting time for P1 = 0; P2 = 24; P3 = 27

Average waiting time: (0 + 24 + 27)/3 = 17

Shortest-Job-First (SJF) Scheduling

 Associate with each process the length of its next CPU burst. Use these lengths to schedule the process

with the shortest time

 SJF is optimal – gives minimum average waiting time for a given set of processes
The difficulty is knowing

 Process Arrival Time Burst Time

P1 0.0 6

P2 2.0 8

P3 4.0 7

P4 5.0 3

SJF scheduling chart

average waiting time = (3 + 16 + 9 + 0) / 4 = 7the length of the next CPU request

0 3 9 16 24

Priority Scheduling

A priority number (integer) is associated with each process

The CPU is allocated to the process with the highest priority (smallest integer º highest priority)

Preemptive

nonpreemptive

SJF is a priority scheduling where priority is the predicted next CPU burst time

Problem º Starvation – low priority processes may never execute

Solution º Aging – as time progresses increase the priority of the process

Round Robin (RR)

 Each process gets a small unit of CPU time (time quantum), usually 10-100 milliseconds. After this

time has elapsed, the process is preempted and added to the end of the ready queue.

 If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n of the
CPU time in chunks of at most q time units at once. No process waits more than (n-1)q time units.

Performance

q large Þ FIFO

q small Þ q must be large with respect to context switch, otherwise overhead is too high

P4 P1 P3 P2

her avera ge turnar ound than SJF, but better re sponse

Example of RR with Time Quantum = 4
Process Burst Time

P1 24

P2 3

P3

The Gantt chart is:

3

0 4 7 10 14 18 22 26 30

Time Quantum and Context Switch Time

P1 P2 P3 P1 P1 P1 P1 P1

Turnaround Time Varies With The Time Quantum

Multilevel Queue sheduling

 Ready queue is partitioned into separate queues:
foreground (interactive)

background (batch)

Each queue has its own scheduling algorithm

foreground – RR

background – FCFS

Scheduling must be done between the queues

Fixed priority scheduling; (i.e., serve all from foreground then from background). Possibility of
starvation.

 Time slice – each queue gets a certain amount of CPU time which it can schedule amongst its processes;
i.e., 80% to foreground in RR

20% to background in FCFS

Multilevel Queue Scheduling

Multilevel Feedback Queue

A process can move between the various queues; aging can be implemented this way

Multilevel-feedback-queue scheduler defined by the following parameters:

number of queues

scheduling algorithms for each queue

method used to determine when to upgrade a process

method used to determine when to demote a process

method used to determine which queue a process will enter when that process needs service

Example of Multilevel Feedback Queue

Three queues:

Q0 – RR with time quantum 8 milliseconds

Q1 – RR time quantum 16 milliseconds

Q2 – FCFS

Scheduling

A new job enters queue Q0 which is served FCFS. When it gains CPU, job receives 8 milliseconds. If it

does not finish in 8 milliseconds, job is moved to queue Q1.

 At Q1 job is again served FCFS and receives 16 additional milliseconds. If it still does not complete, it

is preempted and moved to queue Q2.

Multilevel Feedback Queues

Multiple-Processor Scheduling

CPU scheduling more complex when multiple CPUs are available

Homogeneous processors within a multiprocessor

Asymmetric multiprocessing – only one processor accesses the system data structures, alleviating the

need for data sharing

 Symmetric multiprocessing (SMP) – each processor is self-scheduling, all processes in common ready
queue, or each has its own private queue of ready processes

Processor affinity – process has affinity for processor on which it is currently running

soft affinity

hard affinity

NUMA and CPU Scheduling

Memory Management

To provide a detailed description of various ways of organizing memory hardware

To discuss various memory-management techniques, including paging and segmentation

To provide a detailed description of the Intel Pentium, which supports both pure segmentation and

segmentation with paging

Program must be brought (from disk) into memory and placed within a process for it to be run

Main memory and registers are only storage CPU can access directly

Register access in one CPU clock (or less)

Main memory can take many cycles

Cache sits between main memory and CPU registers

Protection of memory required to ensure correct operation

Base and Limit Registers

A pair of base and limit registers define the logical address space

Binding of Instructions and Data to Memory

Address binding of instructions and data to memory addresses can happen at three different stages

Compile time: If memory location known a priori, absolute code can be generated; must recompile

code if starting location changes

Load time: Must generate relocatable code if memory location is not known at compile time

Execution time: Binding delayed until run time if the process can be moved during its execution from

one memory segment to another. Need hardware support for address maps (e.g., base and limit

registers)

Multistep Processing of a User Program

Logical vs. Physical Address Space
 The concept of a logical address space that is bound to a separate physical address space is central to

proper memory management

Logical address – generated by the CPU; also referred to as virtual address

Physical address – address seen by the memory unit

Logical and physical addresses are the same in compile-time and load-time address-binding schemes;

logical (virtual) and physical addresses differ in execution-time address-binding scheme

Memory-Management Unit (MMU)
Hardware device that maps virtual to physical address

In MMU scheme, the value in the relocation register is added to every address generated by a user

process at the time it is sent to memory

 The user program deals with logical addresses; it never sees the real physical addresses

Dynamic relocation using a relocation register

Dynamic Loading
Routine is not loaded until it is called

Better memory-space utilization; unused routine is never loaded

Useful when large amounts of code are needed to handle infrequently occurring cases

No special support from the operating system is required implemented through program design

Dynamic Linking
Linking postponed until execution time

Small piece of code, stub, used to locate the appropriate memory-resident library routine

Stub replaces itself with the address of the routine, and executes the routine

Operating system needed to check if routine is in processes’ memory address

Dynamic linking is particularly useful for libraries

System also known as shared libraries

Swapping
A process can be swapped temporarily out of memory to a backing store, and then brought back into memory

for continued executionnBacking store – fast disk large enough to accommodate copies of all memory images

for all users; must provide direct access to these memory imagesnRoll out, roll in – swapping variant used for

priority-based scheduling algorithms; lower-priority process is swapped out so higher-priority process can be

loaded and executednMajor part of swap time is transfer time; total transfer time is directly proportional to the

amount of memory swappednModified versions of swapping are found on many systems (i.e., UNIX, Linux,

and Windows)

System maintains a ready queue of ready-to-run processes which have memory images on disk

Dept. of Computer Science and Engineering Page 71

Contiguous Allocation

Schematic View of Swapping

Main memory usually into two partitions:

Resident operating system, usually held in low memory with interrupt vector

User processes then held in high memorynRelocation registers used to protect user processes from each

other, and from changing operating-system code and data

Base register contains value of smallest physical address

Limit register contains range of logical addresses – each logical address must be less than the limit

register

 MMU maps logical address dynamically

Hardware Support for Relocation and Limit Registers

Multiple-partition allocation

Hole – block of available memory; holes of various size are scattered throughout memory

When a process arrives, it is allocated memory from a hole large enough to accommodate it

 Operating system maintains information about:

 a) allocated partitions b) free partitions (hole)

Dynamic Storage-Allocation Problem
First-fit: Allocate the first hole that is big enough

Best-fit: Allocate the smallest hole that is big enough; must search entire list, unless ordered by size

Produces the smallest leftover hole

Worst-fit: Allocate the largest hole; must also search entire list

Produces the largest leftover hole

First-fit and best-fit better than worst-fit in terms of speed and storage utilization

Fragmentation
External Fragmentation – total memory space exists to satisfy a request, but it is not contiguous

Internal Fragmentation – allocated memory may be slightly larger than requested memory; this size

difference is memory internal to a partition, but not being used

Reduce external fragmentation by compaction

Shuffle memory contents to place all free memory together in one large block

Compaction is possible only if relocation is dynamic, and is done at execution time.

I/O problem
Latch job in memory while it is involved in I/O

Do I/O only into OS buffers

Paging

 Logical address space of a process can be noncontiguous; process is allocated physical memory

whenever the latter is available

 Divide physical memory into fixed-sized blocks called frames (size is power of 2, between 512 bytes

and 8,192 bytes)

Divide logical memory into blocks of same size called pagesnKeep track of all free frames

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

OS

process 5

process 9

process 10

process 2

page number page offset

p d

m - n n

To run a program of size n pages, need to find n free frames and load program

Set up a page table to translate logical to physical addresses

Internal fragmentation

Address Translation Scheme

Address generated by CPU is divided into

Page number (p) – used as an index into a page table which contains base address of each page in

physical memory

 Page offset (d) – combined with base address to define the physical memory address that is sent to the
memory unit

 For given logical address space 2m and page size 2n

Paging Hardware

Paging Model of Logical and Physical Memory

Paging Example

32-byte memory and 4-byte pages

Free Frames

Implementation of Page Table

Page table is kept in main memory

Page-table base register (PTBR) points to the page table

Page-table length register (PRLR) indicates size of the page table

In this scheme every data/instruction access requires two memory accesses. One for the page table and

one for the data/instruction.

 The two memory access problem can be solved by the use of a special fast-lookup hardware cache
called associative memory or translation look-aside buffers (TLBs)

 Some TLBs store address-space identifiers (ASIDs) in each TLB entry – uniquely identifies each
process to provide address-space protection for that process

Associative Memory
Associative memory – parallel search

Address translation (p, d)

If p is in associative register, get frame # out

Otherwise get frame # from page table in memory

Page #

Frame #

Paging Hardware With TLB

Effective Access Time

Associative Lookup = e time unit

Assume memory cycle time is 1 microsecond

Hit ratio – percentage of times that a page number is found in the associative registers; ratio related to

number of associative registers

 Hit ratio = an Effective Access Time (EAT)

EAT = (1 + e) a + (2 + e)(1 – a)

= 2 + e – a

Memory Protection
Memory protection implemented by associating protection bit with each frame

Valid-invalid bit attached to each entry in the page table:

“valid” indicates that the associated page is in the process’ logical address space, and is thus a legal page

“invalid” indicates that the page is not in the process’ logical address space

Valid (v) or Invalid (i) Bit In A Page Table

Segmentation
Memory-management scheme that supports user view of memory

A program is a collection of segments

A segment is a logical unit such as:

main program

procedure function

method

object

local variables, global variables

common block

stack

symbol table

arrays

User’s View of a Program

Logical View of Segmentation

user space

Segmentation Hardware

1

4

2

3

Example of Segmentation

Logical to Physical Address Translation in Pentium

Intel Pentium Segmentation

Pentium Paging Architecture

Linear Address in Linux

Three-level Paging in Linux

VIRTUAL MEMORY

Objective

 To describe the benefits of a virtual memory system.

 To explain the concepts of demand paging, page-replacement algorithms, and allocation of page

frames.

 To discuss the principle of the working-set model.

Virtual Memory

 Virtual memory is a technique that allows the execution of process that may not be completely in memory.

The main visible advantage of this scheme is that programs can be larger than physical memory.

 Virtual memory is the separation of user logical memory from physical memory this separation allows an

extremely large virtual memory to be provided for programmers when only a smaller physical memory is

available (Fig).

 Following are the situations, when entire program is not required to load fully.

1. User written error handling routines are used only when an error occurs in the data or computation.

2. Certain options and features of a program may be used rarely.

3. Many tables are assigned a fixed amount of address space even though only a small amount of the table
is actually used.

 The ability to execute a program that is only partially in memory would counter many benefits.

1. Less number of I/O would be needed to load or swap each user program into memory.

2. A program would no longer be constrained by the amount of physical memory that is available.

3. Each user program could take less physical memory, more programs could be run the same time, with a
corresponding increase in CPU utilization and throughput.

Fig. Diagram showing virtual memory that is larger than physical memory.

Virtual memory is commonly implemented by demand paging. It can also be implemented in a
segmentation system. Demand segmentation can also be used to provide virtual memory.

Demand Paging

A demand paging is similar to a paging system with swapping(Fig 5.2). When we want to execute a

process, we swap it into memory. Rather than swapping the entire process into memory.

When a process is to be swapped in, the pager guesses which pages will be used before the process is

swapped out again Instead of swapping in a whole process, the pager brings only those necessary pages into
memory. Thus, it avoids reading into memory pages that will not be used in anyway, decreasing the swap time
and the amount of physical memory needed.

Hardware support is required to distinguish between those pages that are in memory and those pages that

are on the disk using the valid-invalid bit scheme. Where valid and invalid pages can be checked checking the bit
and marking a page will have no effect if the process never attempts to access the pages. While the process
executes and accesses pages that are memory resident, execution proceeds normally.

Fig. Transfer of a paged memory to continuous disk space

Access to a page marked invalid causes a page-fault trap. This trap is the result of the operating system's

failure to bring the desired page into memory. But page fault can be handled as following (Fig 5.3):

Fig. Steps in handling a page fault

1. We check an internal table for this process to determine whether the reference was a valid or invalid
memory access.

2. If the reference was invalid, we terminate the process. If .it was valid, but we have not yet brought in
that page, we now page in the latter.

3. We find a free frame.

4. We schedule a disk operation to read the desired page into the newly allocated frame.

5. When the disk read is complete, we modify the internal table kept with the process and the page table to
indicate that the page is now in memory.

6. We restart the instruction that was interrupted by the illegal address trap. The process can now access the
page as though it had always been memory.

Therefore, the operating system reads the desired page into memory and restarts the process as though the

page had always been in memory.

The page replacement is used to make the frame free if they are not in used. If no frame is free then other

process is called in.

Advantages of Demand Paging:

1. Large virtual memory.

2. More efficient use of memory.

3. Unconstrained multiprogramming. There is no limit on degree of multiprogramming.

Disadvantages of Demand Paging:

4. Number of tables and amount of processor over head for handling page interrupts are greater than in the
case of the simple paged management techniques.

5. due to the lack of an explicit constraints on a jobs address space size.

Page Replacement Algorithm

There are many different page replacement algorithms. We evaluate an algorithm by running it on a
particular string of memory reference and computing the number of page faults. The string of memory references
is called reference string. Reference strings are generated artificially or by tracing a given system and recording
the address of each memory reference. The latter choice produces a large number of data.

1. For a given page size we need to consider only the page number, not the entire address.

2. if we have a reference to a page p, then any immediately following references to page p will never cause
a page fault. Page p will be in memory after the

first reference; the immediately following references will not fault.

Eg:- consider the address sequence

0100, 0432, 0101, 0612, 0102, 0103, 0104, 0101, 0611, 0102, 0103, 0104, 0101, 0610, 0102,

0103, 0104, 0104, 0101, 0609, 0102, 0105

and reduce to 1, 4, 1, 6,1, 6, 1, 6, 1, 6, 1

To determine the number of page faults for a particular reference string and page replacement algorithm,

we also need to know the number of page frames available. As the number of frames available increase, the
number of page faults will decrease.

FIFO Algorithm

The simplest page-replacement algorithm is a FIFO algorithm. A FIFO replacement algorithm associates

with each page the time when that page was brought into memory. When a page must be replaced, the oldest page
is chosen. We can create a FIFO queue to hold all pages in memory.

The first three references (7, 0, 1) cause page faults, and are brought into these empty eg. 7, 0, 1, 2, 0, 3,
0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1 and consider 3 frames. This replacement means that the next reference to 0 will fault.
Page 1 is then replaced by page 0.

Optimal Algorithm

An optimal page-replacement algorithm has the lowest page-fault rate of all algorithms. An optimal page-

replacement algorithm exists, and has been called OPT or MIN. It is simply

Replace the page that will not be used for the longest
period of time.

Now consider the same string with 3 empty frames.
The reference to page 2 replaces page 7, because 7 will not be used until reference 15, whereas page 0

will be used at 5, and page 1 at 14. The reference to page 3 replaces page 1, as page 1 will be the last of the three
pages in memory to be referenced again. Optimal replacement is much better than a FIFO.

The optimal page-replacement algorithm is difficult to implement, because it requires future knowledge

of the reference string.

LRU Algorithm

The FIFO algorithm uses the time when a page was brought into memory; the OPT algorithm uses the

time when a page is to be used. In LRU replace the page that has not been used for the longest period of time.

LRU replacement associates with each page the time of that page's last use. When a page must be replaced,

LRU chooses that page that has not been used for the longest period of time.

Let SR be the reverse of a reference string S, then the page-fault rate for the OPT algorithm on S is the

same as the page-fault rate for the OPT algorithm on SR.

LRU Approximation Algorithms

Some systems provide no hardware support, and other page-replacement algorithm. Many systems

provide some help, however, in the form of a reference bit. The reference bit for a page is set, by the hardware,
whenever that page is referenced. Reference bits are associated with each entry in the page table Initially, all bits
are cleared (to 0) by the operating system. As a user process executes, the bit associated with each page referenced
is set (to 1) by the hardware.

Additional-Reference-Bits Algorithm

The operating system shifts the reference bit for each page into the high-order or of its 5-bit byte, shifting

the other bits right 1 bit, discarding the low-order bit.

These 5-bit shift registers contain the history of page use for the last eight time periods. If the shift register
contains 00000000, then the page has not been

used for eight time periods; a page that is used at least once each period would have a shift register value of
11111111.

Second-Chance Algorithm

The basic algorithm of second-chance replacement is a FIFO replacement algorithm. When a page gets a

second chance, its reference bit is cleared and its arrival e is reset to the current time.

Enhanced Second-Chance Algorithm

The second-chance algorithm described above can be enhanced by considering troth the reference bit and

the modify bit as an ordered pair.

1. (0,0) neither recently used nor modified best page to replace.

2. (0,1) not recently used but modified not quite as good, because the page will need to be written out
before replacement.
3. (1,0) recently used but clean probably will be used again soon.

4. (1,1) recently used and modified probably will be used again, and write out will be needed before
replacing it

Counting Algorithms

There are many other algorithms that can be used for page replacement.

• LFU Algorithm: The least frequently used (LFU) page-replacement algorithm requires that the page with the
smallest count be replaced. This algorithm suffers from the situation in which a page is used heavily during the
initial phase of a process, but then is never used again.

• MFU Algorithm: The most frequently used (MFU) page-replacement algorithm is based on the argument
that the page with the smallest count was probably just brought in and has yet to be used.

Page Buffering Algorithm
When a page fault occurs, a victim frame is chosen as before. However, the desired page is read into a

free frame from the pool before the victim is written out.
This procedure allows the process to restart as soon as possible, without waiting for the victim page to be written
out. When the victim is later written out, its frame is added to the free-frame pool.

When the FIFO replacement algorithm mistakenly replaces a page mistakenly replaces a page that is still
in active use, that page is quickly retrieved from the free-frame buffer, and no I/O is necessary. The free-frame
buffer provides protection against the relatively poor, but simple, FIFO replacement algorithm.

Principles of deadlock

To develop a description of deadlocks, which prevent sets of concurrent processes from completing their

tasks.To present a number of different methods for preventing or avoiding deadlocks in a computer

system

The Deadlock Problem

A set of blocked processes each holding a resource and waiting to acquire a resource held by another process in

the set

Example

System has 2 disk drives

P1 and P2 each hold one disk drive and each needs another one

Example

semaphores A and B, initialized to 1

P0 P1

wait (A); wait(B)

wait (B); wait(A)

Bridge Crossing Example

Traffic only in one direction

Each section of a bridge can be viewed as a resource

If a deadlock occurs, it can be resolved if one car backs up (preempt resources and rollback)

Several cars may have to be backed up if a deadlock occurs

Starvation is possible

Note – Most OSes do not prevent or deal with deadlocks

System Model
Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

Each resource type Ri has Wi instances.

Each process utilizes a resource as follows:

request

use

release

Deadlock Characterization

Deadlock can arise if four conditions hold simultaneously
Mutual exclusion: only one process at a time can use a resource

Hold and wait: a process holding at least one resource is waiting to acquire additional resources held by other

processes

No preemption: a resource can be released only voluntarily by the process holding it, after that process has

completed its task

Circular wait: there exists a set {P0, P1, …, P0} of waiting processes such that P0 is waiting for a resource that

is held by P1, P1 is waiting for a resource that is held by

P2, …, Pn–1 is waiting for a resource that is held by

Pn, and P0 is waiting for a resource that is held by P0.

n

Resource-Allocation Graph

A set of vertices V and a set of edges E
V is partitioned into two types:

P = {P1, P2, …, Pn}, the set consisting of all the processes in the system

R = {R1, R2, …, Rm}, the set consisting of all resource types in the system

request edge – directed edge P1 ® Rj

assignment edge – directed edge Rj ® Pi

Process

Resource Type with 4 instances

Pi requests instance of Rjn

Rj

Pi

Pi is holding an instance of Rj

Rj

Example of a Resource Allocation Graph

Resource Allocation Graph With A Deadlock

Pi

Graph With A Cycle But No Deadlock

Basic Facts
If graph contains no cycles Þ no deadlocknIf graph contains a cycle Þlif only one instance per resource type,

then deadlock

if several instances per resource type, possibility of deadlock

Methods for Handling Deadlocks
Ensure that the system will never enter a deadlock statenAllow the system to enter a deadlock state and then

recovernIgnore the problem and pretend that deadlocks never occur in the system; used by most operating

systems, including UNIX

Deadlock Prevention
Restrain the ways request can be made

Mutual Exclusion – not required for sharable resources; must hold for nonsharable resources

Hold and Wait – must guarantee that whenever a process requests a resource, it does not hold any other

resources

Require process to request and be allocated all its resources before it begins execution, or allow process to

request resources only when the process has none

Low resource utilization; starvation possible

No Preemption –

If a process that is holding some resources requests another resource that cannot be immediately allocated to it,

then all resources currently being held are released

Preempted resources are added to the list of resources for which the process is waiting

Process will be restarted only when it can regain its old resources, as well as the new ones that it is requesting

Circular Wait – impose a total ordering of all resource types, and require that each process requests resources

in an increasing order of enumeration

Deadlock Avoidance
Requires that the system has some additional a priori information

available

Simplest and most useful model requires that each process declare the maximum number of resources of each

type that it may need

The deadlock-avoidance algorithm dynamically examines the resource-allocation state to ensure that there can

never be a circular-wait condition

Resource-allocation state is defined by the number of available and allocated resources, and the maximum

demands of the processes

Safe State
When a process requests an available resource, system must decide if immediate allocation leaves the system in

a safe state

System is in safe state if there exists a sequence <P1, P2, …, Pn> of ALL the processes is the systems such that

for each Pi, the resources that Pi can still request can be satisfied by currently available resources + resources

held by all the Pj, with j < inThat is:

If Pi resource needs are not immediately available, then Pi can wait until all Pj have finished

When Pj is finished, Pi can obtain needed resources, execute, return allocated resources, and terminate

When Pi terminates, Pi +1 can obtain its needed resources, and so on

Basic Facts
If a system is in safe state Þ no deadlocksnIf a system is in unsafe state Þ possibility of deadlocknAvoidance Þ

ensure that a system will never enter an unsafe state.

Safe, Unsafe , Deadlock State

Avoidance algorithms
Single instance of a resource type

Use a resource-allocation graph

Multiple instances of a resource type

Use the banker’s algorithm

Resource-Allocation Graph Scheme
nClaim edge Pi ® Rj indicated that process Pj may request resource Rj; represented by a dashed linenClaim edge

converts to request edge when a process requests a resourcenRequest edge converted to an assignment edge

when the resource is allocated to the process

nWhen a resource is released by a process, assignment edge reconverts to a claim edgenResources must be

claimed a priori in the system

Resource-Allocation Graph

Unsafe State In Resource-Allocation Graph

Resource-Allocation Graph Algorithm
Suppose that process Pi requests a resource Rj.

nThe request can be granted only if converting the request edge to an assignment edge does not result in the

formation of a cycle in the resource allocation graph

Banker’s Algorithm
Multiple instancesnEach process must a priori claim maximum usenWhen a process requests a resource it may

have to wait nWhen a process gets all its resources it must return them in a finite amount of time

Data Structures for the Banker’s Algorithm
Let n = number of processes, and m = number of resources types.

nAvailable: Vector of length m. If available [j] = k, there are k instances of resource type Rj available

nMax: n x m matrix. If Max [i,j] = k, then process Pi may request at most k instances of resource type

RjnAllocation: n x m matrix. If Allocation[i,j] = k then Pi is currently allocated k instances of RjnNeed: n x m

matrix. If Need[i,j] = k, then Pi may need k more instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Safety Algorithm
1. Let Work and Finish be vectors of length m and n, respectively. Initialize:

Work = Available

Finish [i] = false for i = 0, 1, …, n- 1

2. Find and i such that both:

(a) Finish [i] = false(b) Needi £ Work

If no such i exists, go to step 4

3. Work = Work + Allocationi

Finish[i] = true

go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state

Resource-Request Algorithm for Process Pi

Request = request vector for process Pi. If Requesti [j] = k then process Pi wants k instances of resource type

Rj1. If Requesti £ Needi go to step 2. Otherwise, raise error condition, since process has exceeded its

maximum claim

2. If Requesti £ Available, go to step 3. Otherwise Pi must wait, since resources are not available

3. Pretend to allocate requested resources to Pi by modifying the state as follows:

Available = Available – Request;

Allocationi = Allocationi + Requesti;

Needi = Needi – Requesti;

lIf safe Þ the resources are allocated to Pi

lIf unsafe Þ Pi must wait, and the old resource-allocation state is restored

Example of Banker’s Algorithm

5 processes P0 through P4;

3 resource types:

A (10 instances), B (5instances), and C (7 instances)

Snapshot at time T0:

Allocation Max Available
A B C A B C A B C

 P0 0 1 0 7 5 3 3 3 2
 P1 2 0 0 3 2 2

 P2 3 0 2 9 0 2

 P3 2 1 1 2 2 2

 P4 0 0 2 4 3 3

The content of the matrix Need is defined to be Max – Allocation Need A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

The system is in a safe state since the sequence < P1, P3, P4, P2, P0> satisfies safety criteria

Example: P1 Request (1,0,2)
Check that Request £ Available (that is, (1,0,2) £ (3,3,2) Þ true Allocation Need

Available A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0

P1 3 0 2 0 2 0

P2 3 0 1 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2> satisfies safety requirement

Can request for (3,3,0) by P4 be granted?

Can request for (0,2,0) by P0 be granted?

Deadlock Detection
Allow system to enter deadlock state Detection algorithmRecovery scheme

Single Instance of Each Resource Type
Maintain wait-for graph

Nodes are processes

Pi ® Pj if Pi is waiting for Pj

Periodically invoke an algorithm that searches for a cycle in the graph. If there is a cycle, there exists a deadlock

An algorithm to detect a cycle in a graph requires an order of n2 operations, where n is the number of vertices in

the graph

Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

Several Instances of a Resource Type
Available: A vector of length m indicates the number of available resources of each type.Allocation: An n x

m matrix defines the number of resources of each type currently allocated to each process.Request: An n x m

matrix indicates the current request of each process. If Request [ij] = k, then process Pi is requesting k more

instances of resource type. Rj.

Detection Algorithm

1. Let Work and Finish be vectors of length m and n, respectively Initialize:

(a) Work = Available(b) For i = 1,2, …, n, if Allocationi ¹ 0, then

Finish[i] = false;otherwise, Finish[i] = true2. Find an index i such that both:

(a) Finish[i] == false(b) Requesti £ WorkIf no such i exists, go to step 4

3. Work = Work + Allocationi

Finish[i] = true

go to step 24. If Finish[i] == false, for some i, 1 £ i £ n, then the system is in deadlock state. Moreover, if

Finish[i] == false, then Pi is deadlocked

Algorithm requires an order of O(m x n2) operations to detect whether the system is in deadlocked state

Example of Detection Algorithm
Five processes P0 through P4; three resource types

A (7 instances), B (2 instances), and C (6 instances)

Snapshot at time T0:

Allocation

Request

Available

P0

A B C

0 1 0

A B C

0 0 0

A B C

0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2

Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i

0 0 2

P2 requests an additional instance of type C

P0

Request

A B C

0 0 0

P1 2 0 1

P2 0 0 1

P3 1 0 0

P4 0 0 2

State of system?

Can reclaim resources held by process P0, but insufficient resources to fulfill other processes; requests

Deadlock exists, consisting of processes P1, P2, P3, and P4

Detection-Algorithm Usage
When, and how often, to invoke depends on:

How often a deadlock is likely to occur?

How many processes will need to be rolled back?

one for each disjoint cyclenIf detection algorithm is invoked arbitrarily, there may be many cycles in the

resource graph and so we would not be able to tell which of the many deadlocked processes “caused” the

deadlock

Recovery from Deadlock: Process Termination
Abort all deadlocked processesnAbort one process at a time until the deadlock cycle is eliminatednIn which

order should we choose to abort?

Priority of the process

lHow long process has computed, and how much longer to completion

lResources the process has used

lResources process needs to complete

lHow many processes will need to be terminated

lIs process interactive or batch?

Recovery from Deadlock: Resource Preemption
Selecting a victim – minimize cost

Rollback – return to some safe state, restart process for that state

Starvation – same process may always be picked as victim, include number of rollback in cost factor

FILE SYSTEM INTERFACE

The Concept Of a File
A file is a named collection of related information that is recorded on secondary storage. The

information in a file is defined its creator. Many different types of information may be stored in

a file.
File attributes:-

A file is named and for the user’s convince is referred to by its name. A name is

usually a string of characters. One user might create file, where as another user might edit that file by

specifying its name. There are different types of attributes.
1) name:- the name can be in the human readable form.

2) type:- this information is needed for those systems that support different types.

3)location:- this information is used to a device and to the location of the file on that device.

4)size:- this indicates the size of the file in bytes or words.

5)protection:-

6)time,date, and user identifications:-

the information about all files is kept in the directory structure, that also resides on secondary

storage.

File operations:-

Creating a file:-

Two steps are necessary to create a file first, space in the file system must be found for the

file. Second , an entry for the new file must be made in the directory. The directory entry

records the name of the file and the location in the system.
Writing a file:-

To write a file give the name of the file, the system search the directory to find the location of the

file. The system must keep the writer pointer to the location in the file where the next write is to

take place. The write pointer must be updated whenever a write occurs.

Reading a file:- to read from a file, specifies the name of the file and directory is search for the

associated directory entry, and the system needs to keep read pointer to the location in the file

where the next read is to take place. Once the read has taken place, read pointer is updated.

Repositioning with in a file:-

The directory is searched for the appropriate entry and the current file position is set to given

value. this is also known as a file seek.

Deleting a file:- to delete a file , we search the directory for the name file. Found that file in the

directory entry, we release all file space and erase the directory entry.

Truncate a file:- this function allows all attributes to remain unchanged(except for file

length) but for the file to be reset to length zero.
Appending:- add new information to the end of an existing file .
Renaming:- give new name to an existing file.

Open a file:-if file need to be used, the first step is to open the file, using the open

system call.

Close:- close is a system call used to terminate the use of an already used file.

File Types:-

A common technique for implementing file type is to include the type as part of the file name.

The name is split in to two parts

1) the name 2) and an extension .

the system uses the extension to indicate the type of the file and the type of operations that can

be done on that file.

 : ACCESSMETHODS:-

There are several ways that the information in the file can be accessed. 1)sequential

method 2) direct access method 3) other access methods. 1)sequential access

method:-

the simplest access method is S.A. information in the file is processed in order, one after the

other. the bulk of the operations on a file are reads & writes. It is based on a tape model of a

file. Fig 10.3

2) Direct access:- or relative access:-

a file is made up of fixed length records, that allow programs to read and write record

rapidly in no particular order. For direct access, file is viewed as a numbered sequence of

blocks or records. A direct access file allows, blocks to be read & write. So we may read

block15, block 54 or write block10. there is no restrictions on the order of reading or writing

for a direct access file. It is great useful for immediate access to large amount of

information.

The file operations must be modified to include the block number as a parameter. We

have read n, where n is the block number.
3) other access methods:-

the other access methods are based on the index for the file. The indexed contain pointers to

the various blocks. To find an entry in the file , we first search the index and then use the

pointer to access the file directly and to find the desired entry. With large files. The index

file itself, may become too large to be kept in memory. One solution is to create an index for

the index file. The primary index file would contain pointers to secondary index files which

would point to the actual data iteams

 Directory Structures:-

operations that are be on a directory (read in text book)

single level directory:-

the simple directory structure is the single level directory. All files are contained in

the same directory. Which is easy to understand. Since all files are in same directory, they must

have unique names.

In a single level directory there is some limitations. When the no.of files

increases or when there is more than one user some problems can occurs. If the no.of files
increases, it becomes difficult to remember the names of all the files. FIG 10.7 Two-level

directory:-

The major disadvantages to a single level directory is the confusion of file names between

different users. The standard solution is to create separate directory for each user.

In 2-level directory structure, each user has her own user file directory(ufd). Each ufd has a

similar structure, the user first search the master file directory . the mfd is indexed by user

name and each entry point to the ufd for that user.fig 10.8

To create a file for a user, the O.S search only that user’s ufd to find whether another file of

that name exists. To delete a file the O.S only search to the local ufd and it can not accidentally

delete another user’s file that has the same name.

This solves the name collision problem, but it still have another. This is disadvantages

when the user wants to cooperate on some task and to access one another’s file . some

systems simply do not allow local user files to be accessed by other user.

Any file is accessed by using path name. Here the user name and a file name defines a path

name.
Ex:- user1/ob

In MS-DOS a file specification is

C:/directory name/file name Tree

structured directory:-

This allows users to create their own subdirectories and to organize their files accordingly.

here the tree hasa root directory. And every file in the system has a unique path name. A path

name is the path from the root, through all the subdirectories to a specified file.FIG 10.9.

A directory contains a set of subdirectories or files. A directory is simply another file,

but it is treated in a special way. Here the path names can be of two types. 1)absolute

path and 2) relative path.

An absolute path name begins at the root and follows a path down to the specified file,

giving the directory name on the path.
Ex:- root/spell/mail/prt/first.

A relative pathname defines a path from the current directory ex:- prt/first is relative path

name.
A cyclic- graph directory:-

Consider two programmers who are working on a joint project. The files associated with

that project can be stored in a sub directory , separating them from

other projects and files of the two programmers. The common subdirectory is shared by both

programmers. A shared directory or file will exist in the file system in two places at once.

Notice that a shared file is not the same as two copies of the file with two copies, each

programmer can view the copy rather than the original but if one programmer changes the file

the changes will not appear in the others copy with a shared file there is only one actual file, so

any changes made by one person would be immediately visible to the other.

A tree structure prohibits the sharing of files or directories. An acyclic graph allows

directories to have shared subdirectories and files

FIG 10.10 . it is more complex and more flexiable. Also several problems may occurs at

the traverse and deleting the file contents.
.

 :File System Mounting
A file system must be mounted before it can be accessed

A unmounted file system (i.e. Fig. 11-11(b)) is mounted at a mount point

(a) Existing. (b) Unmounted Partition

(b)

Mount Point

 :File Sharing
Sharing of files on multi-user systems is desirablenSharing may be done through a
protection schemenOn distributed systems, files may be shared

across a networknNetwork File System (NFS) is a common distributed filesharing method

File Sharing – Multiple Users

User IDs identify users, allowing permissions and protections to be perusernGroup IDs

allow users to be in groups, permitting group access rights

File Sharing – Remote File Systems
nUses networking to allow file system access between systems

lManually via programs like FTP

lAutomatically, seamlessly using distributed file systems

lSemi automatically via the world wide web

nClient-server model allows clients to mount remote file systems from servers

lServer can serve multiple clients
lClient and user-on-client identification is insecure or complicated

lNFS is standard UNIX client-server file sharing protocol

lCIFS is standard Windows protocol

lStandard operating system file calls are translated into remote calls nDistributed

Information Systems (distributed naming services) such as LDAP, DNS, NIS, Active

Directory implement unified access to information needed for remote computing

File Sharing – Failure Modes

Remote file systems add new failure modes, due to network failure, server failure

Recovery from failure can involve state information about status of each remote request

Stateless protocols such as NFS include all information in each request,

allowing easy recovery but less security

File Sharing – Consistency Semantics

nConsistency semantics specify how multiple users are to access a shared file simultaneously

lSimilar to Ch 7 process synchronization algorithms

Tend to be less complex due to disk I/O and network latency (for remote file systems

lAndrew File System (AFS) implemented complex remote file sharing semantics

lUnix file system (UFS) implements:

Writes to an open file visible immediately to other users of the same open file

Sharing file pointer to allow multiple users to read and write concurrently

lAFS has session semantics

Writes only visible to sessions starting after the file is closed

 :Protection
File owner/creator should be able to control:

lwhat can be done

lby whomnTypes of access

lRead

lWrite

lExecute

lAppend

lDelete

lList

Protection:-]

When the information is kept in the system the major worry is its protection from the

both physical damage (Reliability) and improper access(Protection).

The reliability is generally provided by duplicate copies of files.

The protection can be provided in many ways . for some single system user, we might

provide protection by physically removing the floppy disks . in a multi-user systems,

other mechanism are needed.
1) types of access:-

if the system do not permit access to the files of other users, protection is not needed.

Protection mechanism provided by controlling accessing. This can be provided by types of

file access. Access is permitted or denied depending on several factors. Suppose we

mentioned read that file allows only for read .

Read:- read from the file. Write:-

write or rewrite the file.

Execute:- load the file in to memory and execute it. Append:-

write new information at the end of the file. Delete:- delete the

file and free its space for possible reuse.

FILE SYSTEM IMPLEMENTATION

 :File allocation methods:-

There are 3 major methods of allocating disk space.

1) Contiguous allocation:-

1) The contiguous allocation method requires each file to occupy a set of

contiguous block on the disk.

2) Contiguous allocation of a file is defined by the disk address and length of the

first block. If the file is ‘n’ block long and starts at location ‘b’ , then it occupies

blocks b,b+1,b+2,…..,b+n-1;

3) The directory entry for each file indicates the address of the starting block and

length of the area allocated for this file. Fig 11.3

4) Contiguous allocation of file is very easy to access. For the sequential access

, the file system remembers the disk address of the last block referenced and,

when necessary read next block. For direct access to block ‘i’ of a file that

starts at block ‘b’ , we can immediately access block b+i. Thus both sequential

and direct access can be supported by contagious allocation.
5) One difficulty with this method is finding space for a new file.

6) Also there are many problems with this method

a) external fragmentation:- files are allocated and deleted , the free

disk space is broken in to little pieces. The E.F exists when free space

is broken in to chunks(large piece) and these chunks are not sufficient

for a request of new file.

There is a solution for E.F i.e compaction. All free space compact in to one

contiguous space. But the cost of compaction is time.

b) Another problem is determining how much space is needed for a file.

When file is created the creator must specifies the size of

that file. This becomes to big problem. Suppose if we allocate too

little space to a file , some times it may not sufficient.
Suppose if we allocate large space some times space is wasted.

c) Another problem is if one large file is deleted, that large space is

becomes to empty. Another file is loaded in to that space whose size is

very small then some space is wasted . that wastage of space is called

internal fragmentation.
2) Linked allocation:-

1) Linked allocation solves all the problems of contagious allocation. With linked

allocation , each file is a linked list of disk blocks, the disk block may be scattered any

where on the disk.

2) The directory contains a pointer to the first and last blocks of the file. Fig11.4 Ex:- a

file have five blocks start at block 9, continue at block 16,then block 1, block 10 and

finally block 25. each block contains a ponter to the next block. These pointers are not

available to the user.

3) To create a new file we simply creates a new entry in directory. With linked

allocation, each directory entry has a pointer to the first disk block of the file.

3) There is no external fragmentation with linked allocation. Also there is no need to

declare the size of a file when that file is created. A file can continue to grows as long

as there are free blocks.

4) But it have disadvantage. The major problem is that it can be used only for

sequential access-files.

5) To find the I th block of a file , we must start at the beginning of that file, and

follow the pointers until we get to the I th block. It can not support the direct access.

6) Another disadvantage is it requires space for the pointers. If a pointer requires 4 bytes

out of 512 byte block, then 0.78% of disk is being used for pointers, rather than for

information.

7) The solution to this problem is to allocate blocks in to multiples, called clusters and to

allocate the clusters rather than blocks.

8) Another problem is reliability. The files are linked together by pointers

scattered all over the disk what happen if a pointer were lost or damaged. FAT(

file allocation table):-

An important variation on the linked allocation method is the use of a file

allocation table.

The table has one entry for each disk block, and is indexed by block number. The FAT is

used much as is a linked list.

The directory entry contains the block number of the first block of the file. The table entry

contains the block number then contains the block number of the next block in the file.

This chain continuous until the last block, which has a special end of file values as the

table entry. Unused blocks are indicated by a ‘0’ table value. Allocation a new block to a

file is a simple. First finding the first 0-value table entry, and replacing the previously end

of file value with the address of the new block. The 0 is then replaced with end of file

value.
Fig 11.5

3)Indexed allocation:-

1) linked allocation solves the external fragmentation and size declaration problems

of contagious allocation. How ever in the absence of a FAT , linked allocation can

not support efficient direct access.

2) The pointers to the blocks are scattered with the blocks themselves all over the disk

and need to be retrieved in order.

3) Indexed allocation solves this problem by bringing all the pointers together in to one

location i.e the index block.

4) Each file has its own index block ,which is an array of disk block addresses. The I

th entry in the index block points to the ith block of the file.
5) The directory contains the address of the index block. Fig 11.6

To read the ith block we use the pointer in the ith index block entry to find and

read the desired block.

6) When the file is created, all pointers in the index block are set to nil. When the ith

block is first written, a block is obtained from the free space manager, and

its address is put in the ith index block entry.

7) It supports the direct access with out suffering from external fragmentation, but it

suffer from the wasted space. The pointer overhead of the index block is generally

greater than the pointer over head of linked allocation.

 :Free space management:-

1) to keep track of free disk space, the system maintains a free space list. The free space

list records all disk blocks that are free.

2) To create a file we search the free space list for the required amount of space, and allocate

that space to the new file. This space is then removed from the free space list.

3) When the file is deleted , its disk space is added to the free space list. There

are many methods to find the free space.
1) bit vector:-

The free space list is implemented as a bit map or bit vector. Each block is represented

by 1 bit. If the block is free the bit is 1 if the block is allocated the bit is 0.

Ex:- consider a disk where blocks 2,3,4,5,8,9,10,11,12,13,17,18,25, are free and rest of

blocks are allocated the free space bit map would be

001111001111110001100000010000……..

the main advantage of this approach is that it is relatively simple and efficient to find

the first free block or ‘n’ consecutive free blocks on the disk
2) Linked list:-

Another approach is to link together all the free disk blocks, keeping a pointer

to the first free block in a special location on the disk and caching it in memory. This first

block contain a pointer to the next free disk block, and so on.

How ever this scheme is not efficient to traverse the list, we must read each block,

which requires I/O time.
Disk space is also wasted to maintain the pointer to next free space.

3) Grouping:-

Another method is store the addresses of ‘n’ free blocks in the first free block.

The first (n-1) of these blocks are actually free. The last block contains the addresses of

another ‘n’ free blocks and so on. Fig 11.8

Advantages:- the main advantage of this approach is that the addresses of a large no.of

blocks can be found quickly.
4) Counting:-

Another approach is counting. Generally several contiguous blocks may be allocated or freed

simultaneously. Particularly when space is allocated with the contiguous allocation

algorithm rather than keeping a list of ‘n’ free disk address. We can keep the address of first

free block and the number ‘n’ of free contiguous blocks that follow the first block. Each

entry in the free space list then consists of a disk address and a count.

 :Directory Implementation:-

1) Linear list:-

1) the simple method of implement ting a directory is to use a linear list of file

names with pointers to the data blocks.

2) A linear list of directory entries requires a linear search to find a particular entry.
3) This method is simple to program but is time consuming to execute.

4) To create a new file, we must first search the directory to be sure that no

existing file has the same name. Then, we add a new entry at the end of the

directory.

5) To delete a file we search the directory for the named file, then release the space

allocated to it.

6) To reuse directory entry, we can do one of several things.

7) We can mark the entry as unused or we can attach it to a list of free

directory entries.

Disadvantage:- the disadvantage of a linear list of directory entries is the linear

search to find a file.

MASS-STORAGE STRUCTURE

Mass-Storage Systems
nDescribe the physical structure of secondary and tertiary storage devices and the

resulting effects on the uses of the devicesnExplain the performance characteristics of

mass-storage devicesnDiscuss operating-system services provided for mass storage,

including RAID and HSM

:Overview of Mass Storage Structure
Magnetic disks provide bulk of secondary storage of modern computers Drives

rotate at 60 to 200 times per second
Transfer rate is rate at which data flow between drive and computer

Positioning time (random-access time) is time to move disk arm to desired cylinder (seek time)

and time for desired sector to rotate under the disk head (rotational latency) Head crash results

from disk head making contact with the disk surface
That’s bad

Disks can be removable
Drive attached to computer via I/O bus

Busses vary, including EIDE, ATA, SATA, USB, Fibre Channel, SCSI

Host controller in computer uses bus to talk to disk controller built into drive or storage array

Moving-head Disk Mechanism

Magnetic tape

Was early secondary-storage medium

Relatively permanent and holds large quantities of data Access

time slow
Random access ~1000 times slower than disk

Mainly used for backup, storage of infrequently-used data, transfer medium between

systems

Kept in spool and wound or rewound past read-write head Once

data under head, transfer rates comparable to disk 20-200GB

typical storage
Common technologies are 4mm, 8mm, 19mm, LTO-2 and SDLT

:Disk Structure
Disk drives are addressed as large 1-dimensional arrays of logical

blocks, where the logical block is the smallest unit of transfernThe 1-dimensional array

of logical blocks is mapped into the sectors of the disk sequentially
Sector 0 is the first sector of the first track on the outermost cylinder

Mapping proceeds in order through that track, then the rest of the tracks in that cylinder,

and then through the rest of the cylinders from outermost to innermost 8.3:Disk

Attachment
Host-attached storage accessed through I/O ports talking to I/O busses SCSI itself

is a bus, up to 16 devices on one cable, SCSI initiator requests operation and

SCSI targets perform tasks

Each target can have up to 8 logical units (disks attached to device controller FC is

high-speed serial architecture

Can be switched fabric with 24-bit address space – the basis of storage area

networks (SANs) in which many hosts attach to many storage units

Can be arbitrated loop (FC-AL) of 126 devices

Network-Attached Storage

Network-attached storage (NAS) is storage made available over a network rather

than over a local connection (such as a bus)

NFS and CIFS are common protocols

Implemented via remote procedure calls (RPCs) between host and storage New

iSCSI protocol uses IP network to carry the SCSI protocol

Storage Area Network

Common in large storage environments (and becoming more common)

Multiple hosts attached to multiple storage arrays – flexible

:Disk Scheduling
The operating system is responsible for using hardware efficiently — for the disk drives,

this means having a fast access time and disk bandwidth

Access time has two major components

Seek time is the time for the disk are to move the heads to the cylinder

containing the desired sector

Rotational latency is the additional time waiting for the disk to rotate the desired sector

to the disk head
Minimize seek time

Seek time » seek distance

Disk bandwidth is the total number of bytes transferred, divided by the total time

between the first request for service and the completion of the last transfer Several

algorithms exist to schedule the servicing of disk I/O requests nWe illustrate them with

a request queue (0-199)
98, 183, 37, 122, 14, 124, 65, 67

Head pointer 53

FCFS

Illustration shows total head movement of 640 cylinders

SSTF

Selects the request with the minimum seek time from the current head position SSTF

scheduling is a form of SJF scheduling; may cause starvation of some requests
nIllustration shows total head movement of 236 cylinders

SCAN

The disk arm starts at one end of the disk, and moves toward the other end,

servicing requests until it gets to the other end of the disk, where the head

movement is reversed and servicing continues.nSCAN algorithm Sometimes called

the elevator algorithm

Illustration shows total head movement of 208 cylinders

C-SCAN

Provides a more uniform wait time than SCAN

The head moves from one end of the disk to the other, servicing requests as it goes

When it reaches the other end, however, it immediately returns to the beginning of the

disk, without servicing any requests on the return trip

Treats the cylinders as a circular list that wraps around from the last cylinder to the first

one

C-LOOK
Version of C-SCAN

Arm only goes as far as the last request in each direction, then reverses direction

immediately, without first going all the way to the end of the disk Selecting a

Disk-Scheduling Algorithm
SSTF is common and has a natural appeal

SCAN and C-SCAN perform better for systems that place a heavy load on the disk
Performance depends on the number and types of requests

Requests for disk service can be influenced by the file-allocation method The disk-

scheduling algorithm should be written as a separate module of the

operating system, allowing it to be replaced with a different algorithm if necessary Either

SSTF or LOOK is a reasonable choice for the default algorithm

Disk Management

Low-level formatting, or physical formatting — Dividing a disk into sectors that the

disk controller can read and write

To use a disk to hold files, the operating system still needs to record its own data

structures on the disk

Partition the disk into one or more groups of cylinders Logical

formatting or “making a file system”
To increase efficiency most file systems group blocks into clusters

Disk I/O done in blocks

File I/O done in clusters Boot

block initializes system

The bootstrap is stored in ROM

Bootstrap loader program
Methods such as sector sparing used to handle bad blocks

Booting from a Disk in Windows 2000

:Swap-Space Management
Swap-space — Virtual memory uses disk space as an extension of main

memory

Swap-space can be carved out of the normal file system, or, more commonly, it can be

in a separate disk partition
Swap-space management

4.3BSD allocates swap space when process starts; holds text segment (the program) and

data segment
Kernel uses swap maps to track swap-space use

Solaris 2 allocates swap space only when a page is forced out of physical

memory, not when the virtual memory page is first created

Data Structures for Swapping on Linux

Systems

RAID Structure

RAID – multiple disk drives provides reliability via redundancynIncreases the mean

time to failurenFrequently combined with NVRAM to improve write performance
RAID is arranged into six different levels

Several improvements in disk-use techniques involve the use of multiple disks working

cooperativelynDisk striping uses a group of disks as one storage unitnRAID schemes

improve performance and improve the reliability of the storage system by storing

redundant data
Mirroring or shadowing (RAID 1) keeps duplicate of each disk

Striped mirrors (RAID 1+0) or mirrored stripes (RAID 0+1) provides high

performance and high reliabilitylBlock interleaved parity (RAID 4, 5, 6) uses much less redundancy RAID

within a storage array can still fail if the array fails, so automatic
replication of the data between arrays is common

Frequently, a small number of hot-spare disks are left unallocated, automatically

replacing a failed disk and having data rebuilt onto them

RAID (0 + 1) and (1 + 0)

Extensions

RAID alone does not prevent or detect data corruption or other errors, just disk failures

Solaris ZFS adds checksums of all data and metadata

Checksums kept with pointer to object, to detect if object is the right one and whether it

changed

Can detect and correct data and metadata corruption ZFS

also removes volumes, partititions

Disks allocated in pools

Filesystems with a pool share that pool, use and release space like “malloc” and “free”

memory allocate / release calls

ZFS Checksums All Metadata and Data Traditional

and Pooled Storage

Stable-Storage Implementation
Write-ahead log scheme requires stable storagenTo implement stable storage:

Replicate information on more than one nonvolatile storage media with independent

failure modes

Update information in a controlled manner to ensure that we can recover the stable

data after any failure during data transfer or recovery

Tertiary Storage Devices

Low cost is the defining characteristic of tertiary storagenGenerally, tertiary storage is

built using removable medianCommon examples of removable media are floppy disks

and CD-ROMs; other types are available

Removable Disks

Floppy disk — thin flexible disk coated with magnetic material, enclosed in a protective

plastic caselMost floppies hold about 1 MB; similar technology is used for removable

disks that hold more than 1 GB

Removable magnetic disks can be nearly as fast as hard disks, but they are at a greater risk of

damage from exposure

A magneto-optic disk records data on a rigid platter coated with magnetic

material

Laser heat is used to amplify a large, weak magnetic field to record a bit Laser

light is also used to read data (Kerr effect)

The magneto-optic head flies much farther from the disk surface than a magnetic disk

head, and the magnetic material is covered with a protective layer of plastic or glass;

resistant to head crashesnOptical disks do not use magnetism; they employ special

materials that are altered by laser light

WORM Disks

The data on read-write disks can be modified over and over

WORM (“Write Once, Read Many Times”) disks can be written only once Thin

aluminum film sandwiched between two glass or plastic platters

To write a bit, the drive uses a laser light to burn a small hole through the aluminum;

information can be destroyed by not altered

Very durable and reliable

Read-only disks, such ad CD-ROM and DVD, com from the factory with the data pre-

recorded

Tapes

Compared to a disk, a tape is less expensive and holds more data, but random access is

much slower

Tape is an economical medium for purposes that do not require fast random access,

e.g., backup copies of disk data, holding huge volumes of data Large tape

installations typically use robotic tape changers that move tapes between tape drives

and storage slots in a tape library

stacker – library that holds a few tapes silo –

library that holds thousands of tapes

A disk-resident file can be archived to tape for low cost storage; the computer can

stage it back into disk storage for active use

Operating System Support

nMajor OS jobs are to manage physical devices and to present a virtual machine

abstraction to applicationsnFor hard disks, the OS provides two abstraction:

Raw device – an array of data blockslFile system – the OS queues and schedules the interleaved requests

from
several applications

Application Interface

Most OSs handle removable disks almost exactly like fixed disks — a new cartridge

is formatted and an empty file system is generated on the disk Tapes are presented as

a raw storage medium, i.e., and application does not not open a file on the tape, it

opens the whole tape drive as a raw device Usually the tape drive is reserved for the

exclusive use of that application

Since the OS does not provide file system services, the application must decide how to

use the array of blocks

Since every application makes up its own rules for how to organize a tape, a tape

full of data can generally only be used by the program that created it Tape Drives

The basic operations for a tape drive differ from those of a disk drive locate()

positions the tape to a specific logical block, not an entire track (corresponds

to seek())

The read position() operation returns the logical block number where the

tape head is

The space() operation enables relative motion

Tape drives are “append-only” devices; updating a block in the middle of the tape also

effectively erases everything beyond that block
An EOT mark is placed after a block that is written

File Naming

The issue of naming files on removable media is especially difficult when we want to

write data on a removable cartridge on one computer, and then use the cartridge in

another computer

Contemporary OSs generally leave the name space problem unsolved for removable

media, and depend on applications and users to figure out how to access and

interpret the data

Some kinds of removable media (e.g., CDs) are so well standardized that all

computers use them the same way

(Hierarchical Storage Management HSM)
A hierarchical storage system extends the storage hierarchy beyond

primary memory and secondary storage to incorporate tertiary storage — usually

implemented as a jukebox of tapes or removable disks

Usually incorporate tertiary storage by extending the file system Small

and frequently used files remain on disk
Large, old, inactive files are archived to the jukebox

HSM is usually found in supercomputing centers and other large installations that have

enormous volumes of data

Speed

Two aspects of speed in tertiary storage are bandwidth and latencynBandwidth is

measured in bytes per second

Sustained bandwidth – average data rate during a large transfer; # of

bytes/transfer time
Data rate when the data stream is actually flowing

Effective bandwidth – average over the entire I/O time, including seek() or

locate(), and cartridge switching

Drive’s overall data rate
Access latency – amount of time needed to locate data

Access time for a disk – move the arm to the selected cylinder and wait for the

rotational latency; < 35 milliseconds

Access on tape requires winding the tape reels until the selected block reaches the tape

head; tens or hundreds of seconds

Generally say that random access within a tape cartridge is about a thousand times

slower than random access on disk

The low cost of tertiary storage is a result of having many cheap cartridges share a

few expensive drives

A removable library is best devoted to the storage of infrequently used data, because the

library can only satisfy a relatively small number of I/O requests per hour

Reliability

A fixed disk drive is likely to be more reliable than a removable disk or tape drivenAn

optical cartridge is likely to be more reliable than a magnetic disk or tapenA head crash

in a fixed hard disk generally destroys the data, whereas the failure of a tape drive or

optical disk drive often leaves the data cartridge

unharmed

Cost

Main memory is much more expensive than disk storagenThe cost per megabyte of hard

disk storage is competitive with magnetic tape if only one tape is used per drivenThe

cheapest tape drives and the cheapest disk drives have had about the same storage

capacity over the yearsnTertiary storage gives a cost savings only when the number of

cartridges is considerably larger than the number of drives

