
UNIT -1
NUCLEAR CHEMISTRY


Learning goals and key skills:
· [bookmark: _GoBack]Write balanced nuclear equations
· Know the difference between fission and fusion
· Predict nuclear stability in terms of neutron-to-proton ratio
· Calculate ages of objects or amounts of materials from data on nuclear abundances using the half-life of a radioactive material
· Convert between nuclear activity units
· Calculate mass and energy changes for nuclear reactions
· Understand the meaning of radiation dosage terms
· Understand the biological effects of different kinds of radiation





The nucleus
The nucleus is comprised of the two
nucleons: protons (p+) and neutrons (n0)

 (
2
)
Mass number



Atomic number (optional)


Symbol
12
C
6


Atomic number: equal to the number of protons in the nucleus. All atoms of the same element have the same number of protons.
Mass number: equal to the sum of the number of protons and neutrons for an atom.



Isotopes

Atoms with identical atomic numbers but different mass numbers



12
C	carbon-12
6

14
C	carbon-14
1 
Hydrogen or
H	protium
1
2 H	deuterium, D 1

6
3
H	tritium, T
1







Isotopes
Radionuclides are nuclei that are radioactive – i.e., they will spontaneously emit radiation. Atoms containing these nuclei are called radioisotopes. Some nuclides (radionuclides) of an element are unstable, or radioactive. There are several ways radionuclides can decay into a different nuclide.


238
U
92
235
U
92

234
U
92

abundance: 99.27%


0.72%


0.0055%

half-life
4.47 billion years


700 million years


246,000 years
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a, b and g Radiation
 (
b
-ray 
 
High speed electron: 
charge= -1
, 
mass= 9.11

10
-28 
g
 
a
-ray 
 
He core: 
charge= +2
, 
mass= 7295 
 
mass of 
electron
 
g
-ray 
 
Electromagnetic Radiation: 
no charge
, 
no mass
)
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)a-ray	g-ray



symbol

a	or 4He 2		2

0 b  or 0 e	g or 0 g
-1	-1	0







 (
Other common nuclear particles
neutron
proton
positron
) (
0
1
+1
or
or
 
+1
charge
0
1+
1+
mass
1.675 × 10
-24 
g
1.00867 amu
1.673 × 10
-24 
g
1.00728 amu
9.11 × 10
-28
 
g
0.00549
 
amu
)symbol

1n	1 p

0 b	b	0 e

 (
+
)
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 (
Types 
of Radioactive Decay
)
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 (
Nuclear reactions
)
Balance using conservation principles, baryon number conservation.

 (
Alpha decay
Radium-226 emits an alpha particle.
)

226 Ra
88

4 He	+
2

222 Rn
86


 (
Beta decay
An unstable neutron in the nucleus will emit a beta
 
particle.
)

1n	0
0	-1

b	+	1 p
1


 (
Carbon-14 undergoes beta
 
decay.
)

14C	0



b	14 N

6	-1	+	7






 (
Nuclear reactions
)
Gamma emission
[image: ] (
g
)An excited nuclear state emits gamma radiation.	0
(Generally not shown when writing nuclear equations.)	0





Uranium-238 undergoes alpha decay and then gamma emission.



Technetium-99 is metastable and undergoes gamma emission. (Half-life is 6 hours.)




 (
Nuclear reactions
)
[image: ]Positron emission
A neutron-poor nuclei will undergo positron emissions.

1  p	0 b	+	1n
1	+1	0


Carbon-11 undergoes positron emission.

11C	0 e	+

11 B

6	+1	5










 (
Nuclear reactions
) (
Electron capture (K-capture)
)

A neutron-poor nucleus can decay by positron emission or electron capture.
1  p	+	0 e	1n
1	-1	0

Iron-55 decays by electron capture.



-Any atom with more than one proton will have repulsions between the protons in the nucleus.
[image: ]-Strong nuclear force helps keep the nucleus together, key role of ratio of neutrons to protons.


Belt of stability



Only 1H and 3He have more p+ than n0.
· Up to Z = 20 (Ca), n0/p+ ≈ 1.
· Above Z = 20, n0/p+ > 1.
· After Z = 83 (Bi), all isotopes are unstable.
For unstable nuclei:
· the heavier, the shorter the half-life.
· the further from the line, the shorter the half-life.








[image: ] (
too high N:
b 
emission
)Predicting nuclear decay




too high N and Z (≥84):
a emission





too high Z : electron capture


 (
too high Z: 
b
+ 
emission
)



[image: ]Radioactive/nuclear disintegration series
· Large radioactive nuclei cannot stabilize by undergoing only one nuclear transformation.

· They undergo a series of decays until they form a stable nuclide (often a nuclide of lead).





Example
The radioactive series beginning with uranium-238 (Z
= 92) terminates with lead-206 (Z = 82). How many alpha decays occur, and how many beta decays occur?



[image: ]

[image: ]Nuclei with
· 2, 8, 20, 28, 50, 82, 126, or 184 p+
or
· 2, 8, 20, 28, 50, 82, 126, or 184 n0
are generally more stable than other nuclei.
· “Magic numbers”






 (
Particle Accelerators
)
Nuclear transformations can be induced by accelerating a particle and colliding it with the nuclide.




 (
Nuclear transformations
)
A nucleus can be transformed when it is struck by a neutron or another nucleus. This type of reaction is called a nuclear transmutation.

 (
19
)
14N +

4He	1H

+	17O

7	2	1	8
target	bombarding		ejected product nucleus		particle	particle nucleus
[image: ]




 (
Nuclear kinetics: first-order process
)


 (
k
)ln Nt N0

=	- kt

 0.693


= t1/2




Half-life is the time required for half of a radionuclide sample to decay.
[image: ]






 (
Rates of decays
)
activity: rate at which a sample decays, disintegrations per unit time, typically measured in dps (disintegrations per second)


becquerel (Bq): SI unit for activity.
1 Bq = 1 dps


curie (Ci): rate of decay of 1 g of radium.
1 Ci = 3.7 × 1010 dps


Kinetics of Radioactive Decay: Radiometric Dating
A wooden object from an archeological site is subjected to radiocarbon dating.
The activity of the sample that is due to 14C is measured to be
11.6 disintegrations per second. The activity of a carbon sample of equal mass from fresh wood is
15.2 disintegrations per second. The half- life of 14C is 5715 yr. What is the age of the archeological sample?






 (
Example
)
A 1.0 mg sample of uranium-238 decays at a rate of 12 alpha emissions per second = 12 dps. Find the half-life of uranium-238.



 (
Measuring Radioactivity
)
Film badges (spots on the developed film) and phosphors (measure the amount of light emitted by a phosphor in a scintillation counter)
Geiger counters are used to measure the amount of activity present in a radioactive sample.
· [image: ]The ionizing radiation creates ions, which conduct a current that is detected by the instrument.




 (
Radiotracers
)
Radiotracers: radioisotopes used to study a chemical reaction. An element can be followed through a reaction to determine its path and better understand the mechanism of a chemical reaction.
· Radioisotopes are administered to a patient (usually intravenously) and followed. Certain elements collect more in certain tissues, so an organ or tissue type can be studied based on where the radioactivity collects.
[image: ]



 (
Nuclear binding energy
)
The mass difference between a nucleus and its constituent nucleons is called the mass defect. We can use Einstein’s equation to find the nuclear binding energy: the energy required to separate a nucleus into its individual nucleons.

E = mc2

1 eV = 1.602×10-19 J
c = 2.99792458 108 m s-1


[image: ]






 (
Example
)
Calculate the nuclear binding energy for deuterium.
1H	+	1n	2H
1	0	1
1.007825 amu	1.008665 amu	2.01410 amu

The mass defect is 0.00239 amu.

Avogadro Constant = 6.0221421×1023 mol-1 mass of electron = 5.4857x10-4 amu
mass of neutron = 1.008665 amu mass of proton = 1.007276 amu




 (
Example
)
Calculate the nuclear binding energy per mole for deuterium.
1H	+	1n	2H
1	0	1


1.007825 amu	1.008665 amu	2.01410 amu

The mass defect is 0.00239 amu.











Example
Calculate the nuclear binding energy per nucleon for deuterium.
1H	+	1n	2H
1	0	1


1.007825 amu	1.008665 amu	2.01410 amu

The mass defect is 0.00239 amu.



 (
Nuclear binding energies
)
· Heavy nuclei gain stability and give off energy when they split into two smaller nuclei. This is fission.
· Lighter nuclei emit great amounts of energy by being combined in fusion.
[image: ]




 (
Nuclear Fission
)
Fermi’s proposed transuranium synthesis

238U

+ 1n

239U	239X	+	0b

92	0	92	93	-1
[image: ][image: ]Meitner, Strassman, Hahn discovered U-235 didn’t make a new element, but ...




 (
Nuclear chain reaction
)	[image: ]

· Bombardment of the radioactive nuclide with a neutron starts the process.
· More neutrons are produced from the transmutation.
· A critical mass of radioactive nuclides is needed for a self-sustaining chain reaction.









· The minimum mass that must be present for a chain reaction to be sustained is called the critical mass.
· [image: ][image: ]If more than critical mass is present (supercritical mass), an explosion will occur. Weapons were created by causing smaller amounts to be forced together to create this mass.



 (
Nuclear reactors
)
In nuclear reactors, the heat generated by the reaction is used to produce steam that turns a turbine connected to a generator.
[image: ]




Nuclear reactors
The reaction is kept in check by the use of control rods made of boron carbide, Ag, In, Cd, or Hf.

These block the paths of some neutrons, keeping the reactor core from overheating.



 (
Nuclear waste
)
· Reactors must be stopped periodically to replace or reprocess the nuclear fuel.
· They are stored in pools at the reactor site.
· The original intent was that this waste would then be transported to reprocessing or storage sites, but politics….
[image: ]



[image: ] (
Nuclear fusion
)
· Potentially superior method of generating power
· [image: ]Need ~40,000,000 K for any fusion reaction.
A tokamak fusion test reactor has only been able to get 100,000,000 K – but not stable and has not yet produced more power than it takes to use.
[image: ][image: ][image: ]



 (
Origin of the elements
)
produces
yellow stars
1H fusion	He red giants
4He fusion	C, O, Ne, Mg red supergiants
4He + 12C	Na, Si, S, Ar, Ca
[image: ]12C + 12C	Fe, Ni
12C + 16O
supernovae, neutron stars
56Fe + 1n	Z > 28






[image: ]Radiation in the Environment
·  (
onizing radiation 
is more harmful to living
)I
systems than nonionizing radiation, such as radiofrequency electromagnetic radiation.
· [image: ]Since most living tissue is ~70% water, ionizing radiation is that which causes water to ionize.
· This creates unstable, very reactive OH radicals, which result in much cell damage.
· The damage to cells depends on the type of radioactivity, the length of exposure, and whether the source is inside or outside the body.
· Outside the body, gamma rays are most dangerous.
· Inside the body, alpha radiation can cause most harm.

 (
21
)



 (
Constant exposure to
 
radiation.
)

[image: ]












 (
Radiation doses
)
gray (Gy):  SI unit of absorbed dose 1 Gy = absorption of 1 J/kg tissue
rad: radiation absorbed dose
1 rad = absorption of 0.01 J/kg tissue 1 Gy = 100 rads
RBE: relative biological effectiveness
RBE (b and g) = 1	RBE (a) = 10
rem = (# rads) (RBE)
roentgen equivalent for man
sievert (Sv) SI unit for dosage
1 Sv = 100 rem, 1 mSv = 0.1 rem



 (
Short-Term Exposure
)
[image: ]



· 600 rem is fatal to most humans.










 (
Average individual background radiation dose: 0.34 μSv/h or 3.0
 
mSv/year for
 
Americans
Dental radiography: 0.005
 
mSv
Average dose to people living within 16 km of Three Mile Island
 
accident:
0.08 mSv during the accident
Mammogram: 3
 
mSv
Brain CT scan: 0.8–5
 
mSv
Chest CT scan: 6–18
 
mSv
Gastrointestinal series 
X-ray 
investigation: 14
 
mSv
Current average limit for nuclear workers: 20 mSv per
 
year
Dose from smoking 30 cigarettes a day: 13-60 mSv/year (.04 picocuries of polonium
 
210)
Criterion for relocation after Chernobyl: 350
 
mSv/lifetime
Typical 
dose near Chernobyl reactor 4 and its fragments, shortly after explosion: ≈ 10–300 mSv
 
/hour
March 16, 2011, a radiation level of 300 mSv/h was recorded between
 
the exteriors of the secondary containment buildings of Unit 2 reactor and Unit 3 reactor of Fukushima Daiichi Nuclear Power
 
Station.
In Fukushima Prefecture, the level in the town of Namie (20 km), which peaked at 170 μSv/h at 2 p.m. on March 17, 2011 fell to 25.2 μSv/h as of April 10. The accumulated radiation for the March 23 to April 9 period
 
was
13.95 mSv. Radiation levels have also fallen to 1.8 μSv/h (24.24 μSv/h at peak time) in Fukushima city.
)




[image: ]

Average exposure per year is about 360 mrem.







· Radon-222 is a decay product of uranium-238, which is found in rock formations and soil.
· [image: ]Most of the decay products of uranium remain in the soil, but radon is a gas.
· When inhaled, it can cause significant harm, since the decay produces alpha particles, which have a high RBE.
· It is estimated to contribute to 10% of all lung cancer deaths in the United States.



 (
BNCT
Boron Neutron Capture Therapy
)
· [image: ]10B can capture slow neutrons
· Tumor cells preferentially take up boron compounds
· 10B + 1n → 11B* → 7Li + 4a 5	0	5	3	2

Food irradiation
· Food can be irradiated with g rays from 60Co or 137Cs.
· Irradiated milk has a shelf life of 3 months without refrigeration.
· USDA has approved irradiation of meats and eggs.
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B-ray
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Other common nuclear particles
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neutron
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proton
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positron
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Table 21.2 Particles Found in

Nuclear Reactions

Particle Symbol
Neutron inorn
Proton Horp
Electron e
Alpha particle SHeor a
Beta particle Jeorg”
Positron Seorg”
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Types of Radioactive Decay
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TABLE 21.3 Types of Radioactive Decay

Change in Change in
Type Nuclear Equation Atomic Number Mass Number
Alpha emission 4X — 478Y + 4He —2 4
Beta emission 4X — 247 + e +1 Unchanged
Positron emission 4X — 247 + e -1 Unchanged
Electron capture* AX + e — LAY -1 Unchanged

*The electron captured comes from the electron cloud surrounding the nucleus.
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Nuclear reactions
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Alpha decay

Radium-226 emits an alpha particle.
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Beta decay

An unstable neutron in the nucleus will emit a beta particle.




image19.jpeg
Carbon-14 undergoes beta decay.
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Gamma emission
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Positron emission
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Electron capture (K-capture)
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Number of neutrons, n
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Mass number

238
236
234
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Each blue arrow
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TABLE 21.4 Number of Stable
Isotopes with Even and Odd
Numbers of Protons and
Neutrons

Number of Proton Neutron

Stable Isotopes Number Number

157 Even Even
53 Even Odd
50 Odd Even

5 Odd Odd




image27.jpeg
Particle Accelerators
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Nuclear transformations
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Nuclear kinetics: first-order process
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TABLE 21.5 The Half-Lives and Type of Decay

for Several Radioisotopes

Isotope Half-Life (yr) Type of Decay
Natural Z5U 4.5 x 10° Alpha
radioisotopes )

%30 7.0 x 108 Alpha

%0 Th 1.4 x 101 Alpha

Bk 1.3 x 10° Beta

e 5700 Beta
Synthetic 29Pu 24,000 Alpha
radioisotopes

13765 30.2 Beta

9081 28.8 Beta

1317 0.022 Beta
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Rates of decays
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Kinetics of Radioactive Decay:
Radiometric Dating
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6 Cosmic rays (largely protons)
enter the atmosphere and collide

1 ~——— | with atoms, creating neutrons.

é Nitrogen atoms capture a neutron
and emit a proton, forming 14C.

14C atoms are incorporated in
COy, which is taken up by plants
and made into more complex
molecules through photosynthesis

6Animals and people take in 14C
by eating plants.

Once an organism dies, intake of
14C ceases and its concentration
decreases through beta emission
to form 14N.
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Measuring Radioactivity
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Current is amplified and measured
as series of pulses. The greater the
amount of radiation, the greater the
number of pulses.

Metal cylinder Radiation (a-, 8-, or y-rays)
acting as Anode (+) penetrates thin window.
cathode (—)

. e Argon gas

Amplifier

-ra
and counter yray

»\\’ "/
N

Hl'lgh Thin window
voltage penetrated by
radiation
Charged particles moving Radiation ionizes gaseous atoms
between anode and cathode (usually Ar or He), creating positively

create electric current. charged ions and electrons.





image41.jpeg
Radiotracers
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TABLE 21.6 Some Radionuclides Used

as Radiotracers

Nuclide Half-Life Area of the Body Studied
Iodine-131 8.04 days Thyroid
Iron-59 44.5 days Red blood cells

Phosphorus-32 14.3 days
Technetium-99¢ 6.0 hours
Thallium-201 73 hours
Sodium-24 14.8 hours

Eyes, liver, tumors
Heart, bones, liver, and lungs
Heart, arteries

Circulatory system

aThe isotope of technetium is actually a special isotope of Tc-99
called Tc-99m, where the m indicates a so-called metastable isotope.
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TABLE 21.7 Mass Defects and Binding Energies for Three Nuclei

Mass of Nucleus Mass of Individual Mass Defect Binding Binding Energy
Nucleus (amu) Nucleons (amu) (amu) Energy (J) per Nucleon (J)
3He 4.00150 4.03188 0.03038 4,53 x 10712 1.13 x 10712
$6Fe 55.92068 56.44914 0.52846 7.90 x 1071 1.41 x 10712
28U 238.00031 239.93451 1.93420 2.89 x 10710 1.21 x 10712
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Nuclear binding energies
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Nuclear Fission
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Nuclear reactors




image56.jpeg
Heat is transferred to the
secondary coolant in the heat
exchanger, generating steam.
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Nuclear reactors
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Nuclear waste
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Nuclear fusion
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Origin of the elements
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TABLE 21.1 Properties of Alpha, Beta, and Gamma Radiation

Type of Radiation

Property @ B Y
Charge 2 = 0
Mass 6.64 X 107%*g  9.11 x 10 8g 0
Relative penetrating power 1 100 10,000

Nature of radiation 4He nuclei Electrons High-energy photons
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Constant exposure to radiation.
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TABLE 21.8 Average Abundances and Activities of Natural Radionuclides®

Potassium-40 Rubidium-87 Thorium-232 Uranium-238
Land elemental abundance (ppm) 28,000 112 10.7 2.8
Land activity (Bq/kg) 870 102 43 35
Ocean elemental concentration (mg/L) 339 0.12 15X 1057 0.0032
Ocean activity (Bq/L) 12 0.11 4x107 0.040
Ocean sediments elemental abundance (ppm) 17,000 = 5.0 1.0
Ocean sediments activity (Bq/kg) 500 — 20 12
Human body activity (Bq) 4000 600 0.08 0.4%

Data from “lonizing Radiation Exposure of the Population of the United States,” Report 93, 1987, and Report 160, 2009, National Council
on Radiation Protection.

#Includes lead-210 and polonium-210, daughter nuclei of uranium-238.
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Short-Term Exposure
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TABLE 21.9 Effects of Short-Term Exposures to Radiation

Dose (rem)

Effect

0-25
25-50
100-200
500

No detectable clinical effects
Slight, temporary decrease in white blood cell counts
Nausea; marked decrease in white blood cell counts

Death of half the exposed population within 30 days
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B Zone 1 Predicted average indoor radon level greater than 4 pCi/L
Zone 2 Predicted average indoor radon level between 2 and 4 pCi/L
Zone 3 Predicted average indoor radon level less than 2 pCi/L
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BNCT

Boron Neutron Capture Therapy
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