

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

1

VISUAL BASIC.NET PROGRAMMING

LECTURE NOTES (Semester-IV)

for

Bachelor of Computer Applications

Department of Computer Science and Applications

Vinayaka Mission’s Research Foundation

School of Arts And Science, Av Campus

Chennai-603104

Lecture Note Prepared By

S.MAHALAKSHMI, Asst.Professor

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

2
SYLLUBUS

VISUAL BASIC.NET PROGRAMMING

OBJECTIVES:

At the end of this course the learner is expected:

1. To gain in-depth knowledge on .NET frame work

2. To develop business applications using VB .net

3. To understand ADO .Net for database programming.

UNIT - I (12 Hours)
.NET FRAMEWORK AND VB.NET: Evolution of the .NET Framework – Overview of the .Net

Framework – VB.NET – Simple VB.Net Program. VARIABLES, CONSTANTS AND

EXPRESSIONS: Value Types and Reference Types – Variable Declarations and Initializations –

Value Data Types – Reference Data Types – Boxing and Unboxing – Arithmetic Operators – Textbox

Control – Label Control – Button Control.

UNIT – II (12 Hours)
CONTROL STATEMENTS: If Statements – Radio Button Control – Check Box Control – Group

Box Control – Listbox Control – Checked List Box Control – Combo box Control – Select Case

Statement – While Statement – Do Statement – For Statement. METHODS AND ARRAYS: Types

of Methods – One Dimensional Array – Multi Dimensional Arrays – Jagged Arrays. CLASSES:

Definition And Usage of a Class – Constructor Overloading – Copy Constructor – Instance and

Shared Class Members – Shared Constructors.

UNIT – III (12 Hours)

INHERITANCE AND POLYMORPHISM: Virtual Methods – Abstract Class and Abstract

Methods – Sealed Classes. INTERFACES, NAMESPACES AND COMPONENTS: Definition of
Interfaces – Multiple Implementations of Interfaces – Interface Inheritance – Namespaces –

Components – Access Modifiers. DELEGATES, EVENTS AND ATTRIBUTES: Delegates –
Events – Attributes – Reflection.

UNIT - IV (12 Hours)
EXCEPTION HANDLING: Default Exception Handling Mechanism – User Defined Exception

Handling Mechanism – Throw Statement – Custom Exception. MULTITHREADING: Usage Of

Threads – Thread Class – Start(), Abort(), Join(), and Sleep() Methods – Suspend() And Resume()

Methods – Thread Priority – Synchronization I/O STREAMS: Binary Data Files – Text Files - Data

Files – FileInfo and DirectoryInfo Classes.

UNIT - V (12 Hours)
ADDITIONAL CONTROLS: Timer – ProgressBar – LinkLabel – Panel – TreeView – Splitter –

Menu – SDI & MDI – Dialog Boxes – Toolbar – StatusBar. DATABASE CONNECTIVITY:

Advantages Of ADO.NET – Managed Data Providers – Developing a Simple ADO.NET Based

Application – Creation of Data Table – Retrieving Data From Tables – Table Updating – Disconnected

Data Access Through Dataset Objects.

Total Hours: 60

TEXT BOOK
1. Muthu C. (2008), ”Visual Basic.NET”, 2nd Ed., Vijay Nicole Imprints Pvt.Ltd.,.

REFERRENCES

1. Jeffrey R.Shaprio (2002), “Visual Basic .NET The Complete Reference”, Mac Graw Hill

 2. Michael Halvorson (2010), “Visual Basic 2010 Step by Step”, Microsoft Press.

 3. Harold Davis (2002), “Visual Basic.NET Programming”, Sybex.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

3

VISUAL BASIC.NET PROGRAMMING

UNIT-I

.NET FRAMEWORK AND VB.NET

Evolution of the .net Framework:

The .Net framework is a software development platform developed by Microsoft. The framework was

meant to create applications, which would run on the Windows Platform. The first version of the .Net

framework was released in the year 2002.

The version was called .Net framework 1.0. The .Net framework has come a long way since then, and

the current version is 4.7.1.

The .Net framework can be used to create both - Form-based and Web-based applications.Web

servicescan also be developed using the .Net framework.

The framework also supports various programming languages such as Visual Basic and C#. So

developers can choose and select the language to develop the required application. In this chapter, you

will learn some basics of the .Net framework.

In this tutorial, you will learn-

• .Net Framework Architecture

• .NET Components

• .Net Framework Design Principle

Overview of the .net framework:

.NET Framework is a technology that supports building and running Windows apps and web

services. .NET Framework is designed to fulfill the following objectives:

• To provide a consistent object-oriented programming environment whether object code is stored

and executed locally, executed locally but web-distributed, or executed remotely.

• To provide a code-execution environment that minimizes software deployment and versioning

conflicts.

• To provide a code-execution environment that promotes safe execution of code, including code

created by an unknown or semi-trusted third party.

• To provide a code-execution environment that eliminates the performance problems of scripted

or interpreted environments.

• To make the developer experience consistent across widely varying types of apps, such as

Windows-based apps and Web-based apps.

https://www.guru99.com/web-services-tutorial.html
https://www.guru99.com/web-services-tutorial.html
https://www.guru99.com/net-framework.html#1
https://www.guru99.com/net-framework.html#2
https://www.guru99.com/net-framework.html#3

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

4
• To build all communication on industry standards to ensure that code based on .NET

Framework integrates with any other code.

VB.Net:

Visual Basic .NET (VB.NET) is an object-oriented computer programming language

implemented on the .NET Framework. Although it is an evolution of classic Visual Basic

language, it is not backwards-compatible with VB6, and any code written in the old version does

not compile under VB.NET.

Like all other .NET languages, VB.NET has complete support for object-oriented concepts. Everything

in VB.NET is an object, including all of the primitive types (Short, Integer, Long, String, Boolean, etc.)

and user-defined types, events, and even assemblies. All objects inherits from the base class Object.

VB.NET is implemented by Microsoft's .NET framework. Therefore, it has full access to all the

libraries in the .Net Framework. It's also possible to run VB.NET programs on Mono, the open-source

alternative to .NET, not only under Windows, but even Linux or Mac OSX.

The following reasons make VB.Net a widely used professional language −

• Modern, general purpose.

• Object oriented.

• Component oriented.

• Easy to learn.

• Structured language.

• It produces efficient programs.

• It can be compiled on a variety of computer platforms.

• Part of .Net Framework.

Strong Programming Features VB.Net

VB.Net has numerous strong programming features that make it endearing to multitude of

programmers worldwide. Let us mention some of these features −

• Boolean Conditions

• Automatic Garbage Collection

• Standard Library

• Assembly Versioning

• Properties and Events

• Delegates and Events Management

• Easy-to-use Generics

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

5
• Indexers

• Conditional Compilation

• Simple Multithreading

Simple VB.Net Program:

A VB.Net program basically consists of the following parts −

• Namespace declaration

• A class or module

• One or more procedures

• Variables

• The Main procedure

• Statements & Expressions

• Comments

Let us look at a simple code that would print the words "Hello World" −

Imports System

Module Module1

'This program will display Hello World

Sub Main()

Console.WriteLine("Hello World")

Console.ReadKey()

End Sub

End Module

When the above code is compiled and executed, it produces the following result −

Hello, World!

Let us look various parts of the above program −

• The first line of the program Imports System is used to include the System namespace in the

program.

• The next line has a Module declaration, the module Module1. VB.Net is completely object

oriented, so every program must contain a module of a class that contains the data and

procedures that your program uses.

• Classes or Modules generally would contain more than one procedure. Procedures contain the

executable code, or in other words, they define the behavior of the class. A procedure could be

any of the following −

• Function

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

6
• Sub

• Operator

• Get

• Set

• AddHandler

• RemoveHandler

• RaiseEvent

• The next line('This program) will be ignored by the compiler and it has been put to add

additional comments in the program.

• The next line defines the Main procedure, which is the entry point for all VB.Net programs. The

Main procedure states what the module or class will do when executed.

• The Main procedure specifies its behavior with the statement

Console.WriteLine("Hello World")WriteLine is a method of the Console class defined in the

System namespace. This statement causes the message "Hello, World!" to be displayed on the

screen.

• The last line Console.ReadKey() is for the VS.NET Users. This will prevent the screen from

running and closing quickly when the program is launched from Visual Studio .NET.

Compile & Execute VB.Net Program

If you are using Visual Studio.Net IDE, take the following steps −

• Start Visual Studio.

• On the menu bar, choose File → New → Project.

• Choose Visual Basic from templates

• Choose Console Application.

• Specify a name and location for your project using the Browse button, and then choose the OK

button.

• The new project appears in Solution Explorer.

• Write code in the Code Editor.

• Click the Run button or the F5 key to run the project. A Command Prompt window appears that

contains the line Hello World.

You can compile a VB.Net program by using the command line instead of the Visual Studio IDE −

• Open a text editor and add the above mentioned code.

• Save the file as helloworld.vb

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

7
• Open the command prompt tool and go to the directory where you saved the file.

• Type vbc helloworld.vb and press enter to compile your code.

• If there are no errors in your code the command prompt will take you to the next line and would

generate helloworld.exe executable file.

• Next, type helloworld to execute your program.

• You will be able to see "Hello World" printed on the screen.

VARIABLES, CONSTANTS AND EXPRESSIONS

Value Types and Reference Types:

There are two kinds of types in Visual Basic: reference types and value types. Variables of reference

types store references to their data (objects), while variables of value types directly contain their data.

With reference types, two variables can reference the same object; therefore, operations on one variable

can affect the object referenced by the other variable. With value types, each variable has its own copy

of the data, and it is not possible for operations on one variable to affect the other

Value Types

A data type is a value type if it holds the data within its own memory allocation. Value types include

the following:

• All numeric data types

• Boolean, Char, and Date

• All structures, even if their members are reference types

• Enumerations, since their underlying type is always SByte, Short, Integer, Long, Byte, UShort,

UInteger, or ULong

Every structure is a value type, even if it contains reference type members. For this reason, value types

such as Char and Integer are implemented by .NET Framework structures.

You can declare a value type by using the reserved keyword, for example, Decimal. You can also use

the New keyword to initialize a value type. This is especially useful if the type has a constructor that

takes parameters. An example of this is the Decimal(Int32, Int32, Int32, Boolean, Byte) constructor,

which builds a new Decimal value from the supplied parts.

Reference Types

A reference type stores a reference to its data. Reference types include the following:

• String

• All arrays, even if their elements are value types

https://docs.microsoft.com/en-us/dotnet/api/system.decimal.-ctor#System_Decimal__ctor_System_Int32_System_Int32_System_Int32_System_Boolean_System_Byte_

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

8
• Class types, such as Form

• Delegates

A class is a reference type. Note that every array is a reference type, even if its members are value

types.

Since every reference type represents an underlying .NET Framework class, you must use the New

Operator keyword when you initialize it. The following statement initializes an array.

Dim totals() As Single = New Single(8) {}

Variable Declaration and Initialization:

A variable is nothing but a name given to a storage area that our programs can manipulate. Each

variable in VB.Net has a specific type, which determines the size and layout of the variable's memory;

the range of values that can be stored within that memory; and the set of operations that can be applied

to the variable.

The basic value types provided in VB.Net can be categorized as

Type Example

Integral types SByte, Byte, Short, UShort, Integer, UInteger, Long, ULong and Char

Floating point types Single and Double

Decimal types Decimal

Boolean types True or False values, as assigned

Date types Date

VB.Net also allows defining other value types of variable like Enum and reference types of variables

like Class. We will discuss date types and Classes in subsequent chapters.

Variable Declaration in VB.Net

The Dim statement is used for variable declaration and storage allocation for one or more variables.

The Dim statement is used at module, class, structure, procedure or block level.

Syntax for variable declaration in VB.Net is −

[< attributelist >] [accessmodifier] [[Shared] [Shadows] | [Static]]

[ReadOnly] Dim [WithEvents] variablelist

Where,

• attributelist is a list of attributes that apply to the variable. Optional.

• accessmodifier defines the access levels of the variables, it has values as - Public, Protected,

Friend, Protected Friend and Private. Optional.

• Shared declares a shared variable, which is not associated with any specific instance of a class

or structure, rather available to all the instances of the class or structure. Optional.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/operators/new-operator
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/operators/new-operator

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

9
• Shadows indicate that the variable re-declares and hides an identically named element, or set of

overloaded elements, in a base class. Optional.

• Static indicates that the variable will retain its value, even when the after termination of the

procedure in which it is declared. Optional.

• ReadOnly means the variable can be read, but not written. Optional.

• WithEvents specifies that the variable is used to respond to events raised by the instance

assigned to the variable. Optional.

• Variablelist provides the list of variables declared.

Each variable in the variable list has the following syntax and parts −

variablename[([boundslist])] [As [New] datatype] [= initializer]

Where,

• variablename − is the name of the variable

• boundslist − optional. It provides list of bounds of each dimension of an array variable.

• New − optional. It creates a new instance of the class when the Dim statement runs.

• datatype − Required if Option Strict is On. It specifies the data type of the variable.

• initializer − Optional if New is not specified. Expression that is evaluated and assigned to the

variable when it is created.

Some valid variable declarations along with their definition are shown here −

Dim StudentID As Integer

Dim StudentName As String

Dim Salary As Double

Dim count1, count2 As Integer

Dim status As Boolean

Dim exitButton As New System.Windows.Forms.Button

Dim lastTime, nextTime As Date

Variable Initialization in VB.Net

Variables are initialized (assigned a value) with an equal sign followed by a constant expression. The

general form of initialization is −

variable_name = value;

for example,

Dim pi As Double

pi = 3.14159

You can initialize a variable at the time of declaration as follows −

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

10
Dim StudentID As Integer = 100

Dim StudentName As String = "Bill Smith"

Example

Try the following example which makes use of various types of variables −

Live Demo

Module variablesNdataypes

Sub Main()

Dim a As Short

Dim b As Integer

Dim c As Double

a = 10

b = 20

c = a + b

Console.WriteLine("a = {0}, b = {1}, c = {2}", a, b, c)

Console.ReadLine()

End Sub

End Module

When the above code is compiled and executed, it produces the following result −

a = 10, b = 20, c = 30

Value Data Types:

A data type is a value type if it holds the data within its own memory allocation. Value types are stored

directly on the stack. Value types can not contain the value null. We assign a value to that variable like

this: x=11. When a variable of value type goes out of scope, it is destroyed and it's memory is

reclaimed.

Value types include the following:

• All numeric data types

• Boolean, Char, and Date

• All structures, even if their members are reference types

• Enumerations, since their underlying type is always SByte, Short, Integer, Long, Byte, UShort,

UInteger, or ULong

For example

The following code defines an int type variable. int type is a value type.

ModuleModule1

Sub Main()

Dim m AsInteger = 5

http://tpcg.io/LvrYSJ

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

11
Dim n AsInteger = m

m = 3

Console.WriteLine("m="& m)

Console.WriteLine("n="& n)

EndSub

EndModule

OUTPUT

w1.gif

Reference Data Type:

A reference type contains a pointer to another memory location that holds the data.while Reference

types are stored on the run-time heap. Value types can contain the value null. Creating a variable of

reference type is a two-step process, declare and instantiate. The first step is to declare a variable as that

type. The second step, instantiation, creates the object.

String

• All arrays, even if their elements are value types

• Class types, such as Form

• Delegates

For Example

ModuleModule1

Sub Main()

Dim objX AsNew System.Text.StringBuilder(" Rohatash Kumasr")

Dim objY As System.Text.StringBuilder

objY = objX

objX.Replace("World", "Test")

Console.WriteLine(objY.ToString())

EndSub

EndModule

OUTPUT

w2.gif

Boxing and UnBoxing:

VB provides us with Value types and Reference Types. Value Types are stored on the stack and

Reference types are stored on the heap. The conversion of value type to reference type is known as

Boxingand converting reference type back to the value type is known as Unboxing.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

12

Boxing:

Convert ValueTypes to Reference Types also known as boxing.

Dimx AsInt32 = 10

Dimo AsObject= x ' Implicit boxing

Console.WriteLine("The Object o = ", &o) ' prints out 10

Dimx AsInt32 = 10

Dimo AsObject= CObj(x) ' Explicit Boxing

Console.WriteLine("The object o = ", &o) ' prints out 10

Unboxing:

UnBoxing an object type back to value type.

Dimx AsInt32 = 5

Dimo As Object= x ' Implicit Boxing

x = o ' Implicit UnBoxing

Dimx AsInt32 = 5

Dimo As Object= x ' Implicit Boxing

x = CInt(Fix(o)) ' Explicit UnBoxing

Arithmetic Operators in VB.Net:

You can use arithmetic operators to perform various mathematical operations in VB.NET. They

include:

Symbol Description

^
for raising an operand to the power of another

operand

+ for adding two operands.

-
for subtracting the second operand from the first

operand.

* for multiplying both operands.

/
for dividing an operand against another. It returns a

floating point result.

\
for dividing an operand against another. It returns

an integer result.

MOD
known as the modulus operator. It returns the

remainder after division.

Let us demonstrate how to use these using an example:

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

13
Step 1) Create a new console application. To know this, visit our previous tutorial on Data Types and

Variables.

Step 2) Add the following code:

Module Module1

Sub Main()

Dim var_w As Integer = 11

Dim var_x As Integer = 5

Dim var_q As Integer = 2

Dim var_y As Integer

Dim var_z As Single

var_y = var_w + var_z

Console.WriteLine(" Result of 11 + 5 is {0} ", var_y)

var_y = var_w - var_x

Console.WriteLine(" Result of 11 - 5 is {0} ", var_y)

var_y = var_w * var_x

Console.WriteLine(" Result of 11 * 5 is {0} ", var_y)

var_z = var_w / var_x

Console.WriteLine(" Result of 11 / 5 is {0}", var_z)

var_y = var_w \ var_x

Console.WriteLine(" Result of 11 \ 5 is {0}", var_y)

var_y = var_w Mod var_x

Console.WriteLine(" Result of 11 MOD 5 is {0}", var_y)

var_y = var_x ^ var_x

Console.WriteLine(" Result of 5 ^ 5 is {0}", var_y)

Console.ReadLine()

End Sub

End Module

Step 3) Click the Start button to execute the code.

Textbox Control:

The TextBox Control allows you to enter text on your form during runtime. The default setting is that it

will accept only one line of text, but you can modify it to accept multiple lines. You can even include

scroll bars into your TextBox Control.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

14

TextBox Properties

The following are the most common properties of the Visual Basic TextBox control:

• TextAlign- for setting text alignment

• ScrollBars- for adding scrollbars, both vertical and horizontal

• Multiline- to set the TextBox Control to allow multiple lines

• MaxLength- for specifying the maximum character number the TextBox Control will accept

• Index- for specifying the index of control array

• Enabled- for enabling the textbox control

• Readonly- if set to true, you will be able to use the TextBox Control, if set to false, you won't

be able to use the TextBox Control.

• SelectionStart- for setting or getting the starting point for the TextBox Control.

• SelectionLength- for setting or getting the number of characters that have been selected in the

TextBox Control.

• SelectedText- returns the TextBox Control that is currently selected.

Textbox Events

The purpose of events is to make the TextBox Control respond to user actions such as a click, a double

click or change in text alignment. Here are the common events for the TextBox Control:

• AutoSizeChanged- Triggered by a change in the AutoSize property.

• ReadOnlyChanged- Triggered by a change of the ReadOnly property value.

• Click- Triggered by a click on the TextBox Control.

How to Create a TextBox

Step 1) To create a TextBox, drag the TextBox control from the toolbox into the WindowForm:

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

15
Step 2)

1. Click the TextBox Control that you have added to the form.

2. Move to the Properties section located on the bottom left of the screen. Change the name of the

text box from TextBox1 to HelloTextBox:

Step 3) Add the following code to add text to the control:

Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load

'Add text to the control

HelloTextBox.Text = "Hello. Welcome to Guru99!"

End Sub

Step 4) You can now run the code by clicking the Start button located at the top bar:

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

16

Step 5) You should get the following form:

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

17
Label Control

The Label control represents a standard Windows label. It is generally used to display some

informative text on the GUI which is not changed during runtime.

Let's create a label by dragging a Label control from the Toolbox and dropping it on the form.

Properties of the Label Control

The following are some of the commonly used properties of the Label control −

Sr.No. Property & Description

1

Autosize

Gets or sets a value specifying if the control should be automatically resized to display all its

contents.

2

BorderStyle

Gets or sets the border style for the control.

3

FlatStyle

Gets or sets the flat style appearance of the Label control

4

Font

Gets or sets the font of the text displayed by the control.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

18
5

FontHeight

Gets or sets the height of the font of the control.

6

ForeColor

Gets or sets the foreground color of the control.

7

PreferredHeight

Gets the preferred height of the control.

8

PreferredWidth

Gets the preferred width of the control.

9

TabStop

Gets or sets a value indicating whether the user can tab to the Label. This property is not used

by this class.

10

Text

Gets or sets the text associated with this control.

11

TextAlign

Gets or sets the alignment of text in the label.

Methods of the Label Control

The following are some of the commonly used methods of the Label control −

Sr.No. Method Name & Description

1

GetPreferredSize

Retrieves the size of a rectangular area into which a control can be fitted.

2

Refresh

Forces the control to invalidate its client area and immediately redraw itself and any child

controls.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

19
3

Select

Activates the control.

4

Show

Displays the control to the user.

5

ToString

Returns a String that contains the name of the control.

Events of the Label Control

The following are some of the commonly used events of the Label control −

Sr.No. Event & Description

1

AutoSizeChanged

Occurs when the value of the AutoSize property changes.

2

Click

Occurs when the control is clicked.

3

DoubleClick

Occurs when the control is double-clicked.

4

GotFocus

Occurs when the control receives focus.

5

Leave

Occurs when the input focus leaves the control.

6

LostFocus

Occurs when the control loses focus.

7
TabIndexChanged

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

20
Occurs when the TabIndex property value changes.

8

TabStopChanged

Occurs when the TabStop property changes.

9

TextChanged

Occurs when the Text property value changes.

Example

Public Class Form1

Private Sub Form1_Load(sender As Object, e As EventArgs) _

Handles MyBase.Load

' Create two buttons to use as the accept and cancel buttons.

' Set window width and height

Me.Height = 300

Me.Width = 560

' Set the caption bar text of the form.

Me.Text = "tutorialspont.com"

' Display a help button on the form.

Me.HelpButton = True

End Sub

Private Sub Label1_Click(sender As Object, e As EventArgs) _

Handles Label1.Click

Label1.Location = New Point(50, 50)

Label1.Text = "You have just moved the label"

End Sub

Private Sub Label1_DoubleClick(sender As Object, e As EventArgs)

Handles Label1.DoubleClick

Dim Label2 As New Label

Label2.Text = "New Label"

Label2.Location = New Point(Label1.Left, Label1.Height + _

Label1.Top + 25)

Me.Controls.Add(Label2)

End Sub

End Class

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

21
Button Control:

The Button control represents a standard Windows button. It is generally used to generate a Click event

by providing a handler for the Click event.

Let's create a label by dragging a Button control from the Toolbox ad dropping it on the form.

Properties of the Button Control

The following are some of the commonly used properties of the Button control −

Sr.No. Property & Description

1

AutoSizeMode

Gets or sets the mode by which the Button automatically resizes itself.

2

BackColor

Gets or sets the background color of the control.

3

BackgroundImage

Gets or sets the background image displayed in the control.

4

DialogResult

Gets or sets a value that is returned to the parent form when the button is clicked. This is used

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

22
while creating dialog boxes.

5

ForeColor

Gets or sets the foreground color of the control.

6

Image

Gets or sets the image that is displayed on a button control.

7

Location

Gets or sets the coordinates of the upper-left corner of the control relative to the upper-left

corner of its container.

8

TabIndex

Gets or sets the tab order of the control within its container.

9

Text

Gets or sets the text associated with this control.

Methods of the Button Control

The following are some of the commonly used methods of the Button control −

Sr.No. Method Name & Description

1

GetPreferredSize

Retrieves the size of a rectangular area into which a control can be fitted.

2

NotifyDefault

Notifies the Button whether it is the default button so that it can adjust its appearance

accordingly.

3

Select

Activates the control.

4
ToString

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

23
Returns a String containing the name of the Component, if any. This method should not be

overridden.

Events of the Button Control

The following are some of the commonly used events of the Button control −

Sr.No. Event & Description

1

Click

Occurs when the control is clicked.

2

DoubleClick

Occurs when the user double-clicks the Button control.

3

GotFocus

Occurs when the control receives focus.

4

TabIndexChanged

Occurs when the TabIndex property value changes.

5

TextChanged

Occurs when the Text property value changes.

6

Validated

Occurs when the control is finished validating.

Consult Microsoft documentation for detailed list of properties, methods and events of the Button

control.

Example

Public Class Form1

Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load

' Set the caption bar text of the form.

Me.Text = "tutorialspont.com"

btnImage.Visible = False

End Sub

Private Sub btnMoto_Click(sender As Object, e As EventArgs) Handles btnMoto.Click

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

24
btnImage.Visible = False

Label1.Text = "Simple Easy Learning"

End Sub

Private Sub btnExit_Click(sender As Object, e As EventArgs) Handles btnExit.Click

Application.Exit()

End Sub

Private Sub btnLogo_Click(sender As Object, e As EventArgs) Handles btnLogo.Click

Label1.Visible = False

btnImage.Visible = True

End Sub

End Class

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

25
Unit – II

Radio Button Control

The RadioButton control is used to provide a set of mutually exclusive options. The user can

select one radio button in a group. If you need to place more than one group of radio buttons in the

same form, you should place them in different container controls like a GroupBox control.

Let's create three radio buttons by dragging RadioButton controls from the Toolbox and dropping on

the form.

The Checked property of the radio button is used to set the state of a radio button. You can display

text, image or both on radio button control. You can also change the appearance of the radio button

control by using the Appearance property.

Properties of the RadioButton Control

The following are some of the commonly used properties of the RadioButton control −

Sr.No. Property & Description

1
Appearance

Gets or sets a value determining the appearance of the radio button.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

26 2
AutoCheck

Gets or sets a value indicating whether the Checked value and the appearance of the

control automatically change when the control is clicked.

3
CheckAlign

Gets or sets the location of the check box portion of the radio button.

4
Checked

Gets or sets a value indicating whether the control is checked.

5
Text

Gets or sets the caption for a radio button.

6
TabStop

Gets or sets a value indicating whether a user can give focus to the RadioButton control

using the TAB key.

Methods of the RadioButton Control

The following are some of the commonly used methods of the RadioButton control −

Sr.No. Method Name & Description

1
PerformClick

Generates a Click event for the control, simulating a click by a user.

Events of the RadioButton Control

The following are some of the commonly used events of the RadioButton control −

Sr.No Event & Description

1
AppearanceChanged

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

27 Occurs when the value of the Appearance property of the RadioButton control is changed.

2
CheckedChanged

Occurs when the value of the Checked property of the RadioButton control is changed.

Consult Microsoft documentation for detailed list of properties, methods and events of the

RadioButton control.

CheckBox Control

The CheckBox control allows the user to set true/false or yes/no type options. The user can select or

deselect it. When a check box is selected it has the value True, and when it is cleared, it holds the

value False.

Let's create two check boxes by dragging CheckBox controls from the Toolbox and dropping on the

form.

The CheckBox control has three states, checked, unchecked and indeterminate. In the indeterminate

state, the check box is grayed out. To enable the indeterminate state, the ThreeState property of the

check box is set to be True.

Properties of the CheckBox Control

The following are some of the commonly used properties of the CheckBox control −

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

28 Sr.No. Property & Description

1
Appearance

Gets or sets a value determining the appearance of the check box.

2
AutoCheck

Gets or sets a value indicating whether the Checked or CheckedState value and the

appearance of the control automatically change when the check box is selected.

3
CheckAlign

Gets or sets the horizontal and vertical alignment of the check mark on the check box.

4
Checked

Gets or sets a value indicating whether the check box is selected.

5
CheckState

Gets or sets the state of a check box.

6
Text

Gets or sets the caption of a check box.

7
ThreeState

Gets or sets a value indicating whether or not a check box should allow three check states

rather than two.

Methods of the CheckBox Control

The following are some of the commonly used methods of the CheckBox control −

Sr.No. Method Name & Description

1
OnCheckedChanged

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

29 Raises the CheckedChanged event.

2
OnCheckStateChanged

Raises the CheckStateChanged event.

3
OnClick

Raises the OnClick event.

Events of the CheckBox Control

The following are some of the commonly used events of the CheckBox control −

Sr.No. Event & Description

1
AppearanceChanged

Occurs when the value of the Appearance property of the check box is changed.

2
CheckedChanged

Occurs when the value of the Checked property of the CheckBox control is changed.

3
CheckStateChanged

Occurs when the value of the CheckState property of the CheckBox control is changed.

Consult Microsoft documentation for detailed list of properties, methods and events of the CheckBox

control.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

30
GroupBox Control

 GroupBox control is used to group other controls of VB.NET.

GroupBox control having a frame to indicate boundary and a text to indicate header or title.

Generally GroupBox control is used as a container for Radio Button. When Radio Buttons are grouped

using GroupBox, user can select one RadioButton from each GroupBox.

Properties of GroupBox Control in VB.NET

Property Purpose

BackColor It is used to get or set background color of the GroupBox.

BackgroundImage It is used to get or set background Image of the GroupBox.

BackgroundImageLayout It is used to get or set background Image layout of the GroupBox. It has one

of the following values:

None, Tile, Centre, Stretch, Zoom

Font It is used to get or set font Style, Font Size, Font Face of the text contained in

GroupBox Control.

ForeColor It is used to get or set color of the text contained in GroupBox Control.

Enabled It is used to specify weather GroupBox Control is enabled or not. It has

Boolean value. Default value is true.

Visible It is used to specify weather GroupBox Control is visible or not at run time. It

has Boolean value. Default value is true.

Text It is used to get or set Title or Header Text of the GroupBox Control.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

31
Methods of GroupBox Control in VB.NET

Method Purpose

Show It is used to show GroupBox Control.

Hide It is used to Hide GroupBox Control at run time.

Focus It is used to set cursor or focus on GroupBox Control.

ListBox Control

The ListBox represents a Windows control to display a list of items to a user. A user can select an

item from the list. It allows the programmer to add items at design time by using the properties

window or at the runtime.

Let's create a list box by dragging a ListBox control from the Toolbox and dropping it on the form.

You can populate the list box items either from the properties window or at runtime. To add items to a

ListBox, select the ListBox control and get to the properties window, for the properties of this control.

Click the ellipses (...) button next to the Items property. This opens the String Collection Editor dialog

box, where you can enter the values one at a line.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

32
Properties of the ListBox Control

The following are some of the commonly used properties of the ListBox control −

Sr.No. Property & Description

1
AllowSelection

Gets a value indicating whether the ListBox currently enables selection of list items.

2
BorderStyle

Gets or sets the type of border drawn around the list box.

3
ColumnWidth

Gets of sets the width of columns in a multicolumn list box.

4
HorizontalExtent

Gets or sets the horizontal scrolling area of a list box.

5
HorizontalScrollBar

Gets or sets the value indicating whether a horizontal scrollbar is displayed in the list box.

6
ItemHeight

Gets or sets the height of an item in the list box.

7
Items

Gets the items of the list box.

8
MultiColumn

Gets or sets a value indicating whether the list box supports multiple columns.

9
ScrollAlwaysVisible

Gets or sets a value indicating whether the vertical scroll bar is shown at all times.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

33 10
SelectedIndex

Gets or sets the zero-based index of the currently selected item in a list box.

11
SelectedIndices

Gets a collection that contains the zero-based indexes of all currently selected items in the

list box.

12
SelectedItem

Gets or sets the currently selected item in the list box.

13
SelectedItems

Gets a collection containing the currently selected items in the list box.

14
SelectedValue

Gets or sets the value of the member property specified by the ValueMember property.

15
SelectionMode

Gets or sets the method in which items are selected in the list box. This property has

values −

• None

• One

• MultiSimple

• MultiExtended

16
Sorted

Gets or sets a value indicating whether the items in the list box are sorted alphabetically.

17
Text

Gets or searches for the text of the currently selected item in the list box.

18
TopIndex

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

34 Gets or sets the index of the first visible item of a list box.

Methods of the ListBox Control

The following are some of the commonly used methods of the ListBox control −

Sr.No. Method Name & Description

1
BeginUpdate

Prevents the control from drawing until the EndUpdate method is called, while items are

added to the ListBox one at a time.

2
ClearSelected

Unselects all items in the ListBox.

3
EndUpdate

Resumes drawing of a list box after it was turned off by the BeginUpdate method.

4
FindString

Finds the first item in the ListBox that starts with the string specified as an argument.

5
FindStringExact

Finds the first item in the ListBox that exactly matches the specified string.

6
GetSelected

Returns a value indicating whether the specified item is selected.

7
SetSelected

Selects or clears the selection for the specified item in a ListBox.

8
OnSelectedIndexChanged

Raises the SelectedIndexChanged event.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

35 8
OnSelectedValueChanged

Raises the SelectedValueChanged event.

Events of the ListBox Control

The following are some of the commonly used events of the ListBox control −

Sr.No. Event & Description

1
Click

Occurs when a list box is selected.

2
SelectedIndexChanged

Occurs when the SelectedIndex property of a list box is changed.

CheckedListBox Control

CheckedListBox is a ListBox with Checkbox to the left side of each item in the list. It is derived from

ListBox so it provides all the functionality of ListBox Control.

Properties of CheckedListBox Control in VB.NET

Property Purpose

CheckOnClick It is used to specify weather CheckBox should be toggled (change state) or not when an

item is selected in the CheckedListBox. It has Boolean value. Default value is False.

MultiColumn It is used to specify weather CheckedListBox supports multiple columns or not. It has

Boolean value. Default value is false.

ColumnWidth It is used to specify width of each column in MultiColumn CheckedListBox.

Items It represents collection of items contained in CheckedListBox control.

Sorted It is used to specify weather items of CheckedListBox are sorted in alphabetical order

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

36
or not. It has Boolean value. Default value is false.

SelectionMode It is used to get or set SelectionMode of CheckedListBox. It determines how user can

select the Items of CheckedListBox. It can have one of the following four options:

(1) None: No Selection is allowed

(2) One: User can select only one item at a time.

(3) MultiSimple: User can select or deselect item just by mouse click or pressing

spacebar.

(4) MultiExtended: User can select or deselect items by holding Ctrl key and mouse

click. User can also select or deselect items by pressing Shift key and mouse click or

arrow key.

Default value is One.

Methods of CheckedListBox Control in VB.NET

Method Purpose

ClearSelected It is used to unselect all the items that are currently selected in ListBox.

FindString It is used to find first occurrences of an item in the ListBox that partially match

with string specified as an argument. If an item is found than it returns zero based

index of that item, otherwise it returns -1. The search performed by this method is

case insensitive.

FindStringExact It is used to find first occurrences of an item in the ListBox that exactly match with

string specified as an argument. If an item is found than it returns zero based index

of that item, otherwise it returns -1. The search performed by this method is case

insensitive.

GetSelected It is used to determine weather an item whose index is passed as an argument is

selected or not. It returns Boolean value.

SetSelected It is used to select or deselect an item whose index is passed as an argument.

Example:

ListBox1.SetSelected (1, true) will select second item of ListBox.

ClearSelected It is used to unselect all items in CheckedListBox.

GetItemChecked It is used to check weather an item whose index is passed as an argument is

checked or not. It returns Boolean value.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

37
GetItemCheckState It is used to get check state of an item whose index is passed as an argument. It

returns 1 if item is checked otherwise false.

SetItemCheckState It is used to set the check state of an item whose index is passed as an argument.

Example:

CheckedListBox1.SetItemChecked (1, CheckState.Checked

) will check the second item of CheckedListBox.

Events of CheckedListBox Control in VB.NET

Event Purpose

SelectedIndexChanged It is the default event of ListBox Control. It fires each time a selected Item in

the ListBox is changed.

ItemCheck It fires each time an item is checked or unchecked.

ComboBox Control

The ComboBox control is used to display a drop-down list of various items. It is a combination of a

text box in which the user enters an item and a drop-down list from which the user selects an item.

Let's create a combo box by dragging a ComboBox control from the Toolbox and dropping it on the

form.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

38
You can populate the list box items either from the properties window or at runtime. To add items to a

ComboBox, select the ComboBox control and go to the properties window for the properties of this

control. Click the ellipses (...) button next to the Items property. This opens the String Collection

Editor dialog box, where you can enter the values one at a line.

Properties of the ComboBox Control

The following are some of the commonly used properties of the ComboBox control −

Sr.No. Property & Description

1
AllowSelection

Gets a value indicating whether the list enables selection of list items.

2
AutoCompleteCustomSource

Gets or sets a custom System.Collections .Specialized.StringCollection to use when the

AutoCompleteSourceproperty is set to CustomSource.

3
AutoCompleteMode

Gets or sets an option that controls how automatic completion works for the ComboBox.

4
AutoCompleteSource

Gets or sets a value specifying the source of complete strings used for automatic

completion.

5
DataBindings

Gets the data bindings for the control.

6
DataManager

Gets the CurrencyManager associated with this control.

7
DataSource

Gets or sets the data source for this ComboBox.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

39 8
DropDownHeight

Gets or sets the height in pixels of the drop-down portion of the ComboBox.

9
DropDownStyle

Gets or sets a value specifying the style of the combo box.

10
DropDownWidth

Gets or sets the width of the of the drop-down portion of a combo box.

Methods of the ComboBox Control

The following are some of the commonly used methods of the ComboBox control −

Sr.No. Method Name & Description

1
BeginUpdate

Prevents the control from drawing until the EndUpdate method is called, while items are

added to the combo box one at a time.

2
EndUpdate

Resumes drawing of a combo box, after it was turned off by the BeginUpdate method.

3
FindString

Finds the first item in the combo box that starts with the string specified as an argument.

4
FindStringExact

Finds the first item in the combo box that exactly matches the specified string.

5
SelectAll

Selects all the text in the editable area of the combo box.

Events of the ComboBox Control

The following are some of the commonly used events of the ComboBox control −

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

40 Sr.No. Event & Description

1
DropDown

Occurs when the drop-down portion of a combo box is displayed.

2
DropDownClosed

Occurs when the drop-down portion of a combo box is no longer visible.

3
DropDownStyleChanged

Occurs when the DropDownStyle property of the ComboBox has changed.

4
SelectedIndexChanged

Occurs when the SelectedIndex property of a ComboBox control has changed.

5
SelectionChangeCommitted

Occurs when the selected item has changed and the change appears in the combo box.

If...Then Statement

It is the simplest form of control statement, frequently used in decision making and changing the

control flow of the program execution. Syntax for if-then statement is

If condition Then

[Statement(s)]

End If

Where, condition is a Boolean or relational condition and Statement(s) is a simple or compound

statement. Example of an If-Then statement is –

If (a <= 20) Then

c= c+1

End If

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

41
If the condition evaluates to true, then the block of code inside the If statement will be executed. If

condition evaluates to false, then the first set of code after the end of the If statement (after the closing

End If) will be executed.

Flow Diagram

Example

Module decisions

Sub Main()

Dim a As Integer = 10

If (a < 20) Then

Console.WriteLine("a is less than 20")

End If

Console.WriteLine("value of a is : {0}", a)

Console.ReadLine()

End Sub

End Module

Output:

a is less than 20

value of a is : 10

Select Case Statement

A Select Case statement allows a variable to be tested for equality against a list of values. Each value

is called a case, and the variable being switched on is checked for each select case.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

42
Syntax

The syntax for a Select Case statement in VB.Net is as follows

Select [Case] expression

[Case expressionlist

[statements]]

[Case Else

[elsestatements]]

End Select

Where,

• expression − is an expression that must evaluate to any of the elementary data type in VB.Net,

i.e., Boolean, Byte, Char, Date, Double, Decimal, Integer, Long, Object, SByte, Short, Single,

String, UInteger, ULong, and UShort.

• expressionlist − List of expression clauses representing match values for expression. Multiple

expression clauses are separated by commas.

• statements − statements following Case that run if the select expression matches any clause

in expressionlist.

• elsestatements − statements following Case Else that run if the select expression does not

match any clause in the expressionlist of any of the Case statements.

Flow Diagram

 Example:

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

43

Module decisions

Sub Main()

'local variable definition

Dim grade As Char

grade = "B"

Select grade

Case "A"

Console.WriteLine("Excellent!")

Case "B", "C"

Console.WriteLine("Well done")

Case "D"

Console.WriteLine("You passed")

Case "F"

Console.WriteLine("Better try again")

Case Else

Console.WriteLine("Invalid grade")

End Select

Console.WriteLine("Your grade is {0}", grade)

Console.ReadLine()

End Sub

End Module

Output:

Well done

Your grade is B

While... End While Loop

It executes a series of statements as long as a given condition is True.

The syntax for this loop construct is −

While condition

[statements]

[Continue While]

[statements]

[Exit While]

[statements]

End While

Here, statement(s) may be a single statement or a block of statements. The condition may be any

expression, and true is logical true. The loop iterates while the condition is true.

When the condition becomes false, program control passes to the line immediately following the loop.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

44
Flow Diagram

Here, key point of the While loop is that the loop might not ever run. When the condition is tested and

the result is false, the loop body will be skipped and the first statement after the while loop will be

executed.

Example

Module loops

Sub Main()

Dim a As Integer = 10

' while loop execution '

While a < 20

Console.WriteLine("value of a: {0}", a)

a = a + 1

End While

Console.ReadLine()

End Sub

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

45
End Module

Output:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

Do Loop

It repeats the enclosed block of statements while a Boolean condition is True or until the condition

becomes True. It could be terminated at any time with the Exit Do statement.

The syntax for this loop construct is −

Do { While | Until } condition

[statements]

[Continue Do]

[statements]

[Exit Do]

[statements]

Loop

-or-

Do

[statements]

[Continue Do]

[statements]

[Exit Do]

[statements]

Loop { While | Until } condition

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

46
Flow Diagram

Example

Module loops

Sub Main()

' local variable definition

Dim a As Integer = 10

'do loop execution

Do

Console.WriteLine("value of a: {0}", a)

a = a + 1

Loop While (a < 20)

Console.ReadLine()

End Sub

End Module

Output:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

47
value of a: 19

For...Next Loop

It repeats a group of statements a specified number of times and a loop index counts the number of

loop iterations as the loop executes.

The syntax for this loop construct is −

For counter [As datatype] = start To end [Step step]

[statements]

[Continue For]

[statements]

[Exit For]

[statements]

Next [counter]

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

48
Flow Diagram

Example

Module loops

Sub Main()

Dim a As Byte

' for loop execution

For a = 10 To 20

Console.WriteLine("value of a: {0}", a)

Next

Console.ReadLine()

End Sub

End Module

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

49

Output:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

value of a: 20

Types of Methods

Methods

Methods are simply member procedures built into the class. In Visual Basic .NET there are two types

of methods Functions and Sub Procedures. Methods help us to handle code in a simple and organized

fashion. Functions return a value, but Sub Procedures does not return any value. Methods are basically

a series of statements that are executed when called. Detail explanation of Sub Procedures and

Functions are given below:

Sub Procedures

In Visual Basic .NET Sub Procedures are the statements enclosed by the Sub and End Sub statements.

Statements are executed when we call the Sub procedure. The statements within it are executed until

the matching End Sub is not found. A Sub procedure performs actions but does not return a value. The

starting point of the program Sub Main(), it is also a sub procedure. The control is transferred

to Sub Main() Sub procedure automatically when application start execution.

Example:

Imports System.Console

Module Module1

 Sub Main()

 'sub procedure Main() is called by default

 Show()

 'sub procedure Show() which we are creating

 Read()

 End Sub

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

50

 Sub Show()

 Write("This is Sub Procedures")

 'executing sub procedure Show()

 End Sub

End Module

The output of above code is given below:

This is Sub Procedures

Functions

Functions are just like Sub procedures except that they can return a value. When we perfome some

action on data like evaluate data, calculations or to transform data then we use function. We can declare

functions like Sub Procedures except that we have to use the Function keyword instead of Sub.

Example:

Imports System.Console

Module Module1

 Sub Main()

 Write("Sum of two integer is" & " " & Sum())

 'calling the function

 Read()

 End Sub

 Public Function Sum() As Integer

 'declaring a function Sum

 Dim A, B As Integer

 'declaring two integers and assigning values to them

 A = 20

 B = 40

 Return (A + B)

 'performing the addition of two integers and returning it's value

 End Function

End Module

The output of above code is given below:

Sum of two integer is 60

One Dimensional Array

An array stores a fixed-size sequential collection of elements of the same type. An array is used to

store a collection of data, but it is often more useful to think of an array as a collection of variables of

the same type.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

51
All arrays consist of contiguous memory locations. The lowest address corresponds to the first

element and the highest address to the last element.

To declare an array in VB.Net, you use the Dim statement. For example

Dim intData(30) ' an array of 31 elements

Dim strData(20)

You can also initialize the array elements while declaring the array. For example,

Dim intData() As Integer = {12, 16, 20, 24, 28, 32}

Dim names() As String = {"Karthik", "Sandhya", _

"Shivangi", "Ashwitha", "Somnath"}

Dim miscData() As Object = {"Hello World", 12d, 16ui, "A"c}

The elements in an array can be stored and accessed by using the index of the array. The following

program demonstrates this

Module arrayApl

Sub Main()

Dim n(10) As Integer ' n is an array of 11 integers '

Dim i, j As Integer

' initialize elements of array n '

For i = 0 To 10

n(i) = i + 100 ' set element at location i to i + 100

Next i

' output each array element's value '

For j = 0 To 10

Console.WriteLine("Element({0}) = {1}", j, n(j))

Next j

Console.ReadKey()

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

52
End Sub

End Module

Output:

Element(0) = 100

Element(1) = 101

Element(2) = 102

Element(3) = 103

Element(4) = 104

Element(5) = 105

Element(6) = 106

Element(7) = 107

Element(8) = 108

Element(9) = 109

Element(10) = 110

Multi-Dimensional Arrays

VB.Net allows multidimensional arrays. Multidimensional arrays are also called rectangular arrays.

You can declare a 2-dimensional array of strings as –

Dim twoDStringArray(10, 20) As String

The following program demonstrates creating and using a 2-dimensional array

Module arrayApl

Sub Main()

' an array with 5 rows and 2 columns

Dim a(,) As Integer = {{0, 0}, {1, 2}, {2, 4}, {3, 6}, {4, 8}}

Dim i, j As Integer

' output each array element's value '

For i = 0 To 4

For j = 0 To 1

Console.WriteLine("a[{0},{1}] = {2}", i, j, a(i, j))

Next j

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

53
Next i

Console.ReadKey()

End Sub

End Module

Output:

a[0,0]: 0

a[0,1]: 0

a[1,0]: 1

a[1,1]: 2

a[2,0]: 2

a[2,1]: 4

a[3,0]: 3

a[3,1]: 6

a[4,0]: 4

a[4,1]: 8

Jagged Array

A Jagged array is an array of arrays. The following code shows declaring a jagged array

named scores of Integers –

Dim scores As Integer()() = New Integer(5)(){}

The following example illustrates using a jagged array –

Module arrayApl

Sub Main()

'a jagged array of 5 array of integers

Dim a As Integer()() = New Integer(4)() {}

a(0) = New Integer() {0, 0}

a(1) = New Integer() {1, 2}

a(2) = New Integer() {2, 4}

a(3) = New Integer() {3, 6}

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

54
a(4) = New Integer() {4, 8}

Dim i, j As Integer

' output each array element's value

For i = 0 To 4

For j = 0 To 1

Console.WriteLine("a[{0},{1}] = {2}", i, j, a(i)(j))

Next j

Next i

Console.ReadKey()

End Sub

End Module

Output:

a[0][0]: 0

a[0][1]: 0

a[1][0]: 1

a[1][1]: 2

a[2][0]: 2

a[2][1]: 4

a[3][0]: 3

a[3][1]: 6

a[4][0]: 4

a[4][1]: 8

Class Definition and Usage

A class definition starts with the keyword Class followed by the class name; and the class body, ended

by the End Class statement.

Objects are instances of a class. The methods and variables that constitute a class are called members

of the class.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

55
Following is the general form of a class definition

[<attributelist>] [accessmodifier] [Shadows] [MustInherit | NotInheritable] [Partial] _

Class name [(Of typelist)]

[Inherits classname]

[Implements interfacenames]

[statements]

End Class

• attributelist is a list of attributes that apply to the class. Optional.

• accessmodifier defines the access levels of the class, it has values as - Public, Protected,

Friend, Protected Friend and Private. Optional.

• Shadows indicate that the variable re-declares and hides an identically named element, or set of

overloaded elements, in a base class. Optional.

• MustInherit specifies that the class can be used only as a base class and that you cannot create

an object directly from it, i.e., an abstract class. Optional.

• NotInheritable specifies that the class cannot be used as a base class.

• Partial indicates a partial definition of the class.

• Inherits specifies the base class it is inheriting from.

• Implements specifies the interfaces the class is inheriting from.

The following example demonstrates a Box class, with three data members, length, breadth and height

−

Module mybox

Class Box

Public length As Double ' Length of a box

Public breadth As Double ' Breadth of a box

Public height As Double ' Height of a box

End Class

Sub Main()

Dim Box1 As Box = New Box() ' Declare Box1 of type Box

Dim Box2 As Box = New Box() ' Declare Box2 of type Box

Dim volume As Double = 0.0 ' Store the volume of a box here

' box 1 specification

Box1.height = 5.0

Box1.length = 6.0

Box1.breadth = 7.0

' box 2 specification

Box2.height = 10.0

Box2.length = 12.0

Box2.breadth = 13.0

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

56

'volume of box 1

volume = Box1.height * Box1.length * Box1.breadth

Console.WriteLine("Volume of Box1 : {0}", volume)

'volume of box 2

volume = Box2.height * Box2.length * Box2.breadth

Console.WriteLine("Volume of Box2 : {0}", volume)

Console.ReadKey()

End Sub

End Module

Output:

Volume of Box1 : 210

Volume of Box2 : 1560

Instance and Shared Members of a Class

We can define class members as static using the Shared keyword. When we declare a member of a

class as Shared, it means no matter how many objects of the class are created, there is only one copy

of the member.

The keyword Shared implies that only one instance of the member exists for a class. Shared variables

are used for defining constants because their values can be retrieved by invoking the class without

creating an instance of it.

Shared variables can be initialized outside the member function or class definition. You can also

initialize Shared variables inside the class definition.

You can also declare a member function as Shared. Such functions can access only Shared variables.

The Shared functions exist even before the object is created.

The following example demonstrates the use of shared members –

Class StaticVar

Public Shared num As Integer

Public Sub count()

num = num + 1

End Sub

Public Shared Function getNum() As Integer

Return num

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

57
End Function

Shared Sub Main()

Dim s As StaticVar = New StaticVar()

s.count()

s.count()

s.count()

Console.WriteLine("Value of variable num: {0}", StaticVar.getNum())

Console.ReadKey()

End Sub

End Class

Output:

Value of variable num: 3

Constructor overloading

When the same method name is used for more than one method, with different types of parameters and

returned types, then the method is said to be overloaded. Constructor is a special method called 'New()'

in vb.net and is defined as a Sub.

Overloading feature is used most frequently to overload the constructor. We overload the constructor

by defining more than one 'Sub New()' procedure. By overloading a constructor, we make available

more than one constructor. So, while creating an object we can choose which constructor we want to

use to instantiate the object.

Example:

Public Class Account

Private mCode As String

Private mName As String

Private mdescription As String

Protected mBalance As Double

Constructor1: Constructor to initialize all the member variables.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

58
Public Sub New(ByVal code, ByVal name,

ByVal description, ByVal balance)

mCode = code

mName = name

mdescription = description

mBalance = balance

End Sub

Constructor2:

Public Sub New()

End Sub

Public Class AccountForm

Private Sub OkButton_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles OkButton.Click

'Instantiate the Account Class Object by using the Constructor1

Dim myPartyAcc As Account = New

Account(txtCode.Text, txtName.Text,

txtdescription.Text, txtBalance.Text)

MessageBox.Show(myPartyAcc.Code)

MessageBox.Show(myPartyAcc.Name)

MessageBox.Show(myPartyAcc.description)

End Sub

End Class

Copy Constructors

A copy constructor creates a new object by copying variables from an existing object of the same type.

For example, you might want to pass a Time object to a Time constructor so that the new Time object

has the same values as the old one.

VB.NET does not provide a copy constructor, so if you want one you must provide it yourself. Such a

constructor copies the elements from the original object into the new one:

Example:

Public Sub New(ByVal existingObject As Time)

year = existingObject.Year

month = existingObject.Month

date = existingObject.Date

hour = existingObject.Hour

minute = existingObject.Minute

second = existingObject.Second

End Sub

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

59

A copy constructor is invoked by instantiating an object of type Time and passing it the name of the

Time object to be copied

Dim t2 As New Time(existingObject)

Here an existing Time object (existingObject) is passed as a parameter to the copy constructor that will

create a new Time object ()

Shared constructor

The class could also have a Shared constructor. A Shared constructor is called when the application

starts and the class is being registered for use. It can be used for initialization, calculations and so on.

Similarly to instance constructors, we are able to create instances of classes and store them into Shared

fields in Shared constructors.

Example:

Public Class YourClass

Private Shared ID as Integer = 10

Public Shared ReadOnly Property CurrentID as Integer

Get

Return ID

End Get

End Property

Public Shared Function GetID() as Integer

ID += 1

Return ID

End Function

Shared Sub New()

Console.WriteLine("Before init: " & ID)

ID = 100

Console.WriteLine("After init: " & ID)

End Sub

End Class

Module Test

Sub Main()

Dim CountValue As Integer

For CountValue = 1 to 10

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

60
Console.WriteLine(YourClass.GetID())

Next

End Sub

End Module

Output:

Before init: 10

After init: 100

101

102

103

104

105

106

107

108

109

110

Unit-III

Inheritance and Polymorphism

Virtual Methods

A virtual method is a declared class method that allows overriding by a method with the same derived

class signature. Virtual methods are tools used to implement the polymorphism feature of an object-

oriented language, such as C#. When a virtual object instance method is invoked, the method to be

called is determined based on the object's runtime type, which is usually that of the most derived class.

A virtual method is used to override specified base class implementation when a runtime object is of

the derived type. Thus, virtual methods facilitate the consistent functionality of a related object set.

Virtual method implementation differs in programming languages like C++, Java, C# and Visual Basic

.NET. In Java, all non-static methods are virtual by default, with the exception of methods that are

private or marked with the keyword final. C# requires the keyword virtual for virtual methods, with the

exception of private, static and abstract methods, and the keyword override for overriding the derived

class method.

A pure virtual method is a virtual method that mandates a derived class to implement a method and

does not allow instantiation of the base class, or abstract class.

Abstract Class and methods

Abstract class is a special kind of class that cannot be instantiated. It only allows other classes to inherit

from it but cannot be instantiated. These are the important point which are related to the abstract class.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

61
1. abstract class may contain concrete methods.

2. class may contain non-public members.

3. abstract class can be used as a single inheritance.

4. abstract class can be invoked if a main() exists.

It only allows other classes to inherit from it but cannot be instantiated. The advantage is that it

enforces certain hierarchies for all the subclasses. In other word, it is a kind of contract that forces all

the subclasses to carry on the same hierarchies or standards.

Creating a abstract class

we use MustInherit keyword to create abstract class. Abstract classes can also specify abstract

members. Like abstract classes, abstract members also provide no details regarding their

implementation. Only the member type, access level, required parameters and return type are

specified. and to declare the abstract member we use the MustOverride keyword.

Example

Imports System.Console

Imports System.Math

Module Module1

Public MustInherit Class Abstractclass

Public MustOverride Function square() As Integer

Public MustOverride Function cube() As Integer

End Class

Public Class AbstractFirst

Inherits AbstractClass

Dim A As Integer = 4

Dim B As Integer = 5

Public Overrides Function square() As Integer

Return A * A

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

62
End Function

Public Overrides Function cube() As Integer

Return B * B * B

End Function

End Class

Sub Main()

Dim abs1 As New AbstractFirst()

WriteLine("square of A is :" & " " & abs1.square())

WriteLine("Cube of B is :" & " " & abs1.cube())

Read()

End Sub

End Module

Output:

square of A is :16

Cube of B is :125

Sealed Class

A sealed class is a class the does not allow inheritance . Means you cannot inherit the sealed class .

InVB.NET sealed class is represented as Non Inheritable class.

Definition of Interfaces

The interface is a set of definitions of properties, methods and events. Unlike classes [...], interfaces do

not contain the implementation. Interfaces are implemented [...] by classes, but are defined as separate

entities.

A class that implement an interface must implement all elements defined in that interface.

Defining a VB.NET interface is achieved using the specification Interface and interface

implementation using specification Implements.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

63
The definition of an interface can retrieve specifications defined in other interfaces. Inheritance of

elements defined in other components are implemented in VB.NET language mentioning

specification Inherits.

In a namespace [...], interfaces have associated the modifier Friend implicitly, and interfaces defined

in classes, modules, interfaces and structures have associated modifier Public.

Interface is a powerful tool of programming, because the objects definition and the implementation are

separated. Cases in which it is recommended to define interfaces:

• Classes with high orthogonality: small-scale implementation of inheritance to define classes;

• High flexibility: a class can implement multiple interfaces;

• Implementation inheritance is not desired from a base class;

• Inheritance cannot be used: structures [...] cannot inherit classes, but can implement interfaces.

Example

Interface IOperatii

Event Calcul(ByVal x As Integer, ByVal y As Integer)

Function OpDiferenta(ByVal a As Integer, ByVal b As Integer) As Integer

Function OpProdus(ByVal a As Integer, ByVal b As Integer) As Long

End Interface

Implementation of multiple interfaces

We will see how to implement of multiple interface in vb.net an interface can obtain one or more

methods,properties,indexers and events.

But none of them are implemented in the interface itself.it is the responsibility of the class that

implements the interface to define the code for implementation of these membersvb.net does not

support directly multiple inheritance but using interface we can use multiple inheritance.

interface keywords to create an interface& implement keywords is use to implememt the interface.

This code implementing two interfaces.The class Computation implement two interfaces Addition and

Multiplication.it declare two data members and define the code for the methods Add and

multiplication.

Example:

Module Module1

Interface Addition

Function Add() As Integer

End Interface

Interface Multiplication

Function Mul() As Integer

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

64
End Interface

Class Computation

Inherits Addition

Inherits Multiplication

Private x As Integer, y As Integer

Public Sub New(ByVal x As Integer, ByVal y As Integer)

Me.x = x

Me.y = y

End Sub

Public Function Add() As Integer

Return (x + y)

End Function

Public Function Mul() As Integer

Return (x * y)

End Function

End Class

Class interfaceTest1

Sub Main()

Dim com As New Computation(10, 20)

Dim add As Addition = DirectCast(com, Addition)

Console.WriteLine("sum =" & add.Add())

Dim mul As Multiplication = DirectCast(com, Multiplication)

Console.WriteLine("product =+" & mul.Mul())

End Sub

End Class

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

65
End Module

Interface Inheritance

• If an interface uses the Inherits statement, you can specify one or more base interfaces. You can

inherit from two interfaces even if they each define a member with the same name. If you do so,

the implementing code must use name qualification to specify which member it is implementing.

An interface cannot inherit from another interface with a more restrictive access level. For

example, a Public interface cannot inherit from a Friend interface.

An interface cannot inherit from an interface nested within it.

An example of interface inheritance in the .NET Framework is the ICollection interface, which inherits

from the IEnumerable interface. This causes ICollection to inherit the definition of the enumerator

required to traverse a collection.

Example

Public Interface thisInterface

Inherits IComparable, IDisposable, IFormattable

' Add new property, procedure, and event definitions.

End Interface

Namespaces

The most common way VB.NET namespaces are used by most programmers is to tell the compiler

which .NET Framework libraries are needed for a particular program.

For example, some of the namespaces and the actual files they are in for a Windows Forms Application

are:

System > in System.dll

System.Data > in System.Data.dll

System.Deployment > System.Deployment.dll

System.Drawing > System.Drawing.dll

System.Windows.Forms > System.Windows.Forms.dll

You can see (and change) the namespaces and references for your project in the project properties

under the References tab.

This way of thinking about namespaces makes them seem to be just the same thing as "code library"

but that's only part of the idea. The real benefit of namespaces is organization.

https://docs.microsoft.com/en-us/dotnet/api/system.collections.icollection
https://docs.microsoft.com/en-us/dotnet/api/system.collections.ienumerable
https://docs.microsoft.com/en-us/dotnet/api/system.collections.icollection
https://www.thoughtco.com/what-is-programming-958331

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

66
Namespaces make it possible to organize the tens of thousands of .NET Framework objects and all the

objects that VB programmers create in projects, too, so they don't clash.

For example, if you search .NET for a Color object, you find two. There is a Color object in both:

System.Drawing

System.Windows.Media

If you add an Imports statement for both namespaces

Imports System.Drawing

Imports System.Windows.Media

VB.NET uses the name of your project (WindowsApplication1 for a standard forms application if you

don't change it) as the default namespace.

Access Modifiers

AccessSpecifiers describes as the scope of accessibility of an Object and its members. We can control

the scope of the member object of a class using access specifiers. We are using access specifiers for

providing security of our applications.

Visual Basic .Net provide five access specifiers , they are as follows :

▪ Public

▪ Private

▪ Protected

▪ Friend

▪ ProtectedFriend

Public :

Public is the most common access specifier. It can be access from anywhere, hat means there is no

restriction on accessability. The scope of the accessibility is inside class also in outside the class.

Private :

The scope of the accessibility is limited only inside the classes in which they are decleared. The Private

members can not be accessed outside the class and it is the least permissive access level.

Protected :

The scope of accessibility is limited within the class and the classses derived (Inherited)from this class.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

67
Friend :

The Friend access specifier can access within the program that contain its declarations and also access

within the same assembly level. You can use friend instead of Dim keyword.

ProtectedFriend :

ProtectedFriend is same access lebels of both Protected and Friend. It can access anywhere in the same

assebly and in the same class also the classes inherited from the same class .

Syntax:

Public Class SomeClass

Public Sub DoSomething()

' ...

End Sub

Private Sub InternalHelperSub()

' ...

End Sub

End Class

Delegates

A delegate is a type that safely encapsulates a method, similar to a function pointer in C and C++.

Unlike C function pointers, delegates are object-oriented, type safe, and secure. The type of a delegate

is defined by the name of the delegate.

Example:

public delegate sub mydlg()

Then we use the delegate by simply declaring a variable of the delegate and assigning the sub or

function to run when called.

Private Sub message()

Console.WriteLine ("show message")

End Sub

now it matches our declaration of MyDlg. it's a sub routine with no parameters. And then our test code:

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

68
Dim dlg As mydel

dlg = New mydel(AddressOf message)

dlg.Invoke()

When we invoke the delegate, the message sub is run.

Code:

Module Module1

Public Delegate Sub mydel()

Public Delegate Sub mydel1(ByVal a As Integer)

Public Sub message()

Console.WriteLine("show message")

End Sub

Public Sub add(ByVal a As Integer)

Dim b As Integer

b = a + a

Console.Write(" Addition is : ")

Console.WriteLine(b)

End Sub

Sub Main()

Dim dlg As mydel

dlg = New mydel(AddressOf message)

dlg.Invoke()

Dim dlg1 As mydel1

dlg1 = New mydel1(AddressOf add)

dlg1.Invoke(10)

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

69
End Sub

End Module

OUTPUT:

show message

Addition is :20

Event

Events are basically a user action like key press, clicks, mouse movements, etc., or some occurrence

like system generated notifications. Applications need to respond to events when they occur.

Clicking on a button, or entering some text in a text box, or clicking on a menu item, all are examples

of events. An event is an action that calls a function or may cause another event. Event handlers are

functions that tell how to respond to an event.

VB.Net is an event-driven language. There are mainly two types of events −

• Mouse events

• Keyboard events

Handling Mouse Events

Mouse events occur with mouse movements in forms and controls. Following are the various mouse

events related with a Control class −

• MouseDown − it occurs when a mouse button is pressed

• MouseEnter − it occurs when the mouse pointer enters the control

• MouseHover − it occurs when the mouse pointer hovers over the control

• MouseLeave − it occurs when the mouse pointer leaves the control

• MouseMove − it occurs when the mouse pointer moves over the control

• MouseUp − it occurs when the mouse pointer is over the control and the mouse button is

released

• MouseWheel − it occurs when the mouse wheel moves and the control has focus

The event handlers of the mouse events get an argument of type MouseEventArgs. The

MouseEventArgs object is used for handling mouse events. It has the following properties −

• Buttons − indicates the mouse button pressed

• Clicks − indicates the number of clicks

• Delta − indicates the number of detents the mouse wheel rotated

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

70
• X − indicates the x-coordinate of mouse click

• Y − indicates the y-coordinate of mouse click

Handling Keyboard Events

Following are the various keyboard events related with a Control class −

• KeyDown − occurs when a key is pressed down and the control has focus

• KeyPress − occurs when a key is pressed and the control has focus

• KeyUp − occurs when a key is released while the control has focus

The event handlers of the KeyDown and KeyUp events get an argument of type KeyEventArgs. This

object has the following properties −

• Alt − it indicates whether the ALT key is pressed

• Control − it indicates whether the CTRL key is pressed

• Handled − it indicates whether the event is handled

• KeyCode − stores the keyboard code for the event

• KeyData − stores the keyboard data for the event

• KeyValue − stores the keyboard value for the event

• Modifiers − it indicates which modifier keys (Ctrl, Shift, and/or Alt) are pressed

• Shift − it indicates if the Shift key is pressed

The event handlers of the KeyDown and KeyUp events get an argument of type KeyEventArgs. This

object has the following properties −

• Handled − indicates if the KeyPress event is handled

• KeyChar − stores the character corresponding to the key pressed

Attributes

Attributes are declarative tags that can be used to annotate types or class members, thereby modifying

their meaning or customizing their behavior. This descriptive information provided by the attribute is

stored as metadata in a .NET assembly and can be extracted either at design time or at runtime using

reflection.

To see how attributes might be used, consider the <WebMethod> attribute, which might appear in code

as follows:

<WebMethod(Description:="Indicates the number of visitors to a page")> _

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

71
Public Function PageHitCount(strULR As String) As Integer

Ordinarily, public methods of a class can be invoked locally from an instance of that class; they are not

treated as members of a web service. In contrast, the <WebMethod> attribute marks a method as a

function callable over the Internet as part of a web service. This <WebMethod> attribute also includes

a single property, Description, which provides the text that will appear in the page describing the web

service.

You may wonder why attributes are used on the .NET platform and why they are not simply

implemented as language elements. The answer comes from the fact that attributes are stored as

metadata in an assembly, rather than as part of its executable code. As an item of metadata, the attribute

describes the program element to which it applies and is available through reflection both at design

time (if a graphical environment such as Visual Studio .NET is used), at compile time

Reflection

Without adding reference using classLibrary methods at runtime is done through Reflection. In

Refelection we have to use an Activator class. An Activator class is a class, which creates the instance

of class method at runtime

The generic terms of Reflection are:

• Assembly: Which hold the dll of classLibrary.

• Type: Hold the class of classLibrary.

• MethodInfo: Hold the method of class.

• Parameterinfo: Keep the parameter information of Method.

Here I made a class Library, in this class library I made two classes and some methods in these classes.

After making this, build this class Library. On building the class Library a dll will genarate.

Example:

Imports System

Imports System.Collections.Generic

Imports System.Text

Imports System.Windows.Forms

Namespace reflectionclass

Public Class xx

Public Function sum(ByVal a As Integer, ByVal b As Integer) As Integer

Return a + b

End Function

Public Function [sub](ByVal a As Integer, ByVal b As Integer) As Integer

Return a - b

End Function

End Class

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

72

Public Class yy

Public Function mul(ByVal a As Integer, ByVal b As Integer) As Integer

Return a * b

End Function

End Class

End Namespace

Unit-IV

Exception Handling

Default Exception Handling :

An exception is a problem that arises during the execution of a program. An exception is a response to

an exceptional circumstance that arises while a program is running, such as an attempt to divide by

zero.

Exceptions provide a way to transfer control from one part of a program to another. VB.Net exception

handling is built upon four keywords - Try, Catch, Finally and Throw.

• Try − A Try block identifies a block of code for which particular exceptions will be activated.

It's followed by one or more Catch blocks.

• Catch − A program catches an exception with an exception handler at the place in a program

where you want to handle the problem. The Catch keyword indicates the catching of an

exception.

• Finally − The Finally block is used to execute a given set of statements, whether an exception

is thrown or not thrown. For example, if you open a file, it must be closed whether an

exception is raised or not.

• Throw − A program throws an exception when a problem shows up. This is done using a

Throw keyword.

VB.Net provides a structured solution to the exception handling problems in the form of try and catch

blocks. Using these blocks the core program statements are separated from the error-handling

statements.

These error handling blocks are implemented using the Try, Catch and Finally keywords. Following

is an example of throwing an exception when dividing by zero condition occurs −

Example:

Module exceptionProg

Sub division(ByVal num1 As Integer, ByVal num2 As Integer)

Dim result As Integer

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

73
Try

result = num1 \ num2

Catch e As DivideByZeroException

Console.WriteLine("Exception caught: {0}", e)

Finally

Console.WriteLine("Result: {0}", result)

End Try

End Sub

Sub Main()

division(25, 0)

Console.ReadKey()

End Sub

End Module

Output:

Exception caught: System.DivideByZeroException: Attempted to divide by zero.

at ...

Result: 0

User-Defined Exceptions

You can also define your own exception. User-defined exception classes are derived from

the ApplicationException class. The following example demonstrates this −

Example:

Module exceptionProg

Public Class TempIsZeroException : Inherits ApplicationException

Public Sub New(ByVal message As String)

MyBase.New(message)

End Sub

End Class

Public Class Temperature

Dim temperature As Integer = 0

Sub showTemp()

If (temperature = 0) Then

Throw (New TempIsZeroException("Zero Temperature found"))

Else

Console.WriteLine("Temperature: {0}", temperature)

End If

End Sub

End Class

Sub Main()

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

74
Dim temp As Temperature = New Temperature()

Try

temp.showTemp()

Catch e As TempIsZeroException

Console.WriteLine("TempIsZeroException: {0}", e.Message)

End Try

Console.ReadKey()

End Sub

End Module

Output:

TempIsZeroException: Zero Temperature found

Throw Statement

You can throw an object if it is either directly or indirectly derived from the System.Exception class.

You can use a throw statement in the catch block to throw the present object as –

Syntax:

Throw [expression]

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

75
Example:

Module exceptionProg

Sub Main()

Try

Throw New ApplicationException("A custom exception _ is being thrown here...")

Catch e As Exception

Console.WriteLine(e.Message)

Finally

Console.WriteLine("Now inside the Finally Block")

End Try

Console.ReadKey()

End Sub

End Module

Output:

A custom exception is being thrown here...

Now inside the Finally Block

Custom Exceptions

Visual Basic .NET offers structured exception handling that provides a powerful, more readable

alternative to "On Error Goto" error handling, which is available in previous versions of Microsoft

Visual Basic.

In VB.Net we can handle exceptions with great ease and we can also create our own customized

exceptions which can later be used for our applications specific needs. Exceptions are objects that

encapsulate an irregular circumstance, such as when an application is out of memory, a file that cannot

be opened, or an attempted illegal cast.

You can also throw an exception from within your own code using the keyword Throw.

Example:

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

76

Public Class Form1

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

Button1.Click

Try

Dim i As Integer

Dim j As Integer

Dim k As Integer

j = 10

k = 0

i = j / k

Catch ex As Exception

Throw (New MyCustomException("You can not divide a number by zeo"))

End Try

End Sub

End Class

Public Class MyCustomException

Inherits System.ApplicationException

Public Sub New(ByVal message As String)

MyBase.New(message)

MsgBox(message)

End Sub

End Class

Usage of a Thread

A thread is a path of execution within a process. A process can contain multiple threads.

1. Responsiveness: If the process is divided into multiple threads, if one thread completes its execution,

then its output can be immediately returned.

2. Faster context switch: Context switch time between threads is lower compared to process context

switch. Process context switching requires more overhead from the CPU.

3. Effective utilization of multiprocessor system: If we have multiple threads in a single process, then

we can schedule multiple threads on multiple processor. This will make process execution faster.

4. Resource sharing: Resources like code, data, and files can be shared among all threads within a

process.

Note: stack and registers can’t be shared among the threads. Each thread has its own stack and

registers.

5. Communication: Communication between multiple threads is easier, as the threads shares common

address space. while in process we have to follow some specific communication technique for

communication between two process.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

77
6. Enhanced throughput of the system: If a process is divided into multiple threads, and each thread

function is considered as one job, then the number of jobs completed per unit of time is increased, thus

increasing the throughput of the system.

Thread Class

Any application makes use of threads to either show you information or a screen; or to allow for long

running tasks to complete. Now, threads are tricky and data is tricky. Sometimes you will encounter a

situation that may possibly freeze your application due to a long running task. So, instead of slamming

all the code into one form, you have several threads. Each thread can run independently without

affecting any other threads or user process.

Example:

Imports System.Threading 'Imports Threading Namespace

Dim F2 As New frmThread2 'Create New Form 2 Object

Dim strText As String = "Thread Is Running!" 'Text To Display Dim lbList As New ListBox 'Create

New ListBox, Used By Form 2

Private Sub frmThread1_Load(sender As Object, e As EventArgs) Handles Me.Load

'Create Thread, and Specify Delegate

Dim tThread1 As New Thread(AddressOf ThreadProcedure)

'Start A Thread

tThread1.Start()

'Show Form 2

F2.Show()

F2.TopMost = True

End Sub

Start(), Abort(), Join(), Sleep() Methods

Once you create a new thread object, you must explicitly call its Start() method to have it actually

execute the thread method.

Calling the Start() method is a non-blocking operation, meaning that control returns immediately to the

client that started the thread, even though it may be some time later until the new thread actually starts.

As a result, do not make any assumptions in your code that the thread is actually running.

Syntax:

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

78

Thread.Start()

Sleep():

The Thread class provides two overloaded versions of the static Sleep() method, used to put a thread

to sleep for a specified timeout:

Because Sleep() is a static method, you can only put your own thread to sleep:

Thread.Sleep(20)

Sleep() is a blocking call, meaning that control returns to the calling thread only after the sleep period

has elapsed. Sleep() puts the thread in a special queue of threads waiting to be awakened by the

operating system.

Joining a Thread

The Thread class provides the Join() method, which allows one thread to wait for another thread to

terminate. Any client that has a reference to a Thread object can call Join(), and have the client thread

blocked until the thread terminates. Note that you should always check before calling Join() that the

thread you are trying to join to is not your current thread:

Syntax:

thread.Join()

When you specify a timeout, Join() will return when the timeout has expired or when the thread is

terminated, whichever happens first.

Aborting a Thread

The Thread class provides an Abort() method, intended to forcefully terminate a .NET thread.

Calling Abort() throws an exception of type ThreadAbortException in the thread being aborted.

Syntax:

Thread.Abort()

Suspending and Resuming a Thread

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

79
The Thread class provides the Suspend() method, used to suspend the execution of a thread, and

the Resume() method, used to resume a suspended thread:

Anybody can call Suspend() on a Thread object, including objects running on that thread, and there is

no harm in calling Suspend() on an already suspended thread. Obviously, only clients on other threads

can resume a suspended thread. Suspend() is a non-blocking call, meaning that control returns

immediately to the caller, and the thread is suspended later, usually at the next safe point.

A safe point is a point in the code safe for garbage collection. When garbage collection takes place,

.NET must suspend all running threads, so that it can compact the heap, move objects in memory, and

patch client-side references. The JIT compiler identifies those points in the code that are safe for

suspending the thread (such as returning from method calls or branching for another loop iteration).

When Suspend() is called, the thread will be suspended once it reaches the next safe point.

Syntax:

Thread.Suspend()

Thread.Resume()

Thread Priority

Thread class's ThreadPriority property is used to sets thread's priority. The thread priority can

have Normal, AboveNormal, BelowNormal, Highest, and Lowest values.

thread.Priority = ThreadPriority.Lowest

Example:

Imports System.Threading

Module Module1

Sub Main()

Dim th As New Thread(AddressOf WriteY)

th.Start()

For i As Integer = 0 To 10

Console.WriteLine("Hello")

Next

End Sub

Private Sub WriteY()

For i As Integer = 0 To 9

Console.WriteLine("world")

Next

End Sub

End Module

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

80

Imports System.Threading

Module Module1

Sub Main()

Dim th As New Thread(AddressOf WriteY)

th.Priority = ThreadPriority.Lowest

th.Start()

For i As Integer = 0 To 10

Console.WriteLine("Hello")

Next

End Sub

Private Sub WriteY()

For i As Integer = 0 To 9

Console.WriteLine("world")

Next

End Sub

End Module

Synchronization

At times, you might want to control access to a resource, such as an object’s properties or methods, so

that only one thread at a time can modify or use that resource. Your object is similar to the airplane

restroom discussed earlier, and the various threads are like the people waiting in line. Synchronization

is provided by a lock on the object, which prevents a second thread from barging in on your object until

the first thread is finished with it.

In this section you examine three synchronization mechanisms provided by the CLR: the Interlock

class, the Visual Basic .NET Lock statement, and the Monitor class. But first, you need to simulate a

shared resource, such as a file or printer, with a simple integer variable: counter. Rather than opening

the file or accessing the printer, you’ll increment counter from each of two threads.

To start, declare the member variable and initialize it to 0:

Private counter As Integer = 0

Modify the Incrementer method to increment the counter member variable:

Public Sub Incrementer()

Try

While counter < 1000

Dim temp As Integer = counter

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

81
temp += 1 ' increment

Thread.Sleep(0)

counter = temp

Console.WriteLine("Thread {0}. Incrementer: {1}", _

Thread.CurrentThread.Name, counter)

End While

The idea here is to simulate the work that might be done with a controlled resource. Just as we might

open a file, manipulate its contents, and then close it, here we read the value of counter into a

temporary variable, increment the temporary variable.

Binary Data Files

The BinaryReader and BinaryWriter classes are used for reading from and writing to a binary file.

The BinaryReader class is used to read binary data from a file. A BinaryReader object is created by

passing a FileStream object to its constructor.

The following table shows some of the commonly used methods of the BinaryReader class.

Sr.No. Method Name & Purpose

1
Public Overridable Sub Close

It closes the BinaryReader object and the underlying stream.

2
Public Overridable Function Read As Integer

Reads the characters from the underlying stream and advances the current position of the

stream.

3
Public Overridable Function ReadBoolean As Boolean

Reads a Boolean value from the current stream and advances the current position of the

stream by one byte.

4
Public Overridable Function ReadByte As Byte

Reads the next byte from the current stream and advances the current position of the

stream by one byte.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

82 5
Public Overridable Function ReadBytes (count As Integer) As Byte()

Reads the specified number of bytes from the current stream into a byte array and

advances the current position by that number of bytes.

The BinaryWriter Class

The BinaryWriter class is used to write binary data to a stream. A BinaryWriter object is created by

passing a FileStream object to its constructor.

The following table shows some of the commonly used methods of the BinaryWriter class.

Sr.No. Function Name & Description

1
Public Overridable Sub Close

It closes the BinaryWriter object and the underlying stream.

2
Public Overridable Sub Flush

Clears all buffers for the current writer and causes any buffered data to be written to the

underlying device.

3
Public Overridable Function Seek (offset As Integer, origin As SeekOrigin) As Long

Sets the position within the current stream.

4
Public Overridable Sub Write (value As Boolean)

Writes a one-byte Boolean value to the current stream, with 0 representing false and 1

representing true.

5
Public Overridable Sub Write (value As Byte)

Writes an unsigned byte to the current stream and advances the stream position by one

byte.

Text Files

The StreamReader and StreamWriter classes are used for reading from and writing data to text

files. These classes inherit from the abstract base class Stream, which supports reading and writing

bytes into a file stream.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

83
The StreamReader Class

The StreamReader class also inherits from the abstract base class TextReader that represents a reader

for reading series of characters. The following table describes some of the commonly

used methods of the StreamReader class −

Sr.No. Method Name & Purpose

1
Public Overrides Sub Close

It closes the StreamReader object and the underlying stream and releases any system

resources associated with the reader.

2
Public Overrides Function Peek As Integer

Returns the next available character but does not consume it.

3
Public Overrides Function Read As Integer

Reads the next character from the input stream and advances the character position by one

character.

The StreamWriter Class

The StreamWriter class inherits from the abstract class TextWriter that represents a writer, which

can write a series of character.

The following table shows some of the most commonly used methods of this class −

Sr.No. Method Name & Purpose

1
Public Overrides Sub Close

Closes the current StreamWriter object and the underlying stream.

2
Public Overrides Sub Flush

Clears all buffers for the current writer and causes any buffered data to be written to the

underlying stream.

3
Public Overridable Sub Write (value As Boolean)

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

84 Writes the text representation of a Boolean value to the text string or stream. (Inherited

from TextWriter.)

4
Public Overrides Sub Write (value As Char)

Writes a character to the stream.

5
Public Overridable Sub Write (value As Decimal)

Writes the text representation of a decimal value to the text string or stream.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

85

Example

Imports System.IO

Module fileProg

Sub Main()

Dim names As String() = New String() {"Zara Ali", _

"Nuha Ali", "Amir Sohel", "M Amlan"}

Dim s As String

Using sw As StreamWriter = New StreamWriter("names.txt")

For Each s In names

sw.WriteLine(s)

Next s

End Using

' Read and show each line from the file.

Dim line As String

Using sr As StreamReader = New StreamReader("names.txt")

line = sr.ReadLine()

While (line <> Nothing)

Console.WriteLine(line)

line = sr.ReadLine()

End While

End Using

Console.ReadKey()

End Sub

End Module

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

86
Output:

Zara Ali

Nuha Ali

Amir Sohel

M Amlan

The DirectoryInfo Class

The DirectoryInfo class is derived from the FileSystemInfo class. It has various methods for

creating, moving, and browsing through directories and subdirectories. This class cannot be inherited.

Following are some commonly used properties of the DirectoryInfo class −

Sr.No. Property Name & Description

1
Attributes

Gets the attributes for the current file or directory.

2
CreationTime

Gets the creation time of the current file or directory.

3
Exists

Gets a Boolean value indicating whether the directory exists.

4
Extension

Gets the string representing the file extension.

5
FullName

Gets the full path of the directory or file.

6
LastAccessTime

Gets the time the current file or directory was last accessed.

7
Name

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

87 Gets the name of this DirectoryInfo instance.

Following are some commonly used methods of the DirectoryInfo class −

Sr.No. Method Name & Purpose

1
Public Sub Create

Creates a directory.

2
Public Function CreateSubdirectory (path As String) As DirectoryInfo

Creates a subdirectory or subdirectories on the specified path. The specified path can be

relative to this instance of the DirectoryInfo class.

3
Public Overrides Sub Delete

Deletes this DirectoryInfo if it is empty.

4
Public Function GetDirectories As DirectoryInfo()

Returns the subdirectories of the current directory.

5
Public Function GetFiles As FileInfo()

Returns a file list from the current directory.

The FileInfo Class

The FileInfo class is derived from the FileSystemInfo class. It has properties and instance methods

for creating, copying, deleting, moving, and opening of files, and helps in the creation of FileStream

objects. This class cannot be inherited.

Following are some commonly used properties of the FileInfo class –

Sr.No. Property Name & Description

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

88 1
Attributes

Gets the attributes for the current file.

2
CreationTime

Gets the creation time of the current file.

3
Directory

Gets an instance of the directory, which the file belongs to.

4
Exists

Gets a Boolean value indicating whether the file exists.

5
Extension

Gets the string representing the file extension.

6
FullName

Gets the full path of the file.

7
LastAccessTime

Gets the time the current file was last accessed.

8
LastWriteTime

Gets the time of the last written activity of the file.

9
Length

Gets the size, in bytes, of the current file.

10
Name

Gets the name of the file.

Following are some commonly used methods of the FileInfo class −

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

89 Sr.No. Method Name & Purpose

1
Public Function AppendText As StreamWriter

Creates a StreamWriter that appends text to the file represented by this instance of the

FileInfo.

2
Public Function Create As FileStream

Creates a file.

3
Public Overrides Sub Delete

Deletes a file permanently.

4
Public Sub MoveTo (destFileName As String)

Moves a specified file to a new location, providing the option to specify a new file name.

5
Public Function Open (mode As FileMode) As FileStream

Opens a file in the specified mode.

6
Public Function Open (mode As FileMode, access As FileAccess) As FileStream

Opens a file in the specified mode with read, write, or read/write access.

7
Public Function Open (mode As FileMode, access As FileAccess, share As FileShare

) As FileStream

Opens a file in the specified mode with read, write, or read/write access and the specified

sharing option.

8
Public Function OpenRead As FileStream

Creates a read-only FileStream

9
Public Function OpenWrite As FileStream

Creates a write-only FileStream.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

90
Example

Imports System.IO

Module fileProg

Sub Main()

'creating a DirectoryInfo object

Dim mydir As DirectoryInfo = New DirectoryInfo("c:\Windows")

' getting the files in the directory, their names and size

Dim f As FileInfo() = mydir.GetFiles()

Dim file As FileInfo

For Each file In f

Console.WriteLine("File Name: {0} Size: {1} ", file.Name, file.Length)

Next file

Console.ReadKey()

End Sub

End Module

Unit-V

Timer Control

Timer Control plays an important role in the Client side programming and Server side programming,

also used in Windows Services. By using this Timer Control, windows allow you to control when

actions take place without the interaction of another thread.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

91

Use of Timer Control

We can use Timer Control in many situations in our development environment. If you want to run

some code after a certain interval of time continuously, you can use the Timer control. As well as to

start a process at a fixed time schedule, to increase or decrease the speed in an animation graphics with

time schedule etc. you can use the Timer Control. The Visual Studio toolbox has a Timer Control that

allowing you to drag and drop the timer controls directly onto a Windows Forms designer. At runtime

it does not have a visual representation and works as a component in the background.

How to Timer Control ?

With the Timer Control, we can control programs in millisecond, seconds, minutes and even in hours.

The Timer Control allows us to set Interval property in milliseconds (1 second is equal to 1000

milliseconds). For example, if we want to set an interval of two minute we set the value at Interval

property as 120000, means 120x1000 .

The Timer Control starts its functioning only after its Enabled property is set to True, by default

Enabled property is False.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

92

Timer example

The following program shows a Timer example that display current system time in a Label control. For

doing this, we need one Label control and a Timer Control. Here in this program, we can see the Label

Control is updated each seconds because we set Timer Interval as 1 second, that is 1000 milliseconds.

After drag and drop the Timer Control in the designer form , double click the Timer control and set the

DateTime.Now.ToString to Label control text property.

Public Class Form1

Private Sub Timer1_Tick(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

Timer1.Tick

Label1.Text = DateTime.Now.ToString

End Sub

End Class

Start and Stop Timer Control

We can control the Timer Control Object that when it start its function as well as when it stop its

function. The Timer Control has a start and stop methods to perform these actions.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

93
Here is an example for start and stop methods of the Timer Control. In this example we run this

program only 10 seconds. So we start the Timer in the Form_Load event and stop the Timer after 10

seconds. We set timer Interval property as 1000 milliseconds (1 second) and in run time the Timer will

execute 10 times its Tick event

Example:

Public Class Form1

Dim second As Integer

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

MyBase.Load

Timer1.Interval = 1000

Timer1.Start() 'Timer starts functioning

End Sub

Private Sub Timer1_Tick(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

Timer1.Tick

Label1.Text = DateTime.Now.ToString

second = second + 1

If second >= 10 Then

Timer1.Stop() 'Timer stop s functioning

MsgBox("Timer Stopped....")

End If

End Sub

End Class

ProgressBar Control

It represents a Windows progress bar control. It is used to provide visual feedback to your users about

the status of some task. It shows a bar that fills in from left to right as the operation progresses.

Let's click on a ProgressBar control from the Toolbox and place it on the form.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

94

The main properties of a progress bar are Value, Maximum and Minimum. The Minimum and

Maximum properties are used to set the minimum and maximum values that the progress bar can

display. The Value property specifies the current position of the progress bar.

The ProgressBar control is typically used when an application performs tasks such as copying files or

printing documents. To a user the application might look unresponsive if there is no visual cue. In

such cases, using the ProgressBar allows the programmer to provide a visual status of progress.

Properties of the ProgressBar Control

The following are some of the commonly used properties of the ProgressBar control −

Sr.No. Property & Description

1
AllowDrop

Overrides Control.AllowDrop.

2
BackgroundImage

Gets or sets the background image for the ProgressBar control.

3
BackgroundImageLayout

Gets or sets the layout of the background image of the progress bar.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

95 4
CausesValidation

Gets or sets a value indicating whether the control, when it receives focus, causes

validation to be performed on any controls that require validation.

5
Font

Gets or sets the font of text in the ProgressBar.

6
ImeMode

Gets or sets the input method editor (IME) for the ProgressBar.

Methods of the ProgressBar Control

The following are some of the commonly used methods of the ProgressBar control −

Sr.No. Method Name & Description

1
Increment

Increments the current position of the ProgressBar control by specified amount.

2
PerformStep

Increments the value by the specified step.

3
ResetText

Resets the Text property to its default value.

4
ToString

Returns a string that represents the progress bar control.

Events of the ProgressBar Control

The following are some of the commonly used events of the ProgressBar control −

Sr.No. Event & Description

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

96 1
BackgroundImageChanged

Occurs when the value of the BackgroundImage property changes.

2
BackgroundImageLayoutChanged

Occurs when the value of the BackgroundImageLayout property changes.

3
CausesValidationChanged

Occurs when the value of the CausesValidation property changes.

4
Click

Occurs when the control is clicked.

5
DoubleClick

Occurs when the user double-clicks the control

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

97
Example

Public Class Form1

Private Sub Form1_Load(sender As Object, e As EventArgs) _

Handles MyBase.Load

'create two progress bars

Dim ProgressBar1 As ProgressBar

Dim ProgressBar2 As ProgressBar

ProgressBar1 = New ProgressBar()

ProgressBar2 = New ProgressBar()

'set position

ProgressBar1.Location = New Point(10, 10)

ProgressBar2.Location = New Point(10, 50)

'set values

ProgressBar1.Minimum = 0

ProgressBar1.Maximum = 200

ProgressBar1.Value = 130

ProgressBar2.Minimum = 0

ProgressBar2.Maximum = 100

ProgressBar2.Value = 40

'add the progress bar to the form

Me.Controls.Add(ProgressBar1)

Me.Controls.Add(ProgressBar2)

' Set the caption bar text of the form.

Me.Text = "tutorialspoint.com"

End Sub

End Class

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

98
Output:

LinkLabel

LinkLabel Control is designed such that it provides the functionality of Hyperlink in window

application.

It is derived from label Control so it also provides all the functionality of Label control.

Properties of Linklabel Control

Property Purpose

LinkColor It is used to get or set Fore color of the Hyperlink in its default state.

ActiveLinkColor It is used to get or set Fore color of the Hyperlink when user clicks it.

DisabledLinkColor It is used to get or set Fore color of the Hyperlink when LinkLabel is disabled.

VisitedLinkColor It is used to get or set Fore color of the Hyperlink when LinkVisited property of

LinkLabel is set to true.

LinkVisited It is used to specify weather Hyperlink is already visited or not. It has Boolean

value. Default value is false.

Text It is used to get or set text associated with LinkLabel Control.

TextAlign It is used to get or set alignment of the text associated with LinkLabel Control.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

99

Methods

Method Purpose

Show It is used to Show LinkLabel Control at runtime.

Hide It is used to Hide LinkLabel Control at runtime.

Focus It is used to set input focus on LinkLabel Control.

Events

Event Purpose

Link Clicked It is the default event of LinkLabel Control. It fires each time a user click on a

hyperlink of LinkLabel Control.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

100
Example:

Private Sub LinkLabel1_LinkClicked(ByVal sender As System.Object, ByVal e As

System.Windows.Forms.LinkLabelLinkClickedEventArgs) Handles LinkLabel1.LinkClicked

'after visiting site LinkLabel color changed which will indicate that you have visited this site

LinkLabel1.LinkVisited = True

System.Diagnostics.Process.Start("www.mindstick.com")

'using the start method of system.diagnostics.process class

'process class gives access to local and remote processes

End Sub

Output:

Panel control

The Panel control is a container of other controls. The Panel control is displayed by default without any

borders at run time.

How to use Panel control

Drag and drop Panel control from toolbox on the window Form.

Collection of control can be placed in side Panel.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

101
Transparent Panel

First set BackColor of Panel suppose you set green then set Form's TransparencyKey property to the

same color as Panel's background color –red in this case.

Private Sub Form25_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

MyBase.Load

Panel1.BackColor = Color.Red

Me.TransparencyKey = Color.Red

End Sub

Panel properties

BackColor: Panel BackColor can be changed through BackColor property.

BorderStyle: Get or set BorderStyle of Panel.

Visible: You can hide all control inside panel through visible property of Panel. If you want to hide

then set visible to false.

TreeView Control

The TreeView control is used to display hierarchical representations of items similar to the ways the

files and folders are displayed in the left pane of the Windows Explorer. Each node may contain one

or more child nodes.

Let's click on a TreeView control from the Toolbox and place it on the form.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

102
Properties of the TreeView Control

The following are some of the commonly used properties of the TreeView control −

Sr.No. Property & Description

1
BackColor

Gets or sets the background color for the control.

2
BackgroundImage

Gets or set the background image for the TreeView control.

3
BackgroundImageLayout

Gets or sets the layout of the background image for the TreeView control.

4
BorderStyle

Gets or sets the border style of the tree view control.

5
CheckBoxes

Gets or sets a value indicating whether check boxes are displayed next to the tree nodes in

the tree view control.

6
DataBindings

Gets the data bindings for the control.

Methods of the TreeView Control

The following are some of the commonly used methods of the TreeView control −

Sr.No. Method Name & Description

1
CollapseAll

Collapses all the nodes including all child nodes in the tree view control.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

103 2
ExpandAll

Expands all the nodes.

3
GetNodeAt

Gets the node at the specified location.

4
GetNodeCount

Gets the number of tree nodes.

5
Sort

Sorts all the items in the tree view control.

6
ToString

Returns a string containing the name of the control.

Events of the TreeView Control

The following are some of the commonly used events of the TreeView control −

Sr.No. Event & Description

1
AfterCheck

Occurs after the tree node check box is checked.

2
AfterCollapse

Occurs after the tree node is collapsed.

3
AfterExpand

Occurs after the tree node is expanded.

4
AfterSelect

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

104 Occurs after the tree node is selected.

5
BeforeCheck

Occurs before the tree node check box is checked.

Example

Public Class Form1

Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load

'create a new TreeView

Dim TreeView1 As TreeView

TreeView1 = New TreeView()

TreeView1.Location = New Point(10, 10)

TreeView1.Size = New Size(150, 150)

Me.Controls.Add(TreeView1)

TreeView1.Nodes.Clear()

'Creating the root node

Dim root = New TreeNode("Application")

TreeView1.Nodes.Add(root)

TreeView1.Nodes(0).Nodes.Add(New TreeNode("Project 1"))

'Creating child nodes under the first child

For loopindex As Integer = 1 To 4

TreeView1.Nodes(0).Nodes(0).Nodes.Add(New _

TreeNode("Sub Project" & Str(loopindex)))

Next loopindex

' creating child nodes under the root

TreeView1.Nodes(0).Nodes.Add(New TreeNode("Project 6"))

'creating child nodes under the created child node

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

105

For loopindex As Integer = 1 To 3

TreeView1.Nodes(0).Nodes(1).Nodes.Add(New _

TreeNode("Project File" & Str(loopindex)))

Next loopindex

' Set the caption bar text of the form.

Me.Text = "tutorialspoint.com"

End Sub

End Class

Output:

SplitContainer Control

A SplitContainer has two panels. The first panel is represented by Panel1 and second panel is

represented by Panel2. These panels can have their own properties and events.

Drag and drop SplitContainer control from toolbox on the window Form.

Properties of SplitContainer control:

· Orientation - Gets or sets a value indicating the Horizontal or Vertical orientation of the

SplitContainer panels.

· BackgroundImage - Instead of a single color, an image can be displayed as the background.

The image only appears in the splitter bar.

https://www.mindstick.com/articles/316/splitcontainer-control-in-vb-dot-net

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

106
Change color of Panel in SplitContainer

Example:

Private Sub Form26_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles MyBase.Load

Dim leftpanel As SplitterPanel = SplitContainer1.Panel1

'change backcolor of Panle1

leftpanel.BackColor = Color.PowderBlue

Dim rightpanel As SplitterPanel = SplitContainer1.Panel2

'change backcolor of Panle2

rightpanel.BackColor = Color.RoyalBlue

End Sub

Output:

MenuStrip Control

The MenuStrip control represents the container for the menu structure.

The MenuStrip control works as the top-level container for the menu structure. The

ToolStripMenuItem class and the ToolStripDropDownMenu class provide the functionalities to create

menu items, sub menus and drop-down menus.

The following diagram shows adding a MenuStrip control on the form −

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

107

Properties of the MenuStrip Control

The following are some of the commonly used properties of the MenuStrip control −

Sr.No. Property & Description

1
CanOverflow

Gets or sets a value indicating whether the MenuStrip supports overflow functionality.

2
GripStyle

Gets or sets the visibility of the grip used to reposition the control.

3
MdiWindowListItem

Gets or sets the ToolStripMenuItem that is used to display a list of Multiple-document

interface (MDI) child forms.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

108 4
ShowItemToolTips

Gets or sets a value indicating whether ToolTips are shown for the MenuStrip.

5
Stretch

Gets or sets a value indicating whether the MenuStrip stretches from end to end in its

container.

Events of the MenuStrip Control

The following are some of the commonly used events of the MenuStrip control −

Sr.No. Event & Description

1
MenuActivate

Occurs when the user accesses the menu with the keyboard or mouse.

2
MenuDeactivate

Occurs when the MenuStrip is deactivated.

Example

In this example, let us add menu and sub-menu items.

Take the following steps −

• Drag and drop or double click on a MenuStrip control, to add it to the form.

• Click the Type Here text to open a text box and enter the names of the menu items or sub-menu

items you want. When you add a sub-menu, another text box with 'Type Here' text opens

below it.

• Complete the menu structure shown in the diagram above.

• Add a sub menu Exit under the File menu.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

109

• Double-Click the Exit menu created and add the following code to the Click event

of ExitToolStripMenuItem −

Private Sub ExitToolStripMenuItem_Click(sender As Object, e As EventArgs) _

Handles ExitToolStripMenuItem.Click

End

End Sub

When the above code is executed and run using Start button available at the Microsoft Visual Studio

tool bar, it will show the following window:

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

110
SDI and MDI Forms

The SDI and MDI forms are the interface design for document handling within a single

Windows application. The MDI stands for Multiple Document Interface whereas SDI

stands for Single Document Interface.

MDI: A multiple document Interface is one that allows viewing multiple windows within

a large window.

SDI: A single Document Interface is one where all Windows appear independently of one

another without the unification of a single parent window.

The Visual Basic IDE can be viewed in two ways:

1.With the Multiple Document Interface (MDI)

2.Single Document Interface (SDI)

MDI view shows all the distinct windows of Visual Bassic IDE as child windows within

on large IDE Window.

In the SDI view, distinct windows of the Visual Basic IDE exist independently of each

other.

MDI Forms

•This is the main form or parent form which is not duplicated, but acts like a container

for all the Windows which is also called the primary window.

•The windows in which the individual documents are displayed are called Child

Windows.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

111
•An MDI application must have atleast two form, the primary parent form and one or

more child forms.

•The parent form may not contain any controls. While the parent Form is open in design

mode, the icon on the tool box are not displayed, but you can’t place any control on the

form.

•The parent form usually have a menu.

To create an MDI form follow these steps

•Start a new project and then choose: Project -> Add MDI Form to add the parent form.

•Set the Forms caption to MDI window.

•Choose Project -> Add Form to add a SDI window.

•Make this form as child of MDI form by setting the MDI child property of the SDI form

to True. Set the caption property to MDI child window.

Dialog Boxes

There are many built-in dialog boxes to be used in Windows forms for various tasks like opening and

saving files, printing a page, providing choices for colors, fonts, page setup, etc., to the user of an

application. These built-in dialog boxes reduce the developer's time and workload.

All of these dialog box control classes inherit from the CommonDialog class and override

the RunDialog() function of the base class to create the specific dialog box.

The RunDialog() function is automatically invoked when a user of a dialog box calls

its ShowDialog() function.

The ShowDialog method is used to display all the dialog box controls at run-time. It returns a value of

the type of DialogResult enumeration. The values of DialogResult enumeration are −

• Abort − returns DialogResult.Abort value, when user clicks an Abort button.

• Cancel − returns DialogResult.Cancel, when user clicks a Cancel button.

• Ignore − returns DialogResult.Ignore, when user clicks an Ignore button.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

112
• No − returns DialogResult.No, when user clicks a No button.

• None − returns nothing and the dialog box continues running.

• OK − returns DialogResult.OK, when user clicks an OK button

• Retry − returns DialogResult.Retry , when user clicks an Retry button

• Yes − returns DialogResult.Yes, when user clicks an Yes button

The following diagram shows the common dialog class inheritance −

All these above-mentioned classes have corresponding controls that could be added from the Toolbox

during design time. You can include relevant functionality of these classes to your application, either

by instantiating the class programmatically or by using relevant controls.

When you double click any of the dialog controls in the toolbox or drag the control onto the form, it

appears in the Component tray at the bottom of the Windows Forms Designer, they do not directly

show up on the form.

The following table lists the commonly used dialog box controls. Click the following links to check

their detail −

Sr.No. Control & Description

1
ColorDialog

It represents a common dialog box that displays available colors along with controls that

enable the user to define custom colors.

2
FontDialog

It prompts the user to choose a font from among those installed on the local computer and

https://www.tutorialspoint.com/vb.net/vb.net_color_dialog.htm
https://www.tutorialspoint.com/vb.net/vb.net_font_dialog.htm

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

113 lets the user select the font, font size, and color.

3
OpenFileDialog

It prompts the user to open a file and allows the user to select a file to open.

4
SaveFileDialog

It prompts the user to select a location for saving a file and allows the user to specify the

name of the file to save data.

5
PrintDialog

It lets the user to print documents by selecting a printer and choosing which sections of

the document to print from a Windows Forms application.

Toolbar

The toolbar is a very popular and much-used addition to a programme. It's difficult to think of a piece

of software that doesn't make use of them. VB.NET lets you add toolbars to your forms, and the

process is quite straightforward. Let's see how it's done:

Either start a new Windows project, or keep the one you currently have. To add a toolbar to the top of

your form, expand the Toolbox and locate the ToolStrip control:

Double click the ToolStrip control, and it will be added to the top of your form:

You should also notice the ToolStrip object that appears at the bottom of the window:

ToolStrips work by adding buttons and images to them. The button is then clicked, and an action

performed.

https://www.tutorialspoint.com/vb.net/vb.net_openfile_dialog.htm
https://www.tutorialspoint.com/vb.net/vb.net_savefile_dialog.htm
https://www.tutorialspoint.com/vb.net/vb.net_print_dialog.htm

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

114
Click on your ToolStrip to select it. In the property box for the ToolStrip, you'll notice that it has the

default Name of ToolStrip1. We'll keep this Name. But locate the Items (Collection) property:

Click the button with the three dots in it. This brings up the Items Collection Editor:

To add a new button to your ToolStrip, click the Add button at the top. The button appears in the

Members box (ToolStripButton1):

Notice that the new button has its own list of properties, just to the right. To add an image to this new

button, locate the Image property:

Click the small button with the 3 dots in it to bring up the Select Resource box:

We then navigated to some Bitmap images and imported the five that you can see in the screenshot

above (these are in the BITMAP folder that you download at the top of this tutorial). Click OK when

you have imported some images. You will be returned to the Item Collection Editor. Click OK on this,

as well.

To add a new button to the toolstrip, click on Button from the drop down menu in the image above. A

default button is added called ToolStripButton2. (The first button is called ToolStripButton1.)

Repeat the steps above to add more buttons to the toolstrip. It should then look something like ours:

You can place any code you like, here. Try a message box, as in the image below:

Run your programme and click your ToolStrip button. You should see the message box display.

StatusBar

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

115

A StatusBar control is a combination of StatusBar panels where each panel can be used to display

different information. In this article, I will discuss how to create and use a StatusBar using StatusBar

class in a Windows Forms application.

StatusBar control is not available in Toolbox of Visual Studio 2010. StatusStrip control replaces

StatusBar in Visual Studio 2010. But for backward compatibility support, StatusBar class is available

in Windows Forms. In this article, I will discuss how to create and use a StatusBar using StatusBar

class in a Windows Forms application.

A StatusBar control is a combination of StatusBar panels where each panel can be used to display

different information. For example, one panel can display current application status and other can

display date and other information and so on. A typical StatusBar sits at the bottom of a form.

Creating a StatusBar

StatusBar class represents a StatusBar.

Dim mainStatusBar As New StatusBar()

A StatusBar is a combination of StatusBar panels. StatusBarPanel class represents a StatusBar panel.

The following code snippet creates two panels and adds them to the StatusBar.

Dim statusPanel As New StatusBarPanel()

Dim datetimePanel As New StatusBarPanel()

statusPanel.BorderStyle = StatusBarPanelBorderStyle.Sunken

statusPanel.Text = "Application started. No action yet."

statusPanel.ToolTipText = "Last Activity"

statusPanel.AutoSize = StatusBarPanelAutoSize.Spring

mainStatusBar.Panels.Add(statusPanel)

datetimePanel.BorderStyle = StatusBarPanelBorderStyle.Raised

datetimePanel.ToolTipText = "DateTime: " + System.DateTime.Today.ToString()

datetimePanel.Text = System.DateTime.Today.ToLongDateString()

datetimePanel.AutoSize = StatusBarPanelAutoSize.Contents

mainStatusBar.Panels.Add(datetimePanel)

Now, make sure ShowPanels property is true.

mainStatusBar.ShowPanels = True

In the end, we add StatusBar to the Form.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

116
Controls.Add(mainStatusBar)

Now let's create a Windows Forms application with a few controls on it. We are going to show current

activity and date on the status bar. The Form looks like following.

Advantage of ADO.Net

Single Object-Oriented API

ADO.NET provides a single object-oriented set of classes. Different data providers work with different

data sources, but the programming model for all these data providers work in the same way. So, if you

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

117
know how to work with one data provider, you can easily work with others. It's just a matter of

changing class names and connection strings.

The ADO.NET classes are easy to use and easy to understand because of their object-oriented nature.

Managed Code

The ADO.NET classes are managed classes. They have all the advantages of the .NET CLR, such as

language independency and automatic resource management. All .NET languages access the same API.

So, if you know how to use these classes in C#, you will have no problem using them in VB .NET.

Another big advantage is you don't have to worry about memory allocation and freeing it. The CLR

takes care of it for you.

XML Support

Today, XML is an industry standard and the most widely used method of sharing data among

applications over the Internet. As mentioned earlier, in ADO.NET data is cached and transferred in

XML format. All components and applications can share this data, and data can be transferred via

different protocols such as HTTP. We explain this topic in more detail in Chapters 6 and 7.

Visual Data Components

VS .NET offers ADO.NET components and data-bound controls to work in visual form. That means

you can use these components as you use any Windows controls. You drag and drop these components

on Windows and Web Forms, set their properties, and write events. This helps programmers to write

less code and develop applications in no time. VS .NET also offers the Data Form Wizard, which helps

you create full-fledged database applications without writing a single line of code. Using these

components, you can directly bind these components with data-bound controls by setting these

control's properties at design-time. Chapter 4 explains this in detail.

Performance and Scalability

Performance and scalability are two major factors when developing Web-based applications and

services. Transferring data from one source to another is a costly affair over the Internet because of

connection bandwidth limitations and rapidly increasing traffic. Using disconnected cached data in

XML takes care of both of these problems.

Managed Data Providers

When speaking of data access, it’s useful to distinguish between providers of data and consumers of

data. A data provider encapsulates data and provides access to it in a generic way. The data itself can

be in any form or location. For example, the data may be in a typical database management system

such as SQL Server, or it may be distributed around the world and accessed via web services. The data

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

118
provider shields the data consumer from having to know how to reach the data. In ADO.NET, data

providers are referred to as managed providers .

A data consumer is an application that uses the services of a data provider for the purposes of storing,

retrieving, and manipulating data. A customer-service application that manipulates a customer database

is a typical example of a data consumer. To consume data, the application must know how to access

one or more data providers.

ADO.NET is comprised of many classes, but five take center stage:

Connection

Represents a connection to a data source.

Command

Represents a query or a command that is to be executed by a data source.

DataSet

Represents data. The DataSet can be filled either from a data source (using a DataAdapter

object) or dynamically.

DataAdapter

Used for filling a DataSet from a data source.

DataReader

Used for fast, efficient, forward-only reading of a data source.

With the exception of DataSet, these five names are not the actual classes used for accessing data

sources. Each managed provider exposes classes.

Developing a Simple ADO.Net Application

ImportsSystem.Data.SqlClient

PublicClassForm1

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

119
Dim con AsNewSqlConnection

DimcmdAsNewSqlCommand

PrivateSub Button1_Click(ByVal sender AsSystem.Object, ByVal e AsSystem.EventArgs) Handles

Button1.Click

cmd = con.CreateCommand()

cmd.CommandType = CommandType.Text

cmd.CommandText = "insert into Table1 values('" + TextBox1.Text + "','" + TextBox2.Text + "','" +

TextBox3.Text + "')"

cmd.ExecuteNonQuery()

disp_data()

MessageBox.Show("Record Inserted")

EndSub

PrivateSub Form1_Load(ByVal sender AsSystem.Object, ByVal e AsSystem.EventArgs)

HandlesMyBase.Load

con.ConnectionString = "Data

Source=.\SQLEXPRESS;AttachDbFilename=C:\Users\cse\documents\visual studio

2010\Projects\WindowsApplication1\WindowsApplication1\student.mdf;Integrated

Security=True;User Instance=True"

Ifcon.State = ConnectionState.OpenThen

con.Close()

EndIf

con.Open()

disp_data()

EndSub

PublicSubdisp_data()

cmd = con.CreateCommand()

cmd.CommandType = CommandType.Text

cmd.CommandText = "select * from Table1"

cmd.ExecuteNonQuery()

DimdtAsNewDataTable()

Dim da AsNewSqlDataAdapter(cmd)

da.Fill(dt)

DataGridView1.DataSource = dt

EndSub

EndClass

Output:

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

120

Creating a DataTable

A DataTable, which represents one table of in-memory relational data, can be created and used

independently, or can be used by other .NET Framework objects, most commonly as a member of

a DataSet.

You can create a DataTable object by using the appropriate DataTable constructor. You can add it to

the DataSet by using the Add method to add it to the DataTable object's Tables collection.

You can also create DataTable objects within a DataSet by using the Fill or FillSchema methods of

the DataAdapter object, or from a predefined or inferred XML schema using

the ReadXml, ReadXmlSchema, or InferXmlSchema methods of the DataSet. Note that after you

have added a DataTable as a member of the Tables collection of one DataSet, you cannot add it to the

collection of tables of any other DataSet.

When you first create a DataTable, it does not have a schema (that is, a structure). To define the

schema of the table, you must create and add DataColumn objects to the Columns collection of the

table. You can also define a primary key column for the table, and create and add Constraint objects to

the Constraints collection of the table. After you have defined the schema for a DataTable, you can

add rows of data to the table by adding DataRow objects to the Rows collection of the table.

https://docs.microsoft.com/en-us/dotnet/api/system.data.datatable
https://docs.microsoft.com/en-us/dotnet/api/system.data.dataset
https://docs.microsoft.com/en-us/dotnet/api/system.data.datacolumn

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

121
You are not required to supply a value for the TableName property when you create a DataTable; you

can specify the property at another time, or you can leave it empty. However, when you add a table

without a TableName value to a DataSet, the table will be given an incremental default name of

TableN, starting with "Table" for Table0.

The following example creates an instance of a DataTable object and assigns it the name "Customers."

DataTable workTable = new DataTable("Customers");

The following example creates an instance of a DataTable by adding it to the Tables collection of

a DataSet.

DataSet customers = new DataSet();

DataTable customersTable = customers.Tables.Add("CustomersTable");

Retrieve Data from A Table

Use ado.net to connect to a database and retrieve the row from the database table.To do that we use

DataAdapter to retrieve the data from the database and place the data into DataSet. To fill the data into

the DataSet use Fill method.

Example:

Imports System.Data

Imports System.Data.SqlClient

Public Class Form1

Public Sub New()

InitializeComponent()

BindGrid()

End Sub

Private Sub BindGrid()

Dim constring As String = "Data Source=.\SQL2005;Initial Catalog=Northwind;User id =

sa;password=pass@123"

Using con As New SqlConnection(constring)

Using cmd As New SqlCommand("SELECT * FROM Customers", con)

cmd.CommandType = CommandType.Text

Using sda As New SqlDataAdapter(cmd)

Using dt As New DataTable()

sda.Fill(dt)

dataGridView1.DataSource = dt

End Using

End Using

End Using

https://docs.microsoft.com/en-us/dotnet/api/system.data.datatable.tablename

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

122
End Using

End Sub

End Class

Output:

Update data

After the data in your dataset has been modified and validated, you can send the updated data

back to a database by calling the Update method of a TableAdapter. The Update method updates a

single data table and runs the correct command (INSERT, UPDATE, or DELETE) based on

the RowState of each data row in the table.

When a dataset has related tables, Visual Studio generates a TableAdapterManager class that you use to

do the updates. The TableAdapterManager class ensures that updates are made in the correct order

based on the foreign-key constraints that are defined in the database.

When you use data-bound controls, the databinding architecture creates a member variable of the

TableAdapterManager class called tableAdapterManager.

The exact procedure for updating a data source can vary depending on business needs, but includes the

following steps:

1. Call the adapter's Update method in a try/catch block.

2. If an exception is caught, locate the data row that caused the error.

https://docs.microsoft.com/en-us/visualstudio/data-tools/create-and-configure-tableadapters?view=vs-2019
https://docs.microsoft.com/en-us/dotnet/api/system.data.datarow.rowstate

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

123
3. Reconcile the problem in the data row (programmatically if you can, or by presenting the invalid

row to the user for modification), and then try the update again.

Example:

Imports System.Data

Imports System.Data.SqlClient

Partial Class Default2

Inherits System.Web.UI.Page

Dim con As New SqlConnection

Dim cmd As New SqlCommand

Dim ds As New DataSet

Dim adap As New SqlDataAdapter

Protected Sub Button2_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles

Button2.Click

con.ConnectionString = "Data

Source=.\SQLEXPRESS;AttachDbFilename=C:\Users\Acer\Documents\Visual Studio

2010\WebSites\WebSite2\App_Data\student.mdf;Integrated Security=True;User Instance=True"

con.Open()

cmd.Connection = con

cmd.CommandText = "update stud set name='" & TextBox2.Text & "',percentage='" & TextBox3.Text

& "',college='" & TextBox4.Text & "' where regno='" & TextBox1.Text & "'"

cmd.ExecuteNonQuery()

MsgBox("Record Updated")

End Sub

Disconnected Data Access through DataSet Object

The ADO.NET Framework supports two models of Data Access Architecture, Connection Oriented

Data Access Architecture and Disconnected Data Access Architecture. The ADO.NET Disconnected

Data Access Architecture far more flexible and powerful than ADOs Connection Oriented Data

Access.

In Connection Oriented Data Access Architecture the application makes a connection to the Data

Source and then interact with it through SQL requests using the same connection. In this case the

application stays connected to the database system even when it is not using any Database Operations.

On the other hand the disconnected approach makes no attempt to maintain a connection to the data

source.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

124
ADO.Net provides a new solution by introduce a new component called Dataset. The DataSet is the

central component in the ADO.NET Disconnected Data Access Architecture. A DataSet is an in-

memory data store that can hold multiple tables at the same time. DataSets only hold data and do not

interact with a Data Source. One of the key characteristics of the DataSet is that it has no knowledge of

the underlying Data Source that might have been used to populate it.

Example:

Dim ds As New DataSet

In Connection Oriented Data Access, when you read data from a database by using a DataReader

object, an open connection must be maintained between your application and the Data Source. Unlike

the DataReader, the DataSet is not connected directly to a Data Source through a Connection object

when you populate it.

It is the DataAdapter that manages connections between Data Source and Dataset by fill the data from

Data Source to the Dataset and giving a disconnected behavior to the Dataset. The DataAdapter acts as

a bridge between the Connected and Disconnected Objects.

Example:

Dim adapter As New SqlDataAdapter("sql", "connection")

Dim ds As New DataSet

adapter.Fill(ds, "Src Table")

By keeping connections open for only a minimum period of time, ADO .NET conserves system

resources and provides maximum security for databases and also has less impact on system

performance.

 Visual Basic.Net Programming

Dept.of CS&A, SAS, VMRF By: S.Mahalakshmi

125

